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Abstract

Background: Many apps have been designed to remotely assess clinical status and monitor symptom evolution in persons with
multiple sclerosis (MS). These may one day serve as an adjunct for in-person assessment of persons with MS, providing valuable
insight into the disease course that is not well captured by cross-sectional snapshots obtained from clinic visits.

Objective: This study sought to review the current literature surrounding apps used for remote monitoring of persons with MS.

Methods: A scoping review of published articles was conducted to identify and evaluate the literature published regarding the
use of apps for monitoring of persons with MS. PubMed/Medline, EMBASE, CINAHL, and Cochrane databases were searched
from inception to January 2022. Cohort studies, feasibility studies, and randomized controlled trials were included in this review.
All pediatric studies, single case studies, poster presentations, opinion pieces, and commentaries were excluded. Studies were
assessed for risk of bias using the Scottish Intercollegiate Guidelines Network, when applicable. Key findings were grouped in
categories (convergence to neurological exam, feasibility of implementation, impact of weather, and practice effect), and trends
are presented. In a parallel systematic search, the Canadian Apple App Store and Google Play Store were searched to identify
relevant apps that are available but have yet to be formally studied and published in peer-reviewed publications.

Results: We included 18 articles and 18 apps. Although many MS-related apps exist, only 10 apps had published literature
supporting their use. Convergence between app-based testing and the neurological exam was examined in 12 articles. Most
app-based tests focused on physical disability and cognition, although other domains such as ambulation, balance, visual acuity,
and fatigue were also evaluated. Overall, correlations between the app versions of standardized tests and their traditional counterparts
were moderate to strong. Some novel app-based tests had a stronger correlation with clinician-derived outcomes than traditional
testing. App-based testing correlated well with the Multiple Sclerosis Functional Composite but less so with the Expanded
Disability Status Scale; the latter correlated to a greater extent with patient quality of life questionnaire scores.

Conclusions: Although limited by a small number of included studies and study heterogeneity, the findings of this study suggest
that app-based testing demonstrates adequate convergence to traditional in-person assessment and may be used as an adjunct to
and perhaps in lieu of specific neurological exam metrics documented at clinic visits, particularly if the latter is not readily
accessible for persons with MS.

(JMIR Neurotech 2023;2:e37944)   doi:10.2196/37944
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Introduction

Multiple sclerosis (MS) has a fluctuating clinical course
punctuated by relapses, remissions, and progressive deterioration
for many affected patients. As such, the neurologist requires an
accurate representation of the symptomatology of the patient
with MS in order to evaluate the efficacy of treatment [1].

Infrequent and intermittent monitoring as provided at office
visits may not truly reflect the day-to-day functioning and
quality of life of patients living with MS [2]. Persons with MS
may also have recall bias when reporting symptoms to their
neurologist [2]. Additionally, symptoms in MS can fluctuate
depending on fatigue, mood, and weather; thus, the
cross-sectional nature of the information obtained from an
individual clinic visit may be of limited accuracy compared
with trends in symptoms over time [3,4]. The need for at-home
MS follow-up has been further emphasized by the current
COVID-19 pandemic, in which many medical centers have
implemented in-person patient visit limits to reduce the spread
of the virus [5].

Remote evaluation of clinical status and symptoms in persons
with MS could serve as a means of obtaining additional
information that is not provided by the traditional office visit.
Many apps for remote assessment of persons with MS exist,
ranging from symptom logs, patient-reported outcome trackers,
assessments of cognitive function and fine motor skills, as well
as drug adherence and adverse drug event trackers [6-8]. The
objective of this review was to identify and evaluate apps
designed to enable remote assessment of persons with MS and
whether the means of assessment utilized in these various apps
are supported by scientific evidence.

Methods

Review Sources
A scoping review was performed to identify articles evaluating
apps dedicated to the remote testing and follow-up of persons

with MS. The PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) guidelines were
followed for this portion of the review [9]. No protocol for this
review was previously published.

A separate review of the Canadian Apple App Store and Google
Play Store was conducted in parallel. This was done in order to
identify apps available for public use, including some identified
in the literature search as well as those that had not been
formally studied prior to dissemination.

Eligibility Criteria
Scientific papers were included if they met the following criteria:
The study evaluated the use of remote monitoring of persons
with MS via smartphone or tablet app and was published in
English, French, or Spanish prior to January 17, 2022. Cohort
studies, feasibility studies, and randomized controlled trials
were included in this review. Studies were included if the
application was used to measure one or more of the following
functional domains: physical disability, fatigue, visual
symptoms, urinary symptoms, balance, mood symptoms, pain,
cognition, or ambulation. Exclusion criteria included pediatric
studies, single case studies, poster presentations, opinion pieces,
and commentaries.

Publicly available apps that were intended for symptom tracking
or app-based testing of persons with MS were included in the
app review portion of this paper if they were able to measure
one or more of the aforementioned metrics.

Search Strategy
PubMed/Medline, EMBASE, CINAHL, and Cochrane databases
were searched from inception to January 17, 2022, to identify
studies suitable for inclusion. The search strategy is detailed in
Figure 1, and the detailed search strategy is presented in
Multimedia Appendix 1.

As for the apps, the Canadian iOS Apple App Store and Android
Google Play Store were searched using the term “Multiple
Sclerosis” for publicly available apps.

Figure 1. Search strategy.

Data Collection and Analysis
Two authors (JBM and CP) independently screened studies for
the inclusion criteria based on title and abstract. The articles
were then subject to an independent full-text review, and
inclusion was determined by consensus. The references of
included studies were screened to identify any additional articles
suitable for inclusion that were not captured in the initial search
strategy. The aforementioned authors collected data on
application testing metrics as well as on convergence with

standard neurological exam findings (Pearson correlation
coefficients and linear mixed effects estimates), feasibility of
implementation (qualitative assessment and adherence rates),
weather analysis, and practice effect. Data collection also
included participant age, diagnosis, baseline Expanded Disability
Status Scale (EDSS), study design, study funding, and follow-up
period. Authors JBM and OC assessed included articles for risk
of bias using the Scottish Intercollegiate Guidelines Network
(SIGN) checklist, when applicable [10]. Relevant articles were
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grouped in primary outcome categories, and data were presented
qualitatively.

Authors JBM and CP independently screened the title and
description of the apps, and inclusion was determined by
consensus. The included apps were then reviewed, and the
functional domains evaluated were documented.

Presentation
For the purpose of readability, this article considered correlation
coefficients |r|≥0.75 to be strong, 0.75>|r|≥0.5 to be moderate,
0.5>|r|≥0.25 to be weak, and |r|<0.25 to not be correlated.

Results

Study and App Identification
A total of 2433 studies were identified using the search strategy
defined in the Methods section. Following duplicate removal

and title and abstract screening, 77 studies were selected for
full-text review. Of these studies, 18 were in keeping with the
predefined inclusion criteria (Figure 2). All 18 studies were
found to be of acceptable or high quality using the SIGN
checklist [10].

As for the app store review, the search yielded 79 apps in the
Apple App Store and 339 apps in the Google Play Store. After
removal of duplicates and title and description screening, 25
apps were selected for full app review. Of these apps, only 18
were deemed to fit the inclusion criteria (Figure 3). Of the 18
apps included, 2 had supporting literature that was identified in
the scoping review portion of this paper [11-14].

Figure 2. Included articles.
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Figure 3. Included apps.

Characteristics of Included Studies
Of the 18 articles included, 12 sought to compare apps with a
neurologist exam, disability scale, or recognized standardized
tests [11-13,15-23]. The feasibility of implementing an app
designed for remote monitoring of persons with MS was
evaluated in 3 studies [24-26], 2 articles compared quality of

life questionnaires with app-based functional tests and
clinician-reported outcomes [25,27], and 2 apps assessed the
local weather’s impact on persons with MS-reported fatigue
and app functional test results [25,28]. Finally, 1 article
evaluated the practice effect of repeated at-home MS testing
[14] (Table 1).
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Table 1. Characteristics of included studies.

Type of multiple sclerosisStudy designCountriesAuthor(s), year

RRa, PPb, SPc, CISd, unknownProspective cohortUnited StatesHsu et al, 2021 [22]

RR, PP, SPProspective cohortIsraelGolan et al, 2021 [27]

RR, PP, SPProspective cohortUnited StatesPratap et al, 2020 [28]

RR, PP, SP, CISCross-sectionalUnited StatesHsu et al, 2021 [15]

RR, SPDescriptive studyUnited StatesNewland et al, 2019 [26]

RR, PP, SPProspective cohortSpain, United StatesMidaglia et al, 2019 [24]

RR, PP, SPProspective cohortSpain, United StatesMontalban et al, 2021 [12]

N/AeProspective cohortSwitzerlandWoelfle et al, 2021 [14]

RR, PP, SPProspective cohortNetherlandsLam et al, 2021 [18]

RRProspective cohortNetherlandsvan Oirschot et al, 2020 [19]

RRProspective cohortNetherlandsvan Oirschot et al, 2021 [23]

RR, PP, SPCross-sectionalUnited StatesBoukhvalova et al, 2018 [16]

RR, PP, SPProspective cohortUnited StatesBoukhavalova et al, 2019 [17]

RR, PPCrossover studyFranceMaillart et al, 2019 [11]

RR, PPProspective cohortFranceTanoh et al, 2021 [13]

RR, PP, SP, CISProspective cohortUnited StatesBove et al, 2015 [25]

RR, PP, SPProspective cohortNetherlandsLam et al, 2021 [20]

RR, PP, SPProspective cohortNetherlandsLam et al, 2022 [21]

aRR: relapsing remitting multiple sclerosis.
bPP: primary progressive multiple sclerosis.
cSP: secondary progressive multiple sclerosis.
dCIS: clinically isolated syndrome.
eN/A: not available.

Characteristics of Included Apps
Of the 18 apps included, 5 had objective symptom testing
through mobile phone sensors. The other 13 did not have active
tests but did allow for symptom logging. Of the apps included
in this study, 2 had complimentary data that were identified
during the scoping review portion of the current study.

Four apps were exclusively found on the Apple App Store, 8
apps were exclusively found in the Google Play Store, and 6
apps were found in both stores. All but 2 of the apps included
were free of charge.

Scoping Review Outcomes
As aforementioned, the reviewed articles were categorized
according to 4 main objectives: evaluating convergence with
neurological exam, feasibility of implementation of an app for
persons with MS, evaluating the practice effect of repeated
at-home testing, and comparing app-based tests with quality of
life questionnaires and local weather.

Convergence With the Neurological Exam
Of the 18 articles, 14 articles described 12 apps that measured
physical disability and correlated these with findings on clinical
exam. These measures of physical disability were done by tap
tests [16], shape drawing tests [11,13], pinching tests [12],

assessment of passively acquired keyboard metrics [18,20], or
using a level test wherein one must balance their phone in order
to keep a ball in a designated screen area [17]. Visual symptoms
were measured in 2 apps using tests of steering around obstacles
[15] or a mobile vision test [11]. Cognitive function was
measured in 6 apps: 3 apps used an electronic version of the
Symbol Digit Modalities Test (SDMT) [11-13,18,19]; 1 used
a go-no go test coupled with multitasking and visuomotor
steering [15]; 1 used a battery of attention, working memory,
and goal management evaluations [22]; and 1 measured
keystroke dynamics including keystroke latency, emoji use, and
word length [20,21]. Ambulation was measured in 3 apps using
an app-based timed 25-foot walk test (T25FW) [11,13], 2-minute
walk test (2MWT) [23], U-turn test [12], or maximum distance
walked test [11,13]. The main tests and functional domains can
be found in Table 2.

One study compared the MS Suite app balloon popping test to
the 9-Hole Peg Test (9HPT) and found that the app slightly
outperformed the 9HPT in its ability to correlate with
clinician-derived outcomes [16]. The number of balloons popped
correlated strongly with cerebellar function and moderately with
upper extremity strength and motor exam. The study also
included 4 patients who could no longer perform the 9HPT due
to severe disease but were able to perform the balloon popping
test.
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Table 2. App tests from scientific articles and comparators for convergence with neurological exam or patient questionnaires.

ComparatorApp testApp and functional domains

Adaptive Cognitive Evaluation [22]

SDMTaBoxed task, sustained attention task, spatial spanCognition

ElevateMS [28]

PDDSc, Neuro-

QoLd

Finger tapping, finger to nosePDb

PDDS, Neuro-QoLWalk and balance testAmbulation, balance

PDDS, Neuro-QoLVoice-controlled DSSTeCognition

Evo Monitor [15]

MSFC-4f, EDSSgGo/no go, tilt to steer, and combination of both tasksPD

BICAMShGo/no go, tilt to steer, and combination of both tasksCognition

Floodlight [12,14]

9HPTi, EDSSDraw a shape, pinching testPD

BBSjStatic balance testBalance

SDMTsSDMTkCognition

T25FWm, EDSS2MWTl, U-turn testAmbulation

MSCopilot [11,13]

9HPTSpiral testPD

SLCLATnVision testVisual

SDMT, PASAToCognition test (sSDMT)Cognition

T25FW, EDSSWalking testAmbulation

MS Sherpa [18,19,23]

SDMTsSDMTCognition

2MWTe-2MWTpAmbulation

MS Suite [16,17]

NeurExq, EDSSBalloon popping, tap test, tilt testPD

SDMTTilt testCognition

NeuroKeys [20,21]

EDSS, 9HPTPress-press latency, release-release latency, hold time, flight time, precorrection slowing,
correction duration, post correction slowing, after punctuation pause, emoji sentiment score
[11]

PD

SDMTPress-press latency, release-release latency, hold time, flight time, precorrection slowing,
correction duration, post correction slowing, after punctuation pause, emoji sentiment score
[11]

Cognition

CIS-FrPress-press latency, release-release latency, hold time, flight time, precorrection slowing,
correction duration, post correction slowing, after punctuation pause, emoji sentiment score
[11]

Fatigue

aSDMT: Symbol Digit Modalities Test.
bPD: physical disability.
cPDSS: Patient-Determined Disease Steps.
dNeuro-QoL: Quality of Life in Neurological Disorders.
eDSST: Digit Symbol Substitution Test.
fMSFC-4: Multiple Sclerosis Functional Composite 4.
gEDSS: Expanded Disability Status Scale.
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hBICAMS: Brief International Cognitive Assessment for Multiple Sclerosis.
i9HPT: 9-Hole Peg Test.
jBBS: Berg Balance Scale.
ksSDMT: smartphone SDMT.
l2MWT: 2-minute walk test.
mT25FW: timed 25-foot walking test.
nSLCLAT: Sloan Low Contrast Letter Acuity Test.
oPASAT: Paced Auditory Serial Addition Test.
pe-2MWT: electronic 2MWT.
qNeurEx: digitalized neurological examination.
rCIS-F: Checklist Individual Strength Fatigue subscale.

Keystroke dynamics were found to have weak correlation with
the EDSS and moderate correlation with the SDMT in 1 study
[20]. Another found that the use of emojis with more neutral
sentiment as well as decreased word length were responsive to
changes in the EDSS in a manner that was statistically
significant [21].

One study evaluating the correlation of the smartphone SDMT
(sSDMT) with the traditional SDMT found a moderate
correlation for tests done in the morning and in the evening for
the MS Sherpa app [18]. In 2 other studies comparing MS
Sherpa’s sSDMT as well as Floodlight’s sSDMT to the
traditional SDMT, strong correlations were found between these
tests [12,19].

Two studies compared their app-based tests with the SDMT.
The first compared the Evo Monitor multitasking test with
SDMT and found a moderate correlation [15]. The second
compared the SDMT and MS Suite level test, in which the time
a virtual ball stayed in the center of the screen was found to
correlate moderately with the SDMT [17]. These same 2 studies
compared the multitasking test and level test with the EDSS.
Both correlated weakly with the EDSS [15,17].

The MS Copilot app included several tests: spiral drawing test,
maximum distance walked without stopping, verbal SDMT,
and low contrast vision test. The z score of participants’ test
batteries correlated strongly with the Multiple Sclerosis
Functional Composite (MSFC) z score [11]. Another MS Copilot
battery comprising of maximum walking distance, shape
drawing, and SDMT correlated moderately with the EDSS [13].

In 1 study, the Floodlight app’s pinching test correlated
moderately with the 9-HPT. It also found that Floodlight’s
U-turn test correlated moderately with the T25FW. Of the
Floodlight tests, the U-turn test had the strongest correlation
with the EDSS despite the weak correlation (r=–0.45; P<.001)
[12]. Individual test scores were not compounded in this study
as they were in the MS Copilot study [13].

Finally, MS Sherpa’s smartphone 2MWT measurements were
found to be approximately 8.43 meters greater than those
measured traditionally. In this same study, there was no
statistically significant correlation identified between the
app-based 2MWT and EDSS [23].

Feasibility of Implementation
The feasibility of implementing an app to monitor symptoms
in persons with MS was assessed in 3 studies. Adherence rates

were 51% for an app requiring 12 months of daily data collection
(n=38) [25]; 70% for an app requiring daily, weekly, fortnightly,
or on-demand activities (n=76) [24]; and 87% for an app
requiring 7 consecutive days of testing and a repeat test 4 weeks
later (n=32) [26].

Quality of Life Questionnaires
App-based quality of life questionnaires were evaluated in 2
studies: 1 compared app-derived neurological quality of life
(Neuro-QoL) questionnaires to in-app functional tests. Using a
linear mixed effects model, the study found that the following
Neuro-QoL domains correlated significantly with app tests:
Upper extremity function was correlated with finger tapping
test, lower extremity function was correlated with walk and
balance tests, and cognitive function was correlated with the
voice-based Digit Symbol Substitution Test (DSST) [28].

Another study assessed the e-Diary app, in which an app-based
questionnaire was used to derive a Bodily Function Summary
Score that was then compared to clinician-reported outcomes.
This study found a strong correlation between the Bodily
Function Summary Score and EDSS scores [27].

Weather
Whether increasing local temperature had a negative impact on
in-app tests was evaluated in 2 studies [25,28]. The first included
495 persons with MS and found that increasing temperature
had a significant negative impact on finger tapping, DSST, and
finger to nose [28]. However, the second study, following 22
persons with MS, found no statistically significant association
between the Modified Fatigue Inventory Scale and temperature
or daylight hours [25].

Practice Effect
The development of a practice effect with repeated at-home
app-based MS testing was assessed in 1 study. Data included
in this study were derived from the Floodlight app. Domains
assessed included daily repetition of finger pinching, shape
drawing, 2MWT, U-turn test, static balance test, and weekly
repetition of virtual SDMT. The study found improvement in
test scores ranging from 11% to 54.2% on daily repetition of
tests with the exception of the 2MWT. For the sSDMT, an
average improvement of 40.8% was observed after 5 weeks of
weekly testing [14].

The key findings of each included article are presented in Table
3.
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Table 3. Key findings of included studies.

Key findingsNumber of people

with MSa
All assessed functional
domains

App and author,
year

Adaptive Cognitive Evaluation

Boxed reaction time of persons with MS correlated most strongly with SDMTb

(r=–0.50; P<.001), including when covariates were accounted for (r=–0.43;

53CognitionHsu et al,
2021 [22]

P=.002). Sustained attention span and spatial span were not significantly correlated
with SDMT.

e-Diary

e-diary–derived PROsd were significantly correlated with corresponding functional
system scores (0.38<r<0.8; P<.001). The sum of bodily functions showed a cor-

relation coefficient of r=0.77 (P<.001) with clinician EDSSe.

97PDc, visual, urinary,
mood, pain, cognition

Golan et al,
2021 [27]

ElevateMS

Neuro-QoLf categories correlated significantly with finger tapping (βg=0.4;

P<.001), walk and balance (β=–99.18; P=.02), and DSSTh (β=1.60; P=.03).

495PD, balance, cognition,
weather

Pratap et al,
2020 [28]

Baseline PDDS was associated with finger to nose (β=.01; P=.01). Increasing
temperature had a significant impact on finger tapping, DSST (β=–.06; P=.009),
and finger to nose.

Evo Monitor

Evo Monitor multitasking test was associated with SDMT (r=0.52; P<.001), EDSS

(r=–0.35; P<.01), and T25FWi (r=–0.41; P<.001). Go/no go and tilt to steer tests
were associated with SDMT (r=–0.31; P=.001 and r=0.40; P<.001, respectively).

100PD, cognitionHsu et al,
2021 [15]

Fatigue

Most participants (87%) completed all of the surveys required (7 consecutive days
and repeat 4 weeks later).

32PD, pain, cognitionNewland et al,
2019 [26]

Floodlight

70% of participants were adherent to all active tests. 75% of participants were

adherent to all tests except 2MWTj. Mean satisfaction with the app at week 12
was 74.1% and at week 24 was 73.7%.

76PD, fatigue, balance,
mood, pain, cognition,
ambulation

Midaglia et al,
2019 [24]

Strongest correlation was found between sSDMTk and SDMT (r=0.82, P<001).

Pinching test correlated with 9HPTl (r=0.64, P<.001). U-turn test correlated with

76PD, balance, cognitionMontalban et
al, 2021 [12]

T25FW (r=–0.52, P<.001). Strongest correlation with EDSS was with U-turn test
(r=–0.45, P<.001). Static balance test was not significantly associated with Berg
Balance Scale.

sSDMT, when repeated at 7-day intervals, had an average improvement of 40.8%.
The practice effect was reached after 11 repetitions for one-half and after 35 rep-

171-262PD, balance, cognition,
ambulation

Woelfle et al,
2021 [14]

etitions for 90%. Finger pinching, draw a shape, U-turn, and static balance had
average improvements of 54.2%, 23.9%, 11.0%, and 28.6%, respectively. 2MWT
was not significantly associated with improvement.

MS Copilot

App combined task z score correlated with the MSFCmz score (r=0.81; P<.001).141PD, visual, cognition,
ambulation

Maillart et al,
2019 [11]

Summed scores of maximum walking distance, draw a shape, and mobile SDMT
correlated with EDSS (r=–0.65; P<.001).

116PD, visual, cognition,
ambulation

Tanoh et al,
2021 [13]

MS Sherpa

sSDMT and SDMT correlation coefficients were r=0.687 (P<.001) in the morning
and r=0.622 (P<.001) in the evening, with a regression coefficient of 0.87.

102CognitionLam et al,
2021 [18]

The interclass correlation coefficient between SDMT and sSDMT results was
0.784, and the Pearson correlation coefficient was r=0.85 (P<.001).

25Cognitionvan Oirschot
et al, 2020
[19]

Distance walked on e-2MWT was, on average, 8.43 meters greater than that with
traditional 2MWT. There was no significant correlation between EDSS and e-
2MWT.

25Cognition, ambulationvan Oirschot
et al, 2021
[23]
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Key findingsNumber of people

with MSa
All assessed functional
domains

App and author,
year

MS Suite

Balloon popping had correlation coefficients of r=0.62, r=0.75, and r=0.62
(P<.0001) with upper extremity strength, cerebellar function, and upper extremity
motor exam, respectively. These values were r=0.59, r=0.57, and r=0.61 for the
traditional 9HPT. Tap test was associated with 9HPT (r=0.66; P<.0001)

76PD, cognitionBoukhvalova
et al, 2018
[16]

Level test time spent in center of the level test correlated with SDMT (r=0.57;
P<.0001) and, to a lesser degree, with EDSS (r=–0.35; P<.01).

112PD, cognitionBoukhvalova
et al, 2019
[17]

N/An

Adherence rate for the app was 51% at 12 months. Of those who completed the

1-year study (n=22), no significant association between MFISo and temperature
(P=.18) nor daylight hours (P=.091) was noted.

38PD, balance, cognition,
weather

Bove et al,
2015 [25]

Neuro keys

EDSS was most correlated with latency between key release (r=0.407, P<.001).
Overall, the release-release latency keystroke metric correlated the most with
SDMT (r=–0.553 P<.01).

85PD, cognition, fatigueLam et al,
2021 [20]

The keystroke features most responsive to changes in EDSS were emoji sentiment

neutrality and word length, with AUCsp of 0.79 and 0.72, respectively.

94PD, cognitionLam et al,
2022 [21]

aMS: multiple sclerosis.
bSDMT: Symbol Digit Modalities Test.
cPD: physical disability.
dPROs: patient-reported outcomes.
eEDSS: Expanded Disability Status Scale.
gNeuro-QoL: quality of life in neurological disorders.
gLinear mixed effects estimate.
hDSST: Digit Symbol Substitution Test.
iT25FW: timed 25-foot walk.
j2MWT: 2-minute walk test.
ksSDMT: smartphone SDMT.
l9HPT: 9-Hole Peg Test.
mMSFC: Multiple Sclerosis Functional Composite.
nN/A: not available.
oMFIS: Modified Fatigue Impact Scale.
pAUCs: areas under the curves.

App Review
Of the 18 identified apps, 5 had a remote testing function. Of
the 5 apps with remote testing abilities, all tested for physical
disability and fine motor skills. Assessment of motor skills was
done through tapping tests as in BeCare and MS Care Connect;
drawing a shape or following a path as in Floodlight, MS Care,
and MS Copilot; or a 9HPT equivalent as in Neurons. With
regard to disability, 1 app, BeCare, measured arm raises, while
Floodlight measured pinch and thumb strength.

Visual symptoms were evaluated by 3 of the apps. This was
done by contrast sensitivity tests and measured optokinetic
nystagmus as in BeCare, color vision tests as in MS Care
Connect, or low-contrast vision tests as in MS Copilot.

Cognitive testing was performed in all 5 apps: 4 apps (BeCare,
Floodlight, MS Care Connect, and MS Copilot) used the SDMT;
2 apps used modified versions of recognized MS tests like the

Paced Auditory and Visual Serial Addition Test as in Neurons
and the Stroop test as in BeCare; and some apps used other tests
like stacking donuts in ascending size on pegs, memorizing
words and matching them to categories, and tapping blocks in
a memorized sequence as in MS Care Connect or memorizing
animals as in BeCare.

All 5 apps had measures of ambulation: 3 apps (BeCare,
Neurons, and MS Care Connect) had the T25FW, and 2 apps
had time-limited walk tests such as BeCare’s 6-minute walk
test or Floodlight’s 2MWT. BeCare also measured the Timed
Up and Go test. Floodlight implemented passive monitoring of
daily ambulation, while MS Copilot measured maximum
distance walked.

Only 1 app, Floodlight, had a dedicated static balance test.
Another app, MS Care Connect, measured reaction time. The
BeCare app measured the ability to discriminate between mobile
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device vibration frequency. That same app also had an audio
transcription test.

Symptom logging functions were found in 13 other apps, either
through free-text entry or selecting within a list of suggested
neurological symptoms. These are included in Table 4.

Table 4. Characteristics of included apps.

Brief descriptionDeveloperPlatformApp name

Log MSa symptomsBiogen IncBothAby

Log MS symptomsBearableGPSbBearable - Symptom and Mood
Tracker

Testing for PDc, visual, cognitive, ambulation, moodBeCare Link LLCBothBeCare MS Link

Log MS symptomsBreakthroughX Health
GmbH

BothEmilyn: My MS Companion

Log MS symptoms; testing for PD, cognitive, balance, ambu-
lation

Roche SASBothFloodlightd

Log MS symptomsJacob WachsmanAASeHealthstories MS

Log MS symptoms, may perform prEDSSf or Neuro-QoLgIcometrix IncBothicompanion

Log MS symptoms.Mallouki AdilGPSInnov SEP

Log MS symptoms, generate MFISh scoreAt Point of Care, LLCAASMSAA-My MS Manager

Log MS symptoms; testing for PD, cognitive, ambulationInterPro Bioscience IncGPSMS Care Connect

Testing for PD, visual, cognitive, ambulationAd ScientiamGPSMSCopilotd

Log MS symptomsProgentec DiagnosticsGPSMS Corner

Log MS symptomsRoger HartleyGPSMS Notes Journal

Log MS symptomsDarin OkudaBothMS Relapse Tool

Log MS symptoms, relapse probability assessmentFlavia ChapaAASMS Relapse Tracker/MS Attack

Log MS symptoms.KingFishAppsGPSfMultiple Sclerosis Manager

Log MS symptoms and may send to MS nurseKingFishAppsGPSMultiple Sclerosis Messenger

Testing for PD, cognitive, ambulationshazinoAASNeurons

aMS: multiple sclerosis.
bGPS: Google Play Store.
cPD: physical disability.
dApp found to have supporting literature in the scoping review of scientific evidence.
eAAS: Apple App Store.
fprEDSS: patient-reported Expanded Disability Status Scale.
gNeuro-QoL: quality of life in neurological disorders.
hMFIS: Modified Fatigue Impact Score.

Discussion

This review sought to evaluate and summarize available
literature and apps assessing remote testing for persons with
MS. Though well-designed studies evaluating concordance
between app testing and the neurological exams do exist, many
apps operate outside the realm of currently available scientific
evidence.

Comparison With Prior Work
To the authors’ knowledge, this is the first scoping review with
a specific focus on the use of apps for symptom monitoring and
tracking clinical course in persons with MS. Previous reviews
on this topic have employed a wider scope, examining all
clinical trials with data pertaining to apps used in MS [6,7],

while others narrowed the scope to apps used for self-assessment
and rehabilitation [29] or to gait and postural control [30]. Of
the 2 reviews with wider scopes, one was published in 2018
and predates all but one of the included articles [6], and the
other included only 3 studies that focused on apps employing
dexterity tests, accelerometers, or other sensing technologies
[7].

Principal Findings
Many of the included studies demonstrated concordance between
mobile testing for MS and various aspects of the neurological
exam [11-13,15-23]. For example, the Adaptive Cognitive
Evaluation, Elevate MS, EVO monitoring, Floodlight, MS
Copilot, MS Suite, and NeuroKeys have all shown statistically
significant correlations between the app and the physician’s
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exam. The strongest correlation coefficients with standardized
scales were seen with MS Copilot, when test results were pooled
and compared with the MSFC [11]. However, pooled results
did not have the same correlation strength with the EDSS. This
may reflect the stronger similarities in the MS Copilot battery
and the tests administered during the MSFC.

Although the EDSS remains an important aspect of the
evaluation of persons with MS both in clinic and in the context
of clinical trials, most apps seeking to correlate in-app testing
with EDSS have obtained weak to moderate, albeit statistically
significant, correlation coefficients [12,13,15,18,20]. The
correlation coefficients were much greater with app-based
e-diary scores [27]. This is notable, as the EDSS has previously
been criticized for its poor assessments of upper limb and
cognitive functions, which are 2 domains that are evaluated in
most apps for which published data exists [31]. Additionally,
the EDSS’s nonlinearity may make it more difficult for
testing-based apps to correctly obtain the EDSS score based on
quantitative data derived from app-based testing [32].

One advantage to app-based evaluation of persons with MS is
that virtual tests can be performed by persons with MS with
more significant disability. One study found that some persons
with MS were unable to perform the 9HPT yet were able to
participate in app-based testing [16]. That said, app-based testing
may be an obstacle to those with MS-related visual impairment
who rely on tactile sensations to complete the required testing.

In terms of feasibility, adherence rates to the apps were lower
for apps requiring daily participation for extended periods and
higher for apps with less frequent testing [24-26]. This would
suggest that adherence would be higher for apps that require
less frequent active participation from persons with MS. Thus,
striking the optimal balance between participant engagement
and the adequacy of remote monitoring becomes important.

The increased frequency of app-based testing, when compared
with infrequent office testing, may improve certain test results
due to repeated practice. Woelfle et al [14] demonstrated
improvement related to practice effect in most of the tests that
comprise the Floodlight testing battery, an app that allows users
to perform tests daily or weekly; however, this practice effect
was not observed with the 2MWT, which evaluates walking,
an activity generally performed daily by those who remain
ambulatory. Similar practice effects have been described for
the MSFC [33]. Clinicians who plan to use app-based testing
as part of their evaluation of persons with MS should be wary
of these effects when interpreting results, as they may mask
deterioration or feign clinical improvement. Where applicable,
a possible mitigation strategy would be to use alternating
versions of tests. No studies have yet determined the optimal
testing interval to avoid practice effect–related improvement.

Data on local temperature and its impact on app-based test
performance have shown that increasing temperatures correlate

negatively with test scores [28]. As such, apps that monitor
local temperature may offer additional insight to the MS
specialist who may not consider this factor when evaluating
persons with MS.

Although many apps designed to track symptoms in persons
with MS are publicly available on app stores, only 10 apps were
identified in our scoping review as having published evidence
supporting their use.

Limitations
This scoping review is limited first by the relatively small
number of included articles as well as the heterogeneity of
included articles. This renders drawing generalized conclusions
difficult given the limited number of studies and the different
comparators. As more data become available with the growth
of mobile health (mHealth), future reviews may be able to
compare different testing metrics with more certainty. The
second limitation relates to the rapid evolution of mHealth
publications and app development. This is supported by the fact
that two-thirds of the included articles were published within
the last 2 years. At the time of its publication, this review may
not reflect the most recent data available.

Future Directions
Future app developers may wish to include both objective
measures of clinical status as well as patient-reported outcomes
in order to aid the neurologist in evaluating persons with MS,
especially if the app is to assess the EDSS. The mobile version
of the SDMT correlated well with the traditional SDMT and
could be included as a measure of cognitive decline. Although
current research does not describe the optimal testing interval,
app testing should be used sparingly to encourage participation
and reduce the practice effect. Developers may also wish to
include local weather data at time of testing to allow for
contextualization of at-home results.

Conclusion
The current review serves as a summary of the existing apps
designed for monitoring of persons with MS and their supporting
literature. Current evidence demonstrates adequate convergence
of app-based testing to traditional in-person assessment.
Although persons with MS will likely always require the human
interaction of in-person follow-up, apps may be used as an
adjunct to these visits for patients who are unable to see their
neurologist on a regular basis. Although many apps with remote
testing abilities are available to the public, a minority have
published evidence supporting their use. Several apps had unique
beneficial features; however, there was a significant amount of
redundancy. Most app-based tests had a focus on physical
disability and cognition. There remains a need for a
comprehensive validated app that combines both
patient-reported outcomes and multiple types of remote testing
to better understand and care for persons with MS.
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DSST: Digit Symbol Substitution Test
EDSS: Expanded Disability Status Scale
mHealth: mobile health
MS: multiple sclerosis
MSFC: Multiple Sclerosis Functional Composite
Neuro-QoL: neurology quality of life
SDMT: Symbol Digit Modalities Test
SIGN: Scottish Intercollegiate Guidelines Network
sSDMT: smartphone SDMT
T25FW: timed 25-foot walk test
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Abstract

Background: Recording time in invasive neuroscientific research is limited and must be used as efficiently as possible. Time
is often lost due to a long setup time and errors by the researcher, driven by the number of manually performed steps. Currently,
recording solutions that automate experimental overhead are either custom-made by researchers or provided as a submodule in
comprehensive neuroscientific toolboxes, and there are no platforms focused explicitly on recording.

Objective: Minimizing the number of manual actions may reduce error rates and experimental overhead. However, automation
should avoid reducing the flexibility of the system. Therefore, we developed a software package named T-REX (Standalone
Recorder of Experiments) that specifically simplifies the recording of experiments while focusing on retaining flexibility.

Methods: The proposed solution is a standalone webpage that the researcher can provide without an active internet connection.
It is built using Bootstrap5 for the frontend and the Python package Flask for the backend. Only Python 3.7+ and a few dependencies
are required to start the different experiments. Data synchronization is implemented using Lab Streaming Layer, an open-source
networked synchronization ecosystem, enabling all major programming languages and toolboxes to be used for developing and
executing the experiments. Additionally, T-REX runs on Windows, Linux, and macOS.

Results: The system reduces experimental overhead during recordings to a minimum. Multiple experiments are centralized in
a simple local web interface that reduces an experiment’s setup, start, and stop to a single button press. In principle, any type of
experiment, regardless of the scientific field (eg, behavioral or cognitive sciences, and electrophysiology), can be executed with
the platform. T-REX includes an easy-to-use interface that can be adjusted to specific recording modalities, amplifiers, and
participants. Because of the automated setup, easy recording, and easy-to-use interface, participants may even start and stop
experiments by themselves, thus potentially providing data without the researcher’s presence.

Conclusions: We developed a new recording platform that is operating system independent, user friendly, and robust. We
provide researchers with a solution that can greatly increase the time spent on recording instead of setting up (with its possible
errors).

(JMIR Neurotech 2023;2:e47881)   doi:10.2196/47881
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NeuroTech Dialogue

We propose a software package called T-REX (Standalone
Recorder of Experiments) that is specifically designed for
recording experiments. T-REX automates multiple manual
actions, reducing the experimental overhead and error rate
during recordings. With our system, researchers can centralize
all their experiments into a simple local web interface, and set
up, start, and stop experiments with a single button press. The
user friendly interface can be used with different recording
modalities, amplifiers, and participants, making it highly
flexible. The software is executable on mainstream operating
systems (Windows, Linux, and macOS) and does not require
the use of a specific programming language for creating the
experiments. It includes functionality to automatically record
experimental data using a protocol frequently used in the
community called Lab Streaming Layer. With T-REX, we
simplify and streamline the recording of experiments for
researchers while providing maximum flexibility in using
different recording modalities, programming languages,
operating systems, and amplifiers.

Introduction

Recording high-quality electrophysiological human brain
activity is notoriously difficult. The best quality signal has both
high spatial and temporal resolution and is recorded with
invasive electrodes [1,2]. However, since implanting electrodes
in humans for research purposes is a lengthy and challenging
process with many safety and ethical concerns, scientists tend
to use the clinical treatment of patients who receive implants
for clinical purposes [3,4] as a research vehicle. Some examples
are patients with medication-resistant epilepsy undergoing
presurgical monitoring for resection surgery [5] or patients
qualified for deep brain stimulation [6].

Because recordings should not interfere with clinical treatment,
the time to record data for neuroscientific experiments in these
patient groups is severely limited. For implanted epilepsy
patients, the recording windows are usually a few days to 2
weeks. In contrast, for patients with deep brain stimulation, the
recording windows are during surgery using microelectrode
recordings, and between surgery and when the stimulator is
turned on. During these recording windows, patients need time
to recover and have sufficient general well-being to participate.
Moreover, time spent on clinical treatment and other assessments
that require recording time can further reduce the already limited
recording time.

Therefore, the brief remaining time window should be used as
efficiently as possible. In practice, this means that the time spent
on recording should be maximized, while the time spent on
setting up and solving errors should be minimized. Both the
set-up time and error rate can be significantly reduced by
automating as many manual actions as possible (eg, connecting
to recording devices; starting experiments; selecting data
streams; and starting, stopping, and synchronizing the
recording). However, as experiments or recording setups change
over time, it is often not worthwhile for research groups to invest
in developing a more sophisticated system. It takes human

resources, technical knowledge, and substantial time investment
to move beyond custom-made systems, which are often only
used internally and unavailable to the public. Aside from
custom-made setups, there exist multiple measurement
platforms, including BCI2000 [7], OpenVIBE [8], FieldTrip
[9], NFBlab [10], and MEDUSA [11]. These systems can record
data from many different amplifiers and include modules to
design, analyze, and provide feedback during or after the
experiments. While all these platforms also include good
recording capabilities, they are more broadly focused on
experimental design and analysis.

Additionally, these solutions limit the experiments that can be
executed by the researcher in some way, either by targeting a
specific type of experimental design or by imposing some
hardware or software tool sets, such as programming language,
input/output devices, or operating systems (OSs). Furthermore,
not all platforms are open-source, which is not in the spirit of
open science and impedes collective quality control and
replicability. For example, FieldTrip requires the researcher to
use the proprietary platform MATLAB, and BCI2000 and
OpenVIBE impose the use of their tools and application
programming interfaces. Additionally, the researcher must install
a complete software package on the system, even when only
the recording functionality is needed. Ashmaig et al [12]
developed and described a system exclusively focused on
continuous data recording for neurosurgical patients. The system
provides a good use case for naturalistic long-term recordings
but has an extensive list of hardware requirements and limits
the researcher to Linux. Furthermore, not all research groups
have the opportunity to perform long-term recordings.

While all these platforms provide good solutions for their use
case and cover a significant part of the neural recording space,
we observed that none of these platforms are specifically tailored
to the setup and recording of experiments. Here, we describe
the T-REX (Standalone Recorder of Experiments) platform that
is specifically targeted to improve the recording of experiments.
By automating the setup, start, and stop of experimental
recordings, T-REX reduces the error rate and time spent between
recordings. T-REX minimizes restrictions on hardware and
software, is available on all major OSs, and is publicly available
as an open-source project. This work presents T-REX’s system
design, functionality, usage, and potential implications for the
field.

Methods

Requirements
We determined 3 criteria that the system should meet to make
T-REX applicable to as many labs as possible. First, T-REX
should be as independent as possible of tools, paradigms, OSs,
and programming languages. Each lab has its preferred tool set,
and ensuring independence means that researchers do not need
to port their existing experiments to fit T-REX. Its only
requirement is for the experiments to use Lab Streaming Layer
(LSL) to stream data [13]. The backend of T-REX uses LSL to
synchronize data across sources (see the section Details of LSL).
Second, T-REX should be user friendly to both the researcher
and the participant. Increasing simplicity will reduce error rates
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and the time spent on setting up, which can be achieved by
automating multiple manual actions. Lastly, the system should
be robust. This means that an experiment should only run when
all requirements to run are met, and in case of technical
problems, the experiment should retain the data up to that point
and return to the Home screen.

System Outline
In brief, T-REX acts as the middleman handling the
experimental overhead for the researcher (Figure 1). When using
T-REX, the researcher can select an experiment by pressing a
button on the main menu screen (Figure 2). T-REX will then
check the availability of all required data streams and connect

to the streams. Examples of data streams include a hand-tracking
device sending coordinates of a person’s hands and an amplifier
recording the participant’s neural activity. T-REX will then start
the experiment user interface (UI) that instructs the participant
on what task to perform. Upon successful start of the experiment
UI, T-REX starts recording all data streams and saves them to
a folder specified by the researcher. All data are saved by LSL
into a single .xdf file. After the experiment is completed, the
UI prompts the participant on how the experiment went and
returns to the Home screen. During the full experiment loop,
the actions that the researcher needs to perform are to start the
required device data streams and select the experiment in the
Home screen.

Figure 1. A schematic overview of the experiment loop of T-REX (Standalone Recorder of Experiments). (A) Data from the participants (eg, EEG,
movement, and audio) are recorded by a variety of device inputs. Each input device should create a Lab Streaming Layer StreamOutlet to make the
data available to record. (B) T-REX then provides a user interface for experiment selection. The backend finds the required data streams and records
them. The rounded box shows the different software components (web interface, controller, and user configuration). (C) Example outputs of the
experiment. These components interact with the participant (experiment user interface and stimuli), or the recorded data are saved. EEG:
electroencephalography.
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Figure 2. Representation of the main 4 windows of the web interface. (A) The Home window contains all the experiments accessible to the researcher,
represented on a grid configuration. (B) The Experiment Feedback window allows obtaining feedback from the participants about their experience with
the experiment. It is achieved through the green (“All good”) and red (“Not so good”) buttons. Participants can only continue after pressing one of these
buttons. (C) The Admin Login window allows access to the administration panel by entering the password. (D) The Admin Configuration window
allows the administrator to create new participants and modify their access to experiments.

Materials, Software, and Technologies
T-REX has multiple components, including a local web
interface, a recording backend, and a controller interface
connecting these 2 components. The web interface (Figure
2A-D) is built using Bootstrap5 [14] for the frontend and the
Python package Flask [15] for the backend. The recording
backend uses LSL and handles data stream synchronization and
recording itself (information is provided in the section Details
of LSL). Lastly, the controller interface (information is provided
in the section Controller) is implemented in Python 3.7+ and a
few dependencies found in requirements.txt. T-REX is
compatible with Windows, Linux, and macOS.

Details of LSL
T-REX uses LSL to synchronize the data streams from different
devices, such as a variety of electroencephalography (EEG)
amplifiers, audio streams, movement trackers, and cameras.
The service handles “networking, time-synchronization, (near)
real-time access, and optionally the centralized collection and
recording of data” [13]. It is lightweight and has multilanguage
and multiplatform support, including Unity and Android. LSL
allows the researcher to send data via a data stream to a local
network server, which can be recorded.

Basic usage involves defining a StreamOutlet that makes a time
series data stream available on the network. The data are pushed
per sample or per chunk into the outlet. By creating an outlet,
the stream is made available to the local network of computers.
The most basic usage (in Python) is represented in the following
code block:

This code creates a StreamOutlet object with a name
(“my_marker_stream”), type (“markers”), channel count (1),

irregular sample rate (defined as 0.0), data type (“str”), and
source ID (“my_unique_id”). Lastly, a sample containing
“Experiment_start” is pushed to the outlet.

Inversely, to receive data, one can instantiate a StreamInlet and
use inlet.pull_sample(). For a comprehensive overview, see the
official documentation [13]. For T-REX to be able to record all
data, the devices and the experiments themselves must all create
a StreamOutlet (like the example above). If no StreamOutlet is
created, T-REX will not be able to find and record the device
and start the experiment. By using LSL, T-REX is able to
connect to many popular experiment platforms, such as
Psychopy [16], OpenSesame [17], and Presentation [18]. In
case a stream is listed in the requirements provided by the config
in an experiment but is not available, T-REX will throw an error
and return to the Home screen. Thus, no experiment can start
while missing a data stream.

Trigger
In some recording setups, a trigger marks the start and end of
an experiment. In these setups, participants’ clinical data are
recorded continuously and stored on a server. During an
experiment, the data cannot be streamed directly and need to
be retrieved afterward by the responsible data steward. The data
steward can locate the requested data files by identifying the
trigger pattern sent by the experimenter. Depending on the
manufacturer, a trigger can be delivered via the amplifier or
with a separate device. If it can be delivered internally, the
experimenter can directly send triggers from within the
experiment, and the trigger functionality of T-REX does not
need to be used. T-REX provides some basic functionality to
send a trigger code if an external device is required. In short,
T-REX searches for a USB device with a name set in the main
configuration file. It connects to this device and sets up an LSL
stream. Then, if an experiment is started and the trigger flag in
the main configuration file is set to True, the trigger class sends
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a user-defined code. When the experiment is finished, the trigger
will be sent again, flagging the start and end of the complete
experiment. The data steward can then retrieve the correct data
with these trigger codes. At the same time as sending a trigger,
the code also sends a marker to LSL, allowing for
synchronization across data streams.

Software Components
The software consists of 2 main components: the web interface
that handles the UI and the controller that sets up, starts, and
stops all experiments (Figure 1B).

Web Interface
The web interface includes 4 windows: Home, Experiment
Feedback, Admin Login, and Admin Configuration (Figure 2).

The Home window (Figure 2A) displays all the experiments in
a grid. Experiment cards are shown on that grid with a title,
description, and start button. When the button is pressed, the
controller executes a command that starts the selected
experiment. The command is defined by the researcher and
specified on the configuration of the experiment (more details
are provided in the section User Configuration). During the
experiment, the web interface is on standby awaiting the
completion of the experiment.

After completion, the participant is redirected to the Experiment
Feedback window, where the question “How did the experiment
go?” is prompted (Figure 2). The participant or researcher is
required to select a feedback option to continue. This allows
the researcher to save a brief experiment evaluation to assess

data quality in later analysis. In potential future applications,
the participants might perform the experiments by themselves.
Then, this feedback is useful to flag the researcher to be aware
of potential poor data quality. The feedback is stored under the
file name feedback.txt in the same folder as the most recent .xdf
file (that contains the data recorded from the experiment).

The Admin Configuration provides the researcher with a closed
environment where the participant identifier can be selected
and a selection of all available experiments is available. To
access the Admin Configuration, the researcher must first log
in using the password that is configured in the main
configuration file (Figure 2C; details are provided in the section
User Configuration). When logged in, the researcher can see
the configuration of the active experimental session, composed
of an alphanumeric participant identifier and their access to
experiments. A list of all the experiments included in the
platform is visible from this window, but only those with
checked marks are visible to the participant. The changes in this
window are only applied after pressing the “Save” button at the
end of the page.

The web UI has been tested with Firefox (version 105.0.1),
Chrome (version 106), Safari (version 16), and Edge (version
106), although it should be compatible with higher versions and
other mainstream browsers.

Controller
The controller handles everything related to running an
experiment and has 3 main parts: setup, start, and stop (Figure
3). The related code can be found in the ./libs directory.

Figure 3. Backend flow of running an experiment. When an experiment is started by pressing the start button on the card, the controller is called,
loading the main configuration file and extracting the information received from the user interface (UI) about which experiment to run. Then, an
experiment instance is created, loading the experiment-specific information and completing the setup in 3 steps. First, it checks for all devices and their
Lab Streaming Layer streams. Second, it initializes a recorder instance and adds all streams to the list of streams it should record. Lastly, if a trigger is
required for the selected experiment, it will set up a trigger class that searches and connects to the trigger. Once the subprocess call is returned, experiment
sends the final trigger and stops the recorder. The data are saved in the ./output/ folder, and the researcher or participant is redirected to the experiment
assessment screen (Figure 2B).

Setup
When an experiment is started by pressing the start button on
the card, the controller class in Controller.py (Figure 3) is called,
and it loads the main configuration file and extracts the
information received from the UI about which experiment to
run. With this information, an experiment instance is created,
and its loading function is called.

Experiment loads the experiment-specific information and
completes the setup in 3 steps. First, it checks for all devices

and their LSL streams as defined by the researcher in the
experiment configuration under device_inputs.

Subsequently, experiment initializes a recorder instance and
adds all streams to the list of streams it should record. For a
movement experiment [19-23], the streams recorded could be
the neural amplifier and experimental triggers. Additionally, a
movement tracker [24-26] or a force sensor [27] could be added.
For speech perception [28-30] or auditory perception [31,32],
the audio stream, experiment triggers, and neural data need to
be recorded. For speech production [33-36], the streams could
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be neural data, microphone, and triggers. In the Results section,
we provide some example experiments.

The last step is to check if a trigger is required for the selected
experiment. If so, it will set up a trigger class that searches and
connects to the trigger.

All devices must be connected and available to LSL before the
experiment instance is called. As all requested devices are
essential for successful recording, T-REX will raise an error
and return to the UI if not all input devices are connected
successfully.

Start
A user-defined command is called using Python’s subprocess
library to start the experiment UI. The command should be
callable from the command line interface and can be set in the
experiment-specific configuration. Because the experiment UI
likely contains a stream that sends out experiment-related
markers, experiment will start a loop on a user-defined timeout
to search for the marker stream. Once found, usually almost
instantly, the recorder will start recording all streams.
Implementing the system this way does not restrict the research
aside from using LSL. However, owing to the timeout, the
experiment may start before the recording starts. This can only
happen if the time between the setup of the experiment
StreamOutlet and sending the first marker is shorter than the
time that the recorder can find the stream and start the recording.
Usually, finding the StreamOutlet and starting the recording is
in the order of milliseconds. However, to entirely prevent the
possibility of this happening, we recommend including a waiting
screen in the experiment UI (eg, “Press button to start”) or
ensuring sufficient time (longer than the timeout set in the
experiment configuration) between the setup of a StreamOutlet
and the start of the experiment. Once connected to the
experiment StreamOutlet, the experiment UI should start, and
the experiment instance will wait until the called command is
terminated and returned, which usually happens when the
experiment UI window is closed.

Stop
Once the subprocess call is returned, experiment sends the final
trigger and stops the recorder. The data are saved in the ./output/
folder, defined in the main configuration file (information is
provided in the section User Configuration). An example of the
created directory tree is provided in Multimedia Appendix 1.

Device Inputs
Each experiment can have multiple input devices, such as an
amplifier measuring the neural data, a hand-tracking device,
and a microphone. Any device can be included if it generates
a StreamOutlet. Each device should send the data from the
device to LSL, allowing it to be accessed by the other system
components and to be recorded. The name, type, or source_id
supplied to the StreamOutlet will be the values that T-REX will
search for during experiment setup (information is provided in
the section Controller). In practice, this means that either the
name, type, or source_id needs to be supplied under
device_inputs in the experiment configuration file (information
is provided in the section Experiment Configuration). Since

devices can be used for multiple experiments, we included a
separate destination for all device input files
(./exp_module/inputs), although input devices can be stored
anywhere as long as they generate a StreamOutlet.

User Configuration
There are 2 types of configuration files that the researcher can
set: main configuration and experiment-specific configuration.
All configuration files are formatted in Yet Another Markup
Language (YAML).

Main Configuration
The file config.yaml in the root folder contains the system-wide
configuration. This configuration file contains information on
general settings. Multimedia Appendix 2 provides a description
of the different available options, and Multimedia Appendix 3
provides an example of the main configuration file. The main
option under path is the path that all relative paths will be
anchored to and should be set to the root folder. Most parameters
are preset, but out and trigger configurations may vary between
different recording setups and might need to be redefined.

Experiment Configuration
Each experiment included in T-REX requires a separate folder
in ./exp_module/experiments/ and must include at least 2 files:
config.yaml and the file to start the experiment. A full
description of all the fields and different options in config.yaml
can be found in Multimedia Appendix 4. The name and
description define the text shown in the UI; command sets the
command line interface command made by the controller class
to start the experiment; and exp_outlet sets the name, type, or
source_id that the experiment class will search for. For example,
if the experiment UI is a Python script that will create a
StreamOutlet named markers, the command to execute would
be python .\exp_module\experiments\your_experiment_file.py
and exp_outlet=’markers’.

Results

Overview
We have included 3 different example experiments to provide
a practical view of how to use T-REX. The examples can also
serve as a quick start for researchers to create new experiments
or adapt the ones included. A step-by-step explanation of adding
a new experiment is described in the section Adding New
Experiments to the Platform.

Case 1: Simple Experiment in Python
This experiment is a simple text-based instruction for a grasping
task (Figure 4A). The participant is prompted by text in a Python
Tkinter [37] window to continuously open and close either the
left or right hand, as used previously [38]. The experiment
requires neural data as the input device and generates a
StreamOutlet to send markers that inform about the start and
end of the experiment and of the trials. The neural data are
acquired from a stream with name=Micromed, type=EEG, and
source_id=micm01. These values are all set by the researcher.
As T-REX will search for all 3 options (name, type, and
source_id), only 1 must be provided. Therefore, the option under
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device\_inputs in grasping\config.yaml is set to eeg (case
insensitive). Next, the marker StreamOutlet that will be
generated by the experiment has source_id=emuidw22. When
the experiment class runs the experiment command (command
field in grasping\config.yaml), it will search for these streams.
Therefore, the exp_outlet field is set to ’emuidw22’. Finally,
since the grasping experiment is Python-based, the command
should use Python to call the script with the command: python
.\exp_module\experiments\grasping\grasping.py. The
configuration file used has been presented in Multimedia
Appendix 5.

When these options are set, the experiment is ready to go and
can be started by pressing the start button on the Home window.
The Tkinter window opens and waits for the spacebar to be
pressed. Once pressed, the experiment starts and is locked as
the top viewed window until completion. When the experiment
is finished and closed (ie, the command call ends and returns

to the experiment class), the experiment instance stops the
recording and saves the data. In-depth details on how
experiments are started and stopped are described in the section
Controller.

Figure 5 shows a random selection of 15 channels of neural
data recorded with T-REX during the grasping experiment. Two
streams were used in this experiment. First a marker
StreamOutlet that sends all experiment-related markers, such
as the start and end of the experiments and the start and end of
each trial, with the accompanying label (move or rest). Second,
an EEG StreamOutlet that streams the data from our Micromed
Amplifier to LSL. With T-REX, these streams were
automatically identified and recorded. The start and end of the
colored columns (identifying move and rest trials) were
determined by the recorded markers sent through the marker
StreamOutlet. The synchronization by LSL ensures that the
EEG and marker stream timestamps are the same.

Figure 4. User interfaces for the 3 use case experiments included. (A) Grasping: simple text-based experiment built using the Python package Tkinter.
(B) Grasping web experiment: reimplementation of the grasping experiment as a single page application (SPA) to allow its execution on any device
with access to a web browser. (C) 3D hand-tracking experiment: the hand-tracking is performed using the LeapMotion controller, and the experiment
is implemented in Python using the package Tkinter.

Figure 5. Neural data were recorded with the grasping experiment using T-REX (Standalone Recorder of Experiments). Two streams were recorded
during this experiment: an EEG stream and a marker stream. The data from the EEG stream are shown by the black lines, indicating the voltage over
time in a selection of 15 neural electrodes. The marker stream sends the start and end of the experiment and the individual trials. These markers were
used to determine the colored areas (blue and orange) shown. EEG: electroencephalography.

Case 2: Simple Experiment in a Web UI
We included the same grasping experiment as in Case 1 but
implemented it in a web interface (Figure 4B). It uses a single

page application (SPA) locally and thus can be created on any
device with access to a web browser, like a laptop, tablet, and
smartphone. The grasping web experiment also illustrates
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options other than a Tkinter window for experimenting. No
internet connection is required, relieving some security concerns
that could render execution on the web unsafe.

We constructed the experiment using HTML, CSS (Bootstrap5
for responsiveness and other visual aspects), and JavaScript for
behavior. The device input is the same as in the Tkinter
implementation of the experiment and the StreamOutlet
containing the markers; thus, the device_inputs and exp_outlet
are the same. The difference is in the command executed to start
t h e  e x p e r i m e n t .  I n  t h i s  c a s e ,  s t a r t
.\exp_module\experiments\graspingWeb\index.html is used.
The configuration file used has been presented in Multimedia
Appendix 6.

Once the experiment is started on the Home window, the
experiment instance opens another tab on the browser displaying
the “grasping_web” experiment. The experiment starts when
the participant presses the green “Start” button. When the
experiment is finished, the participant or researcher is prompted
to press a red button to close the experiment. The GraspingWeb
command call is finished at the button press and returns to the
experiment instance, stopping the recording and saving the data.

Case 3: Multiple Devices
Lastly, we included a 3D hand-tracking experiment, where the
goal is to hold a cursor (a black circle) on a target (a red circle).
The cursor can be moved in 3 dimensions, where the third
dimension controls the size of the circle (Figure 4C). In this
case, the hand tracking is performed by the LeapMotion
controller [39], but any other device can be used. We have
provided a .exe file that reads the data from the tracker and
sends it to an LSL StreamOutlet with name=LeapLSL,
type=Coordinates, and source_id=LEAPLSL01. In addition to
the hand-tracking information, we also need neural activity, for
which we use the same StreamOutlet as described in Case 2.
Lastly, the experiment is implemented in a Python Tkinter
window and generates a marker stream similar to the stream
described in the previous use case with Source_id=BUBBLE01.
Thus, to set up the configuration for this experiment, we set the
c o m m a n d  t o  p y t h o n
.\exp_module\experiments\Bubbles\bubbles.py, exp_outlet to
BUBBLE01, and device_inputs to LEAPLSL01 (the tracking
information stream) and eeg (the neural data stream). To run
the experiment, the researcher should start the device stream
before the experiment is started in the Home screen (ie, run the
.exe first). The configuration file used has been provided in
Multimedia Appendix 7. An example of data recorded with
T-REX for this experiment can be appreciated in Figure 6.

Figure 6. The combined data recorded from 3 different streams: an EEG stream, a marker stream, and a LeapMotion controller. The EEG channels
are 5 channels randomly selected from 87 available channels. X, Y, and Z are the 3D coordinates of the palm of the hand, provided by a LeapMotion
controller. The marker stream provides the shown trials (numbers on top with vertical dashed lines). To start and record this experiment, the LeapLSL
stream has to be started, along with the EEG stream. Then, only the experiment needs to be started in T-REX (Standalone Recorder of Experiments).
T-REX records all 3 streams (synchronized by Lab Streaming Layer), ultimately allowing to combine the 3 streams into this image. EEG:
electroencephalography.

Mix and Match
We have presented only 3 examples showing different
possibilities. Different devices can be included by adding a
StreamOutlet name, type, or source_id to the list of

device_outputs. The only requirement to add a device is that
the data from the device can be sent to a LabStreamingLayer
StreamOutlet. This code is either supplied by the manufacturer
or written by the researcher. If this requirement is met, any
medical device or technology can be included, as T-REX does
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not impose any further restrictions on technologies or types of
experiments, including, but not limited to, speech production,
audio or speech perception, movement, decision-making, and
simple or naturalistic tasks [40,41]. For example, new
experiments can also be built in Unity [42] or PyGame [43] to
provide better graphical experiences.

Adding New Experiments to the Platform
The following steps describe how to add a new experiment from
scratch to T-REX:

1. Create the experiment folder inside the directory
./exp_module/experiments/. An example of the directory
tree for different example experiments can be found in
Multimedia Appendix 8.

2. Create the experiment configuration file (config.yaml)
inside the new folder. Information in Multimedia Appendix
9 can be used as the base example for creating this file, and
the section Experiment Configuration contains a detailed
description of each parameter.

3. Adjust the fields to the specific experiment.

After completing these initial steps, the experiment should be
visible from the Admin Configuration panel. The researcher can
set the experiment as “visible” from the admin panel by selecting
its corresponding check mark. If configured as “visible,” it
should appear on the Home window, and it can be executed by
clicking on its respective button.

It is worth mentioning that when porting an already configured
version of T-REX to a different OS, some parameters might
need to be revised. For example, regarding the parameter
command, when used on Windows to start a Python experiment,
the definition is as follows:

However, when used on Unix or Unix-like systems, the
definition changes to the following:

The difference comes because “/” is the path separator on Unix
and Unix-like systems, and Microsoft uses “\”.

There might be other scenarios where the parameter command
might differ between OSs; thus, we recommend revising each
experiment configuration file when porting the platform to a
different OS.

Practical Experience
At the time of writing, we entirely switched to recording with
T-REX for our experiments at different recording sites. So far,
we have recorded multiple experiments, involving speech,
motor, and decision-making tasks. Furthermore, at one of the
recording sites, we recorded using the trigger functionality
included in T-REX. We see no indications of different data
quality in our neural decoding endeavors. We can decode speech
[44,45] and movement trajectories [46] with performance equal
to that using our previous setup.

Discussion

We presented T-REX, an independent, user friendly, and robust
system that minimizes the setup time and error rate. T-REX
provides a simple UI and reduces the experimental setup to the
press of a button. The software merges the LSL recording
backend with a simple UI, automating experimental overhead
for the researcher. T-REX reduces the setup time and error rate,
resulting in more time spent recording neural data.

The simplicity of T-REX reduces the number of actions that
the researcher must perform to only 2: starting the required
devices and starting the experiment. The fewer manual actions
the researcher needs to perform, the lower the chance that an
error is made. It improves reliability and increases total data
volume and time spent on recording. The LSL software package
fully handles synchronization and recording. We decided on
LSL as it is lightweight, is easy to use, has submillisecond
timekeeping, and has a proven track record [47]. The flexibility
of T-REX makes the system applicable in fields other than the
neuroscientific context described here.

T-REX provides benefits for both the researcher and participant.
A streamlined process may have multiple benefits from the
perspective of the participant. It leaves more time to interact
with the participant, making it more comforting and engaging.
T-REX may be particularly beneficial for participants who are
anxious or nervous about participating. Furthermore, a
streamlined process conveys more professionalism and may
improve participation satisfaction, ultimately increasing the
willingness to participate in future research. Moreover, if the
start and recording of experiments are simplified enough,
participants may be able to run experiments themselves. The
introduction of engaging and fun experiments that enable
participants to run them as they like provides the participants
with an opportunity to alleviate boredom and do something
meaningful by contributing to scientific research. Together,
both the researcher (more data) and the participant (more
engagement) are benefitted. While T-REX has been developed
with independent recording in mind, it is currently not being
tested for that purpose.

In comparison with other available software platforms, T-REX
is the only solution specifically focused on recording
experiments, allowing it to remain lightweight. Platforms like
BCI2000 [7], OpenViBE [8], and MEDUSA [11] offer
comprehensive functionalities spanning the 3 stages of a BCI
system: signal acquisition, signal processing, and feedback
presentation. However, they require complete software
installation even if only the recording module is needed. T-REX
enhances the researcher experience by offering flexibility in the
choice of programming language and technology for creating
the experiments, unlike BCI2000 and OpenViBE, which
mandate the use of C++; MEDUSA, which requires the use of
Python; and NFBlab [10], which requires the use of its graphical
UI. Regarding compatibility, T-REX holds a distinct advantage,
supporting all major OSs, including Windows, Linux, and
macOS. This is in contrast with BCI2000’s limited functionality
outside Windows and MEDUSA’s exclusive Windows
availability, as well as the system presented by Ashmaig et al
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[12], which is Linux-bound. Each of these platforms has its
strengths and excels in its intended function. T-REX provides
a tailored solution for a specific part of neuroscientific research
that allows it to remain simple and lightweight.

T-REX aims for simplicity, and setting up experiments in
T-REX requires basic knowledge of command line interface
usage. Moreover, experiments and devices must use LSL to
make data available. Although LSL is available for all
mainstream OSs and programming languages, experiments
already used by researchers may require adjustments to the
experiment code structure for inclusion in T-REX. Therefore,
technical knowledge and usage of LSL may limit the
applicability for some labs. Furthermore, T-REX is available
for all mainstream OSs but may not apply to all different
versions. Specifically, the command line interface version of
LabRecorder, including the script that records and stores the
multiple data streams, had to be built for different chipsets (M1
and M2) for macOS. These are currently included, but other
architectures likely require a different build of LabRecorder.
As T-REX matures, we expect more versions to become
applicable.

T-REX is in ongoing development, and we have identified
several potential future updates targeting an improved user
experience. Device streams currently need to be started
manually, and this may be performed automatically at the start
of an experiment. This is also a requirement to enable
participants to start recordings themselves, which is a main
future improvement. Aside from ensuring that there are no
manual actions except starting the experiments, allowing T-REX
for independent use may require improved internal logging and
error handling. Combined, these updates would reduce even
more actions for both the researcher and participant, and increase
the robustness of T-REX.

In conclusion, T-REX offers a flexible solution to record
neuroscientific experiments. It streamlines setup and recording,
and reduces error rates that increase the time spent on
recordings. We envision T-REX to help standardize and simplify
recording experiments and eventually allow recordings by
participants independently. This may improve the overall
satisfaction of participation and increase the amount of data
collected. The open-source nature of T-REX is in the spirit of
open science and increases its value through an increase in
community knowledge.
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Multimedia Appendix 1
The directory tree illustrates the content of the ./output/ folder when saving the experimental data gathered with one experiment.
The output.xdf file is created upon experiment completion. It contains the recorded data from the preconfigured Lab Streaming
Layer streams. The feedback.txt file contains the feedback the participant inputted on the Experiment Feedback window, and it
is saved in the same folder as the most recent .xdf file.
[PNG File , 36 KB - neuro_v2i1e47881_app1.png ]

Multimedia Appendix 2
The system-wide configuration file that must be placed inside the root folder of the project, which allows the researcher to
configure the execution of T-REX.
[PNG File , 154 KB - neuro_v2i1e47881_app2.png ]
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Multimedia Appendix 3
Example of the main configuration file. Note that all paths are relative to the main parameter.
[PNG File , 63 KB - neuro_v2i1e47881_app3.png ]

Multimedia Appendix 4
The different options for the experiment configuration file. Each experiment must include this file. The parameter command
might need to be modified when porting the platform to a different operating system (from Windows to Linux or macOS, for
example). It is up to the researcher to perform the redefinition.
[PNG File , 211 KB - neuro_v2i1e47881_app4.png ]

Multimedia Appendix 5
Experiment configuration file used for the grasping experiment. This experiment presents simple instructions to the participant
indicating continuous opening and closing of either the left or right hand. The visual interface was built using the Python Tkinter
library.
[PNG File , 79 KB - neuro_v2i1e47881_app5.png ]

Multimedia Appendix 6
Experiment configuration file used for the grasping web experiment. This experiment presents simple instructions to the participant
indicating continuous opening and closing of either the left or right hand. The visual interface was built using HTML, CSS
(Bootstrap5 for responsiveness and other visual aspects), and JavaScript for behavior.
[PNG File , 89 KB - neuro_v2i1e47881_app6.png ]

Multimedia Appendix 7
Experiment configuration file used for the 3D hand-tracking experiment. The goal of the experiment is to hold the cursor on the
target. The cursor can be moved in 3 dimensions, where the third dimension controls the size of the circle. In this case, the hand
tracking is done by the LeapMotion controller.
[PNG File , 72 KB - neuro_v2i1e47881_app7.png ]

Multimedia Appendix 8
The directory tree illustrates a system with 3 different folders, each for a different experiment (∼/EXPERIMENT_1/,
∼/EXPERIMENT_2/, and ∼/EXPERIMENT_3/). Each experiment contains its own configuration file (config.yaml). The researcher
can add any additional files to each folder.
[PNG File , 54 KB - neuro_v2i1e47881_app8.png ]

Multimedia Appendix 9
Template that can be used for creating an experiment configuration file.
[PNG File , 138 KB - neuro_v2i1e47881_app9.png ]
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Abstract

Background: Multiple sclerosis (MS), epilepsy, and depression are chronic central nervous system conditions in which remote
measurement technology (RMT) may offer benefits compared with usual assessment. We previously worked with clinicians,
patients, and researchers to develop 13 use cases for RMT: 5 in epilepsy (seizure alert, seizure counting, risk scoring, triage
support, and trend analysis), 3 in MS (detecting silent progression, detecting depression in MS, and donating data to a biobank),
and 5 in depression (detecting trends, reviewing treatment, self-management, comorbid monitoring, and carer alert).

Objective: In this study, we aimed to evaluate the use cases and related implementation issues with an expert panel of clinicians
external to our project consortium.

Methods: We used a Delphi exercise to validate the use cases and suggest a prioritization among them and to ascertain the
importance of a variety of implementation issues related to RMT. The expert panel included clinicians from across Europe who
were external to the project consortium. The study had 2 survey rounds (n=23 and n=17) and a follow-up interview round (n=9).
Data were analyzed for consensus between participants and for stability between survey rounds. The interviews explored the
reasons for answers given in the survey.

Results: The findings showed high stability between rounds on questions related to specific use cases but lower stability on
questions relating to wider issues around the implementation of RMT. Overall, questions on wider issues also had less consensus.
All 5 use cases for epilepsy (seizure alert, seizure counting, risk scoring, triage support, and trend analysis) were considered
beneficial, with consensus among participants above the a priori threshold for most questions, although use case 3 (risk scoring)
was considered less likely to facilitate or catalyze care. There was very little consensus on the benefits of the use cases in MS,
although this may have resulted from a higher dropout rate of MS clinicians (50%). Participants agreed that there would be
benefits for all 5 of the depression use cases, although fewer questions on use case 4 (triage support) reached consensus agreement
than for depression use cases 1 (detecting trends), 2 (reviewing treatment), 3 (self-management), and 5 (carer alert). The qualitative
analysis revealed further insights into each use case and generated 8 themes on practical issues related to implementation.

Conclusions: Overall, these findings inform the prioritization of use cases for RMT that could be developed in future work,
which may include clinical trials, cost-effectiveness studies, and the commercial development of RMT products and services.
Priorities for further development include the use of RMT to provide more accurate records of symptoms and treatment response
than is currently possible and to provide data that could help inform patient triage and generate timely alerts for patients and
carers.

(JMIR Neurotech 2023;2:e41439)   doi:10.2196/41439
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Introduction

Background
Digital and mobile health technologies, including
smartphone-based monitoring and wearable devices, have a
wide range of applications in clinical practice [1-3]. A clinical
“use case” describes how a technology can be implemented in
a clinical context, including the expected benefit and expected
beneficiary. Clinical use cases are essential for determining the
outcomes to be used in trials evaluating effectiveness as well
as for obtaining regulatory approvals and explaining the benefits
of a health care technology to potential funders and patients.
The adoption and scaling of novel technologies in health care
are dependent on a well-defined use case with a clearly defined
problem to be addressed [4]. The inclusion of clinicians in the
development of such technologies is known to be important for
successful implementation, as it ensures the appropriateness of
technology for the specific requirements of patients and the
health care system [5].

Remote Assessment of Disease and Relapse–Central Nervous
System (RADAR-CNS) was a 6-year project to understand the

feasibility and acceptability of using remote measurement
technology (RMT) to collect health-relevant data from
individuals living with epilepsy, multiple sclerosis (MS), or
depression [6]. The project was a collaboration across 6
European countries (Denmark, Germany, Italy, the Netherlands,
Spain, and the United Kingdom) and has involved the
development of a bespoke, open-source platform RADAR-base.
The platform collates data from commercially available Fitbit
smart watches measuring activity, heart rate, and heart rate
variability; the Empatica E4 wrist-worn epilepsy seizure
detection device; Bittium Faros accelerometer and
electrocardiogram Holter devices; and bespoke apps for passive
sensing and active collection of user-entered data (THINC-it)
[7]. We refer to the combination of the platform, the apps, and
the commercial devices as the RADAR-CNS RMT system.
Observational studies have been conducted to establish the
feasibility and acceptability of collecting data from individuals
living with MS, epilepsy, or depression using these sensors,
apps and platform to develop new predictive algorithms based
on the data set [8-10]. Patient involvement has been conducted
throughout the program, and patient focus groups and other
involvement studies have been conducted in multiple European
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countries to elicit patient views and inform the RMT under
development [10-13].

The aim of this study was to specify priority use cases for RMT
in 3 central nervous system disorders (epilepsy, MS, and
depression). An initial set of 13 use cases were developed
through discussion with health care professionals (HCPs) and
researchers working in each of the 3 clinical work packages
within the project. The development of these use cases
considered the fit to the target population, the potential for a
positive impact on the health and safety of patients, whether
the use case would offer an improvement on current methods,
and the existence of prior evidence to support the use case.
These were also informed by our prior work, which included:
a small-scale survey with patient advisers, HCPs, and
researchers [14]; in-depth interviews with HCPs [15]; and a
large-scale survey of 1006 clinicians on the current and potential
use of RMT and apps in clinical practice [16] and the potential
value of remote measurement data [17]. The Delphi study then
sought to prioritize among the 13 use cases (5 in epilepsy, 3 in
MS, and 5 in depression) to determine which of these would be
most practicable and useful in the eyes of the expert clinician
panel, who were outside of the consortium and so offered a
more objective point of view. The number of use cases included
in the study was considered to be manageable without
overburdening participants.

The use cases were also presented to the RADAR-CNS Patient
Advisory Board (PAB) to seek further input ahead of this study
in a short consultation via Microsoft Teams, with diagrams and
descriptions of use cases provided by email in advance. The
RADAR-CNS PAB includes members living with each of the
3 conditions from multiple countries across Europe. Illustrations
of the 13 use cases are included in Multimedia Appendix 1.

The final use cases for epilepsy are as follows:

1. Seizure alert: enabling real-time seizure warnings to patients
and carers.

2. Seizure counting: improving detection of different types of
seizures to enable more accurate overall seizure records.

3. Risk scoring: detecting cycles of seizure occurrence to
reveal risk levels at different times.

4. Triage support: enhancing patient triage based on RMT
data submitted wirelessly to patient record systems.

5. Trend analysis: reliably detecting a change in the number
of seizures that a patient has over a specified period.

The final use cases for MS are as follows:

1. Detecting silent progression: making use of more granular
measurements to detect otherwise invisible markers of
progression, enabling patients to evidence changes they
experience.

2. Detecting depression: identifying markers of depression in
the first year after MS diagnosis.

3. Data donation: automatic collection and storage of patient
data in biobanks or mega-databases.

The final use cases for depression are as follows:

1. Detecting trends: detailed symptom tracking and
aggregation of multiple types of data.

2. Treatment review: measuring adherence to cognitive
behavioral therapy or other treatment regimens and
treatment response.

3. Self-management: monitoring and providing nudges to a
patient to improve their condition.

4. Comorbid monitoring: detecting depression in patients with
chronic physical health conditions.

5. Carer Alert: providing an alert to a carer or relative when
a person with depression is in a period of very low activity.

Aims and Objectives
The aim of this work was to prioritize the use cases with the
potential for the greatest benefit for further development
according to the views of HCPs external to the project. We
sought to establish the type of benefit that each might offer
according to a medical device design framework [18]. We also
aimed to explore further related issues:

1. Acceptability of the level of burden (clinical time) required
to apply RMT in practice.

2. Acceptability of the amount of data that would be generated
by RMT.

3. The extent of required technical support for clinicians to
make the best use of RMT.

4. Preferred mode of training or technical support for
clinicians.

5. The extent of required technical support for patients to make
the best use of RMT.

We aimed to seek a consensus in these areas, where prior work
has shown that there is a disagreement between HCPs. In
addition, we aimed to determine which prior known concerns
about the use of RMT in clinical practice would actually prevent
or discourage HCPs from using RMT with patients. As we
recruited an international sample, we were also interested in
exploring how the potential implementation of RMT might
differ between countries.

Methods

Overview
The Delphi methodology has been widely used in health care
research to gather expert opinions [19-21]. Key characteristics
of the Delphi method include consultation of experts, elements
of iteration and feedback to participants to enable a form of
communication between them, and statistical methods used to
summarize group responses to ensure the robustness of analyses
[22]. Delphi studies can be used without face-to-face contact
while still enabling the gathering of group opinions, which is
of benefit when those whose opinions are required have busy
schedules (eg, in clinical settings) or may be located across
multiple countries [23-25], as is the case in this study. There
were also obvious benefits to this approach during the
COVID-19 pandemic.

Delphi studies feature multiple survey rounds, with feedback
given to the participants between each. For example, Murphy
et al [21] used a 3-round model to gather views and opinions
on the potential of digital tools for mental health in the United
Kingdom. The first round of a Delphi study typically asks
open-ended questions, and these are used to generate closed
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questions for a survey in the second round, often with
Likert-style responses. In the third round (if there is one),
participants review the summarized results from the prior round
and are then able to change their responses if required [26]. This
results in either greater consensus among the groups or sustained
disagreement, both of which are of interest [25]. Other models
may omit the first qualitative round [19] and may include
follow-up interviews after the final survey round [27].

Procedure

Overview
This study adopted the Delphi methodology for the context of
RADAR-CNS. The study procedure is summarized in Figure
1. As the project had already canvassed opinions from HCPs
in surveys and interviews, we replaced the first qualitative round
with a reanalysis of our existing data to generate the survey for
use in this study. It is recommended that Delphi surveys be
completed within 30 minutes [25]. Thus, we used diagrams of
use cases (included in Multimedia Appendix 1) to aid rapid
comprehension and to permit engagement with the ideas
presented.

Figure 1. Flowchart showing study process. DE: Germany; DK: Denmark; ES: Spain; IT: Italy; MS: multiple sclerosis; NL: Netherlands; RADAR-CNS:
Remote Assessment of Disease and Relapse–Central Nervous System; RMT: remote measurement technology; UK: United Kingdom.

JMIR Neurotech 2023 | vol. 2 | e41439 | p.34https://neuro.jmir.org/2023/1/e41439
(page number not for citation purposes)

Andrews et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


There was a gap of 3 months between the dissemination of the
first survey round and the dissemination of the second survey
round. After the first round, the research team gathered
responses and produced graphs and tables to form a Summary
of Results document. In a further adaptation to the traditional
Delphi methodology, this Summary of Results was presented
to the RADAR-CNS PAB to request commentary on clinicians’
responses. Patients who reviewed the round 1 responses
consisted of 2 people: 1 living with epilepsy (male) and 1 living
with MS (female). Unfortunately, the members of the PAB
living with depression did not respond to requests to provide
comments. Patients were sent a summary of round 1 results in
graphs, tables, and free-text comments, along with a short video

explaining what was expected from them. They wrote their
comments in a word document or email and returned them to
the first author.

For round 2, HCP participants received the Summary of Results,
which incorporated patient comments, together with a link to
the round 2 survey for completion, and were instructed to review
the Summary of Results before completing the second round.
The Summary of Results was personalized to each participant,
with their own responses indicated next to graphs showing
summary responses (Figure 2). Graphs were used to provide an
“at-a-glance” overview of the results for quick interpretation.
Free-text comments from Delphi experts and from patients were
provided in boxes below the graphs for participants to review.

Figure 2. An example showing the style of feedback provided to Delphi panel members after round 1 and showing how individual responses were
combined with group responses in the Summary of Results. RMT: remote measurement technology.

Delphi studies have been criticized for their closed nature, which
prevents discussion of the results [26]. This study sought to
overcome this criticism by including follow-up interviews to
discuss the results with individual participants. Therefore, we
used a mixed method sequential explanatory approach to collect
our data. Figure 1 shows a flowchart summarizing the process.

Recruitment
HCPs were recruited from multiple countries where RADAR
is active via multiple routes. The main method of recruitment
was by clinical academics within the RADAR-CNS consortium
disseminating recruitment materials to their clinical academic
colleagues. In addition, we contacted specialist associations
representing clinicians treating each of the 3 conditions across
the 6 European countries of the consortium (the United
Kingdom, Germany, Italy, Spain, the Netherlands, and
Denmark). We also contacted prior research participants external

to the consortium and contacted clinicians who had previously
expressed interest in the RADAR-CNS project.

Inclusion Criteria
We required participants to be experts in the area by virtue of
their experience working in the clinical care of people with
epilepsy, MS, or depression. We specified that participants
should not be members of the RADAR-CNS consortium to gain
an external view of the potential of the technology in clinical
practice.

Survey Design
The survey was composed of 4 main sections: demographics,
use case evaluation, questions related to the implementation of
RMT, and rating of concerns. The full survey is included in
Multimedia Appendix 2.
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There were 3 separate use case evaluation sections, one for each
clinical condition. The epilepsy section evaluated 5 use cases,
the depression section evaluated 5 use cases, and the MS section
evaluated 3 use cases. For each use case, there were 7 questions,
which included general evaluations of practicality and benefit,
plus 4 adapted from the framework of medical device design
by Sharples et al [18]. Using this framework, we sought to
identify the specific type of benefit offered by each use case:
whether it “enabled” something new, “enhanced” existing
practices, “facilitated” (made easier) existing processes, or
“catalyzed” (sped up) existing processes. Respondents rated
each item on a 5-point scale, ranging from 1 (strongly agree)
to 5 (strongly disagree).

The “further questions” section covered clinical time, frequency
of data collection, technical support requirements, usefulness
or value of data, and payment and reimbursement. The “rating
of concerns” section was intended to explore the extent to which
different barriers to use discovered in our prior work would
affect respondents’ intention to use RMT in clinical practice.
Each response option in this section was more detailed and
required longer to read than those in the previous sections, so
we kept the number of response options low to facilitate
completion (the options were “Would not prevent me using
RMT with my patients”; “Would prevent use in some
situations”; “Would prevent use entirely”; or “Don’t know”).

The second round survey was identical to the first, except that
demographics questions were omitted, and coauthorship of the
resulting paper was offered via an opt-in tick box. We chose to
request full recompletion of the survey rather than only
requesting completion of questions where consensus had not
been reached because we were equally interested in areas of
disagreement as we were in gaining consensus.

Follow-up Interviews
A subset of participants who indicated interest in a follow-up
interview were contacted to arrange a 30-minute slot for a
web-based interview using Microsoft Teams. The interviews
followed a semistructured format using an interview guide
instrument (Multimedia Appendix 3). The aims of the interviews
were to gain further insight into HCPs’ views of the use cases
for the RADAR-CNS RMT system and to understand
country-specific contextual factors that might affect the
implementation of RMT in each country. As such, we conducted
interviews across a range of European countries and across the
3 conditions.

Ethics Approval
The methods were performed in accordance with relevant
guidelines and regulations and were approved by the University
of Nottingham Faculty of Medicine and Health Sciences
Research Ethics Committee (ref: 315-0721; Multimedia
Appendix 4).

Analysis

Quantitative Analysis

The quantitative data consisted of Likert-style responses from
the 2 survey rounds. These were scored from 1 (strongly
disagree) to 5 (strongly agree), except for the final question on
barriers to RMT use, which was scored using a 3-point scale,
plus an option for “do not know.” Numbers reporting “do not
know” were included in the denominator of the percentage
calculations.

To evaluate the consensus among respondents in each round,
we used a predetermined threshold percentage of similar
responses on an item [25]. We determined that consensus had
been reached if 70% of the responding participants scored an
item within the same grouping (agree, neutral, or disagree),
where scores of 4 or 5 were grouped as “agree,” scores of 1 or
2 were grouped as “disagree,” and scores of 3 were considered
neutral. This effectively recreated a 3-point scale, which is
considered preferable over the analysis of 5-point scales for
survey data in clinical contexts [28].

To evaluate the stability between rounds, we used the Gwet
agreement coefficient, which is found to have more stable
performance than kappa scores [29]. The scores were weighted
to account for ordinality in the variables. The coefficients were
compared against benchmarks from Altman [30].

Analyses were conducted only on responses received—no
imputation was judged to be necessary to account for missing
data, given that the study focused on eliciting a small number
of expert opinions, with only descriptive statistics used to
analyze the data.

Qualitative Analysis

Survey comments and interview transcripts were analyzed using
template analysis [31]. An a priori theme was included in the
initial template for each use case, and for each implementation
topic covered in the survey. Themes were iteratively added,
deleted, renamed, and reorganized to create the final template
of themes. We used the final template of themes to triangulate
the qualitative and quantitative data.

Results

Participants
A total of 23 clinicians treating patients with epilepsy, MS, or
depression were recruited, with participation from all 6 European
countries where RADAR-CNS is active (the United Kingdom,
Germany, Spain, Denmark, the Netherlands, and Italy) and with
representation from clinicians treating each of the 3 clinical
conditions (Table 1). We expected some dropouts between the
first and second rounds but were able to retain 74% (17/23) of
the round 1 participants in round 2. A total of 9 respondents
completed the interviews.
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Table 1. Participant demographics.

Interviews (n=9), n (%)Round 2 (n=17), n (%)Round 1 (n=23), n (%)

Age group (years)

1 (11)6 (35)6 (26)30-39

1 (11)4 (24)5 (22)40-49

5 (56)5 (29)9 (39)50-59

2 (22)2 (12)3 (13)60-70

Gender

3 (33)6 (35)8 (35)Woman

6 (66)11 (65)15 (65)Man

Job role

8 (89)11 (65)16 (70)Consultant (medical)

0 (0)2 (12)2 (9)Health care scientist or researcher

0 (0)1 (6)1 (4)Clinical psychologist

0 (0)1 (6)1 (4)General practitioner

1 (11)1 (6)1 (4)Nurse

0 (0)0 (0)1 (4)Psychological well-being practitioner

0 (0)1 (6)1 (4)Other (unspecified)

Relevant condition treated

3 (33)8 (47)10 (43)Depression

4 (44)6 (35)8 (35)Epilepsy

1 (11)2 (12)3 (13)Multiple sclerosis

0 (0)0 (0)1 (4)Multiple sclerosis, epilepsy, and depression

1 (11)1 (6)1 (4)Epilepsy and multiple sclerosis

Country

4 (44)5 (29)8 (35)United Kingdom

1 (11)4 (24)5 (22)Spain

0 (0)3 (18)4 (17)Italy

3 (33)2 (12)3 (13)Germany

0 (0)1 (6)1 (4)Denmark

0 (0)1 (6)1 (4)Australia

1 (11)1 (6)1 (4)Netherlands

Quantitative Results: Consensus and Stability
The research team decided that a third survey round was not
required: 97.4% (114/117) of question items had a high or very
high level of stability of responses between rounds 1 and 2,
indicating that a third round would have had limited benefit.
Multimedia Appendix 5 [30] presents the results for consensus
and stability for all questions in the survey.

Epilepsy Use Case Questions
The threshold for consensus was reached on 74% (26/35) of
questions on the epilepsy use cases in the first round and 86%
(30/35) of questions in the second round, demonstrating a move
toward consensus. For all of these items, consensus was reached
that respondents agreed or strongly agreed with the statements

presented, rather than selecting “disagree,” “strongly disagree,”
or “neutral.” Five of the questions moving to consensus in round
2 concerned the fifth epilepsy use case, using RMT for trend
analysis, and indicated a change in views toward agreement that
this use case would “enable” new possibilities, “facilitate” care
(make care easier), “enhance” care, and benefit patients and
clinical teams.

It is notable that in round 1, for epilepsy use cases 1 to 3, the
question on “catalyzing” (speeding up) existing processes
received fewer "agree" or above responses than all other
statements, indicating less confidence that these use cases would
speed up existing processes. The PAB identified this pattern,
and their comments were fed back to the participants ahead of
round 2. There was comparatively low stability for these
questions between round 1 and round 2, suggesting that
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participants changed their minds about this question, perhaps
in response to the PAB’s comments.

The point estimate for the Gwet agreement coefficient statistic
fell in the “very good” strength of agreement range (0.80-1.00)
for 94% (33/35) of items, indicating a very high overall stability
of epilepsy responses between rounds 1 and 2.

MS Use Case Questions
The threshold for agreement was reached on 10% (2/21) of
questions on the MS use cases in the first round and 0% (0/21)
of questions in the second round, demonstrating a move away
from consensus. Where consensus was reached, it was a
consensus that respondents “agreed” or “strongly agreed” with
the statements presented rather than selecting “disagree,”
“strongly disagree,” or “neutral.”

Fewer participants completed the MS use case questions in the
second round (n=3) compared with the number completing
epilepsy questions (n=6) and depression (n=9). This meant that
even when a majority of 67% (2/3) of participants expressed an
opinion, this did not cross the threshold of 70%, requiring a
unanimous vote for this to occur. This explains the
comparatively lower number of questions showing consensus
in the MS group.

The point estimate for the Gwet agreement coefficient fell in
the “very good” strength of agreement range (0.80-1.00) for
81% (17/21) of items, indicating a high overall stability of
responses between rounds 1 and 2.

Depression Use Case Questions
In the depression use cases, the threshold for agreement was
reached on 83% (29/35) of questions in the first round and 89%
(31/35) of questions in the second round. Where consensus was
reached, it was a consensus that respondents “agreed” or
“strongly agreed” with the statements presented, rather than
selecting “disagree,” “strongly disagree,” or “neutral.”

The point estimate for the Gwet agreement coefficient fell in
the “very good” strength of agreement range (0.80-1.00) for all
100% (35/35) of items, indicating a very high overall stability
of responses between rounds 1 and 2.

Further Questions Section
There were 19 questions on further considerations of RMT
(clinical time, frequency of data collection, technical support

requirements, usefulness or value of data, and payment and
reimbursement), which were rated by all 17 participants who
completed both rounds. Participants reached a consensus of
“agree” or “strongly agree” on 42% (8/19) of questions in round
1 and maintained this level of consensus in round 2 (Multimedia
Appendix 5). A smaller proportion of questions in this section
reached consensus than those in the section on use cases. For
11% (2/19) of questions in this section, participants moved from
no consensus to a consensus that they “disagreed” or “strongly
disagreed” with the statement. These questions were that
“receiving data on a patient’s condition would be an added
burden” and that “mood scores need to be collected from
patients at risk of mental health conditions on a daily basis.” A
total of 9 question items in this range did not reach agreement
in the first or second rounds. The Gwet agreement coefficient
showed “very good” stability between rounds (Altman
benchmark 0.80-1.00) on only 63% (12/19) of questions in this
range, indicating greater changeability between rounds for these
questions compared with those relating to the use cases.

Concerns Questions
There were 7 questions on concerns about RMT, which could
be rated as a serious concern (“Would prevent use entirely”), a
medium concern (“Would prevent use in some situations”), or
a lesser concern (“Would not prevent me using RMT with my
patients”). There was no consensus for any question in this set
in round 2.

The stability of responses between rounds 1 and 2 for these
questions was lower than that for other parts of the survey. The
change in responses was not uniform in one direction or the
other, and neither was there a distinct movement toward or away
from extreme responses (rating a concern as severe or lesser),
indicating less certainty in relation to these questions compared
with other sections of the survey.

Qualitative Findings: Final Template and
Triangulation

Overview
The triangulation of the results is interwoven with the overall
exposition of the qualitative results below. The final template
consisted of 8 themes, each with multiple subthemes (Table 2).
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Table 2. Final template of themes and subthemes.

SubthemesTheme

Comments on specific use cases1 • Depression (UCsa 1-5, general comments)
• Epilepsy (UCs 1-5, general comments)
• Multiple sclerosis (UCs 1-3, general comments)

Clinical time2 • Implementing RMTb would be time costing
• Implementing RMT would be time-saving
• Other views on RMT and clinical time

Value of RMT data3 • Disease-specific value
• Moving beyond the subjective
• Positive or negative views on value
• Value is related to amount of data accessible

Frequency, amount, and type of data collection4 • Collecting large amounts of data (over a year)
• Daily reporting and recording
• Desired frequency of data collection
• Passive data collection vs active data collection
• Technical support and its effect on clinical time

Payment and reimbursement5 • Funding in clinical settings to support introduction of new technologies
• Political drivers
• Requirement for extra resource
• Requirement to save costs or improve care

Country or context-specific factors relating to RMT implemen-
tation

6 • Germany
• Netherlands
• Spain
• United Kingdom
• Setting-specific factors

Inevitability of change and ongoing change in health care
services

7 • Preference for at-distance care
• Patients use RMT and bring data to clinic
• Patients use RMT but don’t bring data to clinic
• Coronavirus pandemic as stimulus for change

Barriers and concerns8 • Comments on barriers listed in the survey
• Clinician time
• False alarms, false positives, false negatives
• Interoperability
• Patient anxiety
• Reducing number of appointments

• Other barriers not covered in the survey
• Requirement for further research
• Health care culture
• Legal and regulatory
• Patient behavior and situation

aUC: use case.
bRMT: remote measurement technology.

Comments on Specific Use Cases
The results on condition-specific use cases from the interviews
inform the prioritization of use cases, as participants indicated
which of the use cases they would find most useful and which
least useful, with reasons to support these indications. Extracts
from the interview transcripts for each use case are provided in
Multimedia Appendix 6.

Epilepsy

All 5 epilepsy use cases were considered plausible, although
participants stated that their utility depended on practicality and
accuracy. Use cases 1, 2, and 4 (seizure alert, seizure counting,
and triage support, respectively) were considered the most
useful. This supported the quantitative data across both rounds.

Use case 1 (seizure alert) was considered helpful for motor
seizures, which are highly associated with a sudden unexpected
death in epilepsy. One participant working in Germany
questioned the novelty of the solution (“we already have this
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for some devices” [Participant 2]), although it is understood
that this is only for a patient at rest (not moving) and there is
still a need for wearables that can detect motor seizures from
active status. Participants indicated that an adequate level of
sensitivity and specificity would be required, with 1 participant
providing a detailed account of acceptable sensitivity and
specificity (Multimedia Appendix 6).

Epilepsy use case 2 (seizure counting) was also considered
useful, assuming appropriate levels of accuracy. Comments
indicated that passive monitoring may be more accurate than
patient diaries, for example, where a patient might forget to
record some seizures. It was considered not to be feasible for
clinicians to review data between clinic visits unless the system
indicated the requirement for additional review based on
particular thresholds and therefore performed some sort of triage.

Use case 3 (risk scoring) was thought to be less practical and
more difficult to achieve. Interviewees thought there would be
medicolegal risks and that they would not want to prevent
patients from taking part in enjoyable activities where
unnecessary. Use case 4 (triage support) was considered useful
but less so than use cases 1 and 2. Concerns included lack of
infrastructure, false positives, staffing resources, legal
complications, and low availability of staff.

Use case 5 (trend analysis) was again considered potentially
useful depending on evidence to support its effectiveness. Some
responses to interview questions indicated that trend analysis
could be one of the most useful applications of RMT in epilepsy,
although quantitative findings from round 1 did not reach
agreement.

Multiple Sclerosis

MS use case 1 (detecting silent progression) was considered
useful for detecting progression early enough to slow down the
condition. However, its benefits were considered to be restricted
by the limited availability of medications to treat disease
progression. Measuring gait was thought to be a useful
mechanism for detecting silent progression (“to detect
progression, the most useful would be all the tools that would
be used to detect gait disorders” [Participant 3]).

There were mixed views on the usefulness of detecting
depression in MS (use case 2). One interviewee indicated that
the use of RMT in this way could be useful to open “a bit more
conversation” with the patient (participant 19). Another
interviewee stated, “it may be that detecting depression would
show the development of the disease, but that would not help
us so much” (participant 3). These contrasting views reflect the
lack of consensus among experts in the quantitative survey
results.

Use case 3 (biobanking MS data) was considered useful for
future patients but not for current patients (“that it is very useful
to collect this data, so I'll be interested, [...] but it will not
necessarily have a direct impact to my patients” [Participant
19]), which explains the lack of consensus on the question about
patient benefit. It was highlighted that there already exist
biobanks for MS data and that RMT data could be added to
these.

Depression

Interviewees indicated that use cases 1, 2, and 3 (detecting
trends, reviewing treatment, and self-management, respectively)
would be the most useful. Use case 1 (detecting trends) was
thought to enable easier and better recording of patient-reported
outcomes, which could save administrative time. Use case 2
(reviewing treatment) was considered useful if it could be
implemented successfully within the treatment pathway. It was
considered that use case 3 (self-management) would work well
for some (but not all) patients.

It was considered that use case 4 (comorbid monitoring) might
increase the rate of detecting depression (“we might encounter
much more depression if we manage to do this” [Participant
12]), but this was considered the least viable use case, partly
because it may not be possible to effectively treat comorbid
depression if found, and partly because of concerns about
confounding symptoms. These findings supported the
quantitative data, where consensus was only reached on 4 of 7
questions about use case 4, compared with 6 of 7 or 7 of 7 for
all other use cases. Use case 5 (carer alert) was also considered
less useful, as participants thought that carers might not take
on the required responsibility, being unwilling or unable to offer
the right support and care.

General or Non–Condition-Specific Questions

Clinical Time

The responses showed that implementing RMT could be overall
time saving if it reduced admissions, although the potential for
RMT to identify otherwise unidentified symptoms may in fact
require more clinical time to evaluate. RMT may reduce
emergency department burden, where conditions are better
managed. Comments suggested that time saving would depend
on high accuracy. Several participants described practical ways
in which RMT could be used to save time, eg, the use of
thresholding, and having a patient manager specifically trained
to manage RMT data. Some also suggested that the value of
RMT may be in having a more detailed picture to improve care
rather than saving time. Interviewees stated that having good
quality, easily available technical support could save time for
clinicians and encourage the continued use of RMT, although
some were concerned about the cost of technical support.

Value of RMT Data

Interviewees suggested that RMT data would be useful in
conditions outside the 3 covered in RADAR-CNS, eg, in the
monitoring of bipolar disorder:

I wonder whether you also consider bipolar disorder
if you talk about depression, I think you have to. Even
if patients come from the unipolar depression side,
they still might switch into mania. [Participant 11]

To some extent, the value of the RMT data was correlated with
the amount of data that could feasibly be collected. It was
considered that “the more data you have, the less uncertainty
there is” (participant 4) and that the data could give otherwise
unavailable insights into patient condition:

Having the RMT background information in terms of
their activities throughout the week, I think it will
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probably give us a little bit more information in terms
of how they’ve been during the week rather than, you
know, on that day, this is what they reported.
[Participant 5]

This linked with a wider subtheme on “moving beyond the
subjective.” Interviewees stated that RMT could provide
objective data that would otherwise be represented only by
subjective patient self-reports. It was also considered that RMT
would enable clinicians to determine how much the patient’s
condition affected their everyday lives even when the patient
said they were “fine.”

Frequency, Amount, and Type of Data Collection

The required frequency of data collection would depend on the
stage of the disease and treatment phase. In relation to mood,
participants’desired frequency of mood report data ranged from
daily to once fortnightly with various suggestions in between.

There was a suggestion that passive data collection was more
valuable than active data collection, as compliance with active
measures was expected to be low and because active measures
can have the undesirable effect of inducing negative mood states:

From another trial, assisted active monitoring can
even induce bad mood states because people then
tend to ruminate, tend to think about the situation
more than they probably should. So it should stress
passive monitoring. [Participant 11]

Payment and Reimbursement

Many participants expressed that the introduction of RMT in
these use cases would require a large amount of extra resources,
for the cost of devices, for staff who would monitor patient data,
and for staff members who would help patients set up the
technology. Interviewees also expressed that the essential
requirement for the introduction of RMT would be that it could
demonstrably save costs or provide strong evidence of an
improvement in patient care:

Whatever you implement must not increase your
workload, because otherwise especially doctors in
their own practice won’t use it because they don’t get
any extra money for that.

So they must see a time saving benefit or a real quality
improvement for patient care. That is what they
expect, and here it's really important to stress that
it's not putting extra work on doctors, but makes life
easier actually. [Participant 11]

There were mixed views on whether reducing the number of
patient appointments, as a result of monitoring their condition
remotely, would be useful. This reflected the quantitative survey
results, where 9 of 17 reported that their service would lose
money if appointments were reduced and 7 of 17 reported that
their service would not. Payment regulations for a clinician
treating epilepsy in Germany meant that a reduction in the
number of appointments would cause a reduction in income for
his service. He stated that a political change would be required
to incentivize the use of new wearable solutions in epilepsy.
Conversely, a clinician treating epilepsy in the United Kingdom
stated that where appointments were saved for 1 patient, these

would be filled by another, as the demand for the service was
so great: “There’s too much demand, so don’t worry about
dropping income because of dropping demands” (participant
4).

Country- or Context-Specific Factors Relating to RMT
Implementation

Germany

Interviewees in Germany gave mixed reports on the potential
for the reimbursement of RMT. One interviewee said that some
wearable devices were already provided to patients with
epilepsy, paid for by the health service, providing evidence of
a precedent for the funding of RMT. They added that RMT may
have limited cost-saving benefits because of the requirement
for additional staff. Another interviewee said that the
organization of remuneration for health care in Germany is old
fashioned and limits the ability to introduce new technologies.
Another said that where doctors run their own clinics, they are
free to use any technologies they see fit as long as they can
convince their budget manager of the benefit the new technology
will offer. This interviewee also mentioned the German law
introduced in recent years to incentivize the introduction of
digital health technologies and described the requirement for
these technologies to provide strong supporting evidence:

They need to demonstrate, well, evidence for
helpfulness. It’s not the level of a randomized control
trial, but they need to have data that the app would
be instrumental in reducing health care burden, and
then the provider gets reimbursed. So it’s like
prescribing a medication or something like that.
[Participant 11]

The Netherlands

The single interviewee from the Netherlands explained that
there is hope and enthusiasm that RMT may offer patient and
health care service benefits in depression in the Netherlands,
but that there is as yet little implementation. They contrasted
the National Health Service (NHS) in the Netherlands with the
situation in Germany, where it was perceived that individual
German hospitals needed to attract patients and that RMT may
offer a competitive advantage, whereas the Dutch NHS did not
need to do so.

Spain

The interviewee treating patients with MS in Spain suggested
that regulatory factors might complicate the introduction of
RMT in Spain and that there was little money in the Spanish
health service to introduce RMT. However, they mentioned that
because of the COVID-19 pandemic, many patients with MS
whose condition is stable now have remote visits via
videoconferencing as a matter of course, which have laid the
cultural groundwork for a change in patient monitoring and
management.

The United Kingdom

Interviewees distinguished the United Kingdom from other
countries by highlighting how health care practitioners treating
MS in other countries may be paid per visit, and it is thus in
their interest to have patients attend clinics. However, in the

JMIR Neurotech 2023 | vol. 2 | e41439 | p.41https://neuro.jmir.org/2023/1/e41439
(page number not for citation purposes)

Andrews et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


United Kingdom, no such pay-per-appointment system is in
place. Therefore, UK practitioners may be more keen than those
in other countries to make the best use of RMT data to cancel
appointments where unnecessary.

It was also highlighted that insurer-based health systems
compete for patients, but the UK NHS does not, so there would
be less motivation to introduce RMT as a competitive advantage
in the NHS.

Although interviewees pointed out that there is a political push
for increased implementation of digital solutions in the NHS,
1 interviewee suggested it would be politically unpopular for
the NHS to offer consumer-grade electronic goods for
health-related purposes free on the NHS:

Say with an Apple Watch retail price, probably three,
400 pounds, I don’t know. You could see the social
envy creeping up and saying, oh I’m not paying for
epilepsy patients to get an Apple Watch which I can’t
afford myself so consumer electronics is one thing.
[Participant 9]

Similar to other countries, UK interviewees stated that funding
for new medical technologies is focused on research trials rather
than on implementation. They stated that implementation is
assumed and is not highly regarded in terms of researcher or
practitioner prestige.

Setting-Specific Factors

In relation to clinical alert-based systems (ie, those where
crossing a threshold in patient RMT data may trigger an alert
to a medical team), interviewees stated that these would have
easier applications in acute hospital settings rather than in
community-based settings. However, there was concern that
larger centers or hospitals would be likely to see greater adoption
of remote technologies because they have more funds available
to cover excess costs and that this would contribute to inequality:

You end up having three hospitals that they are
already providing a good care to provide a bit better
care. So if anything, the inequality of care will widen.
[Participant 19]

Inevitability of Change in Health Services
Interviewees commented that changes were inevitable in health
care services and that pathways and procedures are often
evolving. In relation to RMT, some interviewees indicated that
they were aware of patients already using wearables to monitor
health, with some of these sharing data with clinicians (and
some not). The coronavirus pandemic was discussed as a
stimulus for lasting change that may lay the groundwork for the
future implementation of different types of RMT. Respondents
reported that some patients were fearful of face-to-face contact
with health care practitioners in light of the threat of COVID-19.

Barriers and Concerns

Barriers Covered in the Survey
There were mixed views on whether false positives and false
negatives from RMT would be problematic, reflecting the lack
of consensus in this area in the quantitative results. One
interviewee stated that false positives or negatives would not

undermine the usefulness of RMT, as such results can be
expected from any measure, whether digital or analog.
Interviewees also mentioned interoperability and patient anxiety
(covered in the survey), where if RMT made patients more
anxious, this could drive the increased use of clinical resources,
which could be problematic. Another interviewee mentioned
that carers may be made more anxious by the introduction of
RMT:

Sometimes parents can sometimes focus too much on
stuff that’s not relevant, and then that gets in the way
of them focusing on the more important things.
[Participant 4]

Barriers Not Covered in the Survey
There was concern among interviewees that patients may not
adhere well to monitoring regimes; that devices would be lost,
stolen, or sold; or that patients may not have suitable internet
or mobile data to enable the use of RMT. Other worries were
that patients may buy cheap, less accurate, and unregulated
devices if the appropriate devices are not provided for free and
that the implementation of RMT would only be successful if
patients believed that it would work, requiring adequate patient
education.

Health care culture was identified as an important barrier. It
was suggested that HCPs were often unaware of what
technologies are readily available to support their patients.
Interviewees stated that, in the United Kingdom, it is very
difficult for an HCP to persuade more senior staff members of
the necessity for any particular kind of technology that they
were aware of:

They would say, oh, you gotta do a business case if
you want to introduce new technology. The business
case is quite difficult to do. There’s very little admin
support for it, unless it’s a very high priority of the
trust. [Participant 4]

Legal and regulatory systems were also highlighted, with
interviewees suggesting that these are not currently set up for
technologies that are recurrently updated, eg, algorithms that
update themselves. Data protection and ownership were also
mentioned as key issues worthy of consideration when
implementing new technologies.

Further research is necessary to determine the accuracy and
reliability of off-the-shelf consumer technologies used within
the system. CIs for their precision would be required to make
use of these parameters successfully. The participants
recommended trials of the specific use cases of the technologies
under development to establish cost-effectiveness.

Discussion

Overview
The purpose of this mixed methods, sequential explanatory
Delphi study was to prioritize among use cases for RMT in
central nervous system disorders, which had been cocreated
with clinicians and patients within the RADAR-CNS
consortium. The results from the study have identified those
likely to be of the most practical use and clinical benefit. The
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study has also contributed knowledge on country- and
context-specific factors affecting implementation and revealed
areas of consensus and disagreement among HCPs on practical
aspects of RMT implementation.

Principal Findings

Epilepsy
Priority use cases for RADAR-CNS RMT in epilepsy from this
study are: seizure alert, seizure counting, triage support, and
trend analysis. All 5 use cases for epilepsy were considered
“beneficial to patients”; however, use case 3 (risk scoring) was
considered less likely to facilitate or catalyze care or be
beneficial to clinical teams. Participants suggested that risk
scoring would bring medicolegal risks and would be less
practical and more difficult to achieve than other use cases.

Although other authors have commented on the potential of
technology in these areas [32-34], our study has validated these
as the most useful applications of RMT with clinicians treating
epilepsy across Europe. Participants in the study were concerned
about the possible medicolegal consequences of using devices
to estimate the risk of seizures in epilepsy, which might be
expected, given that prior work has highlighted the medicolegal
responsibilities of clinicians treating patients with epilepsy in
relation to driving and employment in the teaching profession
[35].

Multiple Sclerosis
There was little consensus on the benefits of the use cases in
MS. Despite repeated efforts to avoid dropout, the results in
round 2 were only obtained from 3 participants, limiting the
robustness of these results. There was greater consensus among
the 6 participants completing round 1, particularly for use case
1 (detecting silent progression) and use case 2 (detecting
depression in MS). The qualitative findings showed some
dependencies, eg, that the system could hold value for the
detection of silent progression of the disease if relevant
treatments are available, whose delivery could be optimized by
applying them at specific times relevant to the timely detection
of changes by the system.

On reviewing our findings, patients commented that cognition
is an important aspect of MS to measure the silent progression
of the disease. They also mentioned that compliance with
monitoring programs may be greater where they experienced a
decline or instability in their condition. Related work has found
that clinicians have concerns about collecting data with little
clinical relevance [3,36], and our work illustrates this in the
specific case of MS, where HCPs were skeptical about the
benefits of detecting silent progression if no treatments were
available to address it.

The UK Biobank now includes data on sleep and physical
activity from wearable devices, and researchers have begun to
analyze these data for various purposes [37]. Here, we provide
evidence that some clinicians support such storage of data from
patients with MS, although some are unclear about the benefits
to the donating patient. Issues around the security and privacy
of patient wearable data in biobanks were mentioned by the
interviewees. The World Medical Association has adopted a

declaration on ethical considerations regarding health databases
and biobanks [38], and such issues will need to be duly
considered for any future storage and sharing of wearable and
smartphone sensor data in biobanks.

Depression
The use cases to be prioritized for RMT in depression include
detecting trends, reviewing treatment, and self-management.
Participants agreed that there would be benefits for all 5 of the
depression use cases, although there was less consensus for use
case 4 (comorbid monitoring), where qualitative results showed
that participants thought it would be difficult to distinguish
between symptoms of depression and symptoms of comorbid
physical illnesses. Use case 5 (carer alert) was criticized in the
interviews, as informal carers may not have the requisite skills
or knowledge to adequately support patients with depression.
Use cases 1 to 3 were seen as useful provided evidence could
be generated to support their effectiveness.

Self-management was one of the most favored use cases for
RMT in depression. There is some evidence supporting the
effectiveness of smartphone apps for depression
self-management [39], although qualitative evidence shows that
users may download apps for short-term, inquisitive trials and
may not adhere for longer term use [40]. Further work is
required to establish what factors affect adherence to depression
self-management apps and how the RADAR-CNS RMT system
can be presented to patients to encourage continued use.

Other use cases supported by participants for depression were
use case 1, detecting trends and use case 2, reviewing treatment,
including monitoring of treatment response and side effects.
Existing methods of detecting trends and monitoring treatment
response rely predominantly on pen-and-paper mood diaries
and outcome measures, such as the Patient Health
Questionnaire-9. However, many such outcome measures have
been converted to digital versions [41-43], and electronic mood
diaries are also becoming available as smartphone or web
applications [44,45], with some efforts to automatically detect
symptoms and analyze trends from these user-entered data [2].
The multimodal, passive, and active combinations that could
be offered using the RADAR-CNS RMT system are less
commonly available, although some research has begun in this
area [46]. This type of approach likely requires a higher level
of regulatory approval than electronic mood diaries [47].

Further Questions
There was lower consensus and stability on these questions than
those relating to the use cases, suggesting more differences of
opinion and less fixed views on these issues. However, our
findings clarify some points: It was expected that the
implementation of RMT would require greater amounts of staff
time and financial resources than the status quo. Evidence of
cost-effectiveness was considered imperative. The RMT data
were considered valuable for reducing uncertainty and moving
beyond subjective measures. It has been suggested that RMT
could offer benefits under conditions other than the 3 under
consideration in RADAR-CNS, eg, bipolar disorder. There were
mixed views on how frequently the data should be collected.
Passive data were considered more useful than actively collected
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data because they required less input from the patient, who may
forget to complete questionnaires and because passive data were
considered to be less subjective.

Country-specific comments highlighted the difference between
countries with NHSs (the United Kingdom, the Netherlands,
and Spain) compared with countries with insurer-based health
care systems (Germany). It was mentioned that RMT could be
used to persuade customers to join 1 particular insurer or health
service over another. Differences were also highlighted where
countries may have a pay-per-patient-visit setup, wherein the
use of RMT to check patients are stable and therefore reduce
appointments would be financially problematic. The interviews
covered only a limited range of countries, and there may be
other barriers or facilitators to using RMT in health care systems
in other countries. Barriers were raised regarding inequality
between settings, patient behavior, health care culture, legal or
regulatory issues, and use of off-the-shelf technologies.

Limitations
We would caution against overinterpretation of the consensus
scores for MS, where only 3 participants responded in the second
round. Unfortunately, we could not recruit more experts in MS
during the time available for the study, despite extending the
recruitment window and using multiple recruitment methods.
This is a shortcoming of many studies seeking the views of MS
clinicians, as there are few medics specializing in this condition.
However, the combination of item ratings and interview findings
relating to MS provides useful insights into how RMT could
be used for patient benefits in this condition.

In addition, the aim of this study was to explore the applicability
of the RADAR-CNS RMT system in 3 central nervous system
disorders, limiting its relevance to other conditions or monitoring
platforms. However, the methodology set out here will likely
be of interest to others seeking approaches to evaluate the
application of novel systems in health care, and the findings
will be of interest to those developing a variety of digital
interventions for the specific conditions discussed.

Interpretation and Implications for Research and
Practice
Our work highlights the potential value of the implementation
of RMT for 3 central nervous system disorders, including which
applications of RMT would enable something new, enhance
existing care, speed up existing processes, or facilitate or make
easier the care of patients [14,18]. These results indicate that
clinicians would consider RMT patient data to have sufficient
value that it would be worth a financial outlay to implement
RMT in clinical practice. However, health economic evaluation
is required to determine the cost-effectiveness of applying RMT
in each of these conditions [48], and the choice to implement
is likely to be determined by whether cost-effectiveness is
judged to meet local criteria that can vary by country [49].

The findings from this study and our prior work provide an
indication of where costs may be incurred if RMT is
implemented in a health care service [17]. The costs are likely
to include introducing staff roles to manage patient data and
provide technical support. Technical support staff could assist
patients in setting up and maintaining RMT devices and support

clinicians in making the best use of patient RMT data. The extra
time for clinical staff to review patient data would be cost
incurring, where fewer patients can be seen, although if this
results in improvements in care and thereby patient condition,
there may be an overall improvement in efficiency. The devices
themselves and their maintenance also incur a cost for a health
care service wishing to implement them. Although many of the
technical devices incorporated within the RADAR-CNS system
are consumer-grade technologies that may be owned by patients,
our findings suggest that there is a need to provide each patient
with devices meeting specific standards of accuracy, adding to
costs.

Participants largely suggested that decisions about the
implementation of new technologies were top-down and that
commissioners and health service leaders would need to be
convinced of the benefits of RMT for it to be implemented. In
the United Kingdom, commissioners are often involved in
redesigning services to incorporate new and beneficial
technologies or products [50]. The exception to this was
Germany, where doctors who run their own services at a local
level are able to work with their budget holders to decide on
the implementation of particular technologies. However, it is
expected that these technologies should be demonstrably both
clinically effective and cost-effective. In the United Kingdom,
the National Institute of Health and Care Excellence provides
guidance on the evidence required for approval of digital
technologies [51]. Similarly, in the European Union, the
European Medicines Agency works with groups to develop
novel health care technologies to provide scientific advice [52].
Close working with these organizations would facilitate the
further development and evaluation of the RADAR-CNS RMT
system.

Conclusions
RMT offers new possibilities for the assessment of epilepsy,
MS, and depression by enabling new ways of caring for patients,
enhancing existing processes, facilitating care, and, in some
areas, catalyzing or speeding up existing processes. Our study
shows promise for the use of wearable technologies such as
Fitbits, wrist-worn epilepsy seizure detection devices, and other
wearable accelerometers, together with smartphones, in remote
measurement and assessment systems. Priority use cases for
the further development and evaluation of RMT in epilepsy
according to this study are: more accurate seizure records,
automatically analyzing trends, improving triage through review
of RMT data, and alerting patients and carers to imminent
seizures. In depression, priority use cases are using RMT to
detect trends or changes in the condition, monitoring treatment
response and using data to inform treatment decisions, and
self-management through monitoring and behavioral nudges.
Some clinicians recognize the benefits of RMT in the
management of MS by enabling the detection of the silent
progression of the disease, detecting depression, and enabling
the donation of data to biobanks, although clear priorities among
these cannot be distinguished from our results.

The implementation of RMT will have different implications
in different health service models. Cost-effectiveness studies
will be required to understand the economic value of
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implementing RMT in clinical practice in different regions.
Future work could also usefully explore the potential of RMT
in other clinical conditions, as well as seeking to understand
factors affecting adherence to remote measurement regimes in
real-world conditions. Clinicians participating in this study
considered passive data to be more reliable than active data,

and further work is required to understand whether digital
biomarkers based on passive remote measurement data can be
used as proxies or replacements for existing measures in these
and other clinical conditions. Overall, the Delphi method has
been useful for prioritizing use cases and deriving insights into
the practical application of RMT in clinical practice.
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Abstract

Background: Phonematic and semantic verbal fluency tasks (VFTs) are widely used to capture cognitive deficits in people
with neurodegenerative diseases. Counting the total number of words produced within a given time frame constitutes the most
commonly used analysis for VFTs. The analysis of semantic and phonematic word clusters can provide additional information
about frontal and temporal cognitive functions. Traditionally, clusters in the semantic VFT are identified using fixed word lists,
which need to be created manually, lack standardization, and are language specific. Furthermore, it is not possible to identify
semantic clusters in the phonematic VFT using this technique.

Objective: The objective of this study was to develop a method for the automated analysis of semantically related word clusters
for semantic and phonematic VFTs. Furthermore, we aimed to explore the cognitive domains captured by this analysis for people
with Parkinson disease (PD).

Methods: People with PD performed tablet-based semantic (51/85, 60%) and phonematic (69/85, 81%) VFTs. For both tasks,
semantic word clusters were determined using a semantic relatedness model based on a neural network trained on the Wikipedia
(Wikimedia Foundation) text corpus. The cluster characteristics derived from this model were compared with those derived from
traditional evaluation methods of VFTs and a set of neuropsychological parameters.

Results: For the semantic VFT, the cluster characteristics obtained through automated analyses showed good correlations with
the cluster characteristics obtained through the traditional method. Cluster characteristics from automated analyses of phonematic
and semantic VFTs correlated with the overall cognitive function reported by the Montreal Cognitive Assessment, executive
function reported by the Frontal Assessment Battery and the Trail Making Test, and language function reported by the Boston
Naming Test.

Conclusions: Our study demonstrated the feasibility of standardized automated cluster analyses of VFTs using semantic
relatedness models. These models do not require manually creating and updating categorized word lists and, therefore, can be
easily and objectively implemented in different languages, potentially allowing comparison of results across different languages.
Furthermore, this method provides information about semantic clusters in phonematic VFTs, which cannot be obtained from
traditional methods. Hence, this method could provide easily accessible digital biomarkers for executive and language functions
in people with PD.
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Introduction

Cognitive Deficits in People With Parkinson Disease
Parkinson disease (PD) is the fastest growing neurological
disease and the second most common neurodegenerative disease
[1]. Cognitive deficits are a frequent problem in people with
PD. Approximately 10% to 20% of people with PD show a mild
cognitive impairment [2], and approximately 46% of people
with PD develop PD dementia (PDD) within 10 years after
diagnosis [3]. PDD results in higher health-related costs and a
reduced quality of life and, therefore, is of high importance for
affected people and health care systems [2]. In addition, PDD
constitutes 1 of the 4 milestones that occur, on average, 4 years
prior to death and usher the terminal phase of the disease [4].

Cognitive decline in people with PD is characterized by deficits
in attention, executive functions, visuospatial functions,
memory, and language function [5]. Cognitive functions in
people with PD are normally measured using paper-based
neuropsychological tests [5,6]. These tests are time-consuming
and require experienced raters.

Clusters in the Verbal Fluency Task Transcript
Verbal fluency tasks (VFTs), by contrast, require less time and
can report both executive and language functions [5,7]. There
are 2 types of VFTs. In the semantic VFT, participants have to
produce as many words as possible from 1 specific semantic
category within 1 minute. The category “animal” is used most
often. In the phonematic VFT, participants have to produce as
many words as possible starting with a specific letter within 1
minute. Counting the total number of words produced by the
person constitutes the most common analysis for both types of
VFTs.

People generally do not produce these words in an evenly spaced
temporal sequence but in clusters that often share semantic or
phonematic similarities [8-15]. Traditionally, these clusters have
been determined manually using 2 methods described by Troyer
et al [9]. Words produced in the semantic VFT tend to form
clusters of semantically related words. For example, a participant
could start with a cluster of pets (dog and cat) and switch to a
cluster of animals from Africa (elephant, giraffe, and lion). In
the traditional analysis, the identification of these clusters and
switches between clusters is based on predefined lists of, for
example, animals (eg, a list of African animals and a list of
pets). Words produced in the phonematic VFT have traditionally
been analyzed using a set of phonematic rules [9]. One of the
rules, for example, is to group words starting with the same 2
letters (eg, simple, simulate, and silly).

After the identification of word clusters, characteristics such as
the mean cluster size and number of switches between clusters
are calculated. Several studies suggested that the size of clusters
is associated with language functions [10,14,16], whereas the

number of switches is more strongly associated with executive
functions [10,17]. Other authors, however, obtained conflicting
results [12,17,18], and some studies found the cluster size and
number of clusters to be highly correlated, which means that
they might not represent independent parameters at all [7,17,19].

Analysis of word clusters in the VFT has been limited by several
factors. First, the lists used to analyze the semantic VFT must
be created manually, which entails subjectiveness. Second, they
can exclusively be used for only 1 language. Third, simple lists
may not capture all the individual associations that occur during
testing. Fourth, the relatedness of consecutive words can only
be classified dichotomously, that is, the word either belongs to
the same cluster or not. Thus, it is not possible to quantify the
semantic or phonematic “distance” of consecutive words.

In recent years, several approaches have been developed to
overcome these disadvantages and allow for an automated, more
objective, and quantitative analysis. In general, these approaches
identify semantic clusters based on the semantic relatedness of
words using mathematical models trained on a large text corpus
[20-31].

In some approaches, semantic relatedness is directly estimated
from structured knowledge sources such as ontologies or
encyclopedias. For example, databases storing hierarchical
relations between words have been used to estimate semantic
relatedness [20]. Thus, an ontology where cat and dog are both
elements of the parent group carnivore leads to a higher
semantic relatedness between these animals than between cat
and cow. Other models estimate semantic relatedness based on
the link structure between web-based encyclopedia articles [32].
These models make explicit use of knowledge created by
humans, but they require complex and highly structured training
sets.

A more widely used approach for estimating semantic
relatedness is the latent space analysis, which is based on the
co-occurrence of words in training texts [21-23]. Thereby, 2
words are assumed to be semantically related if they co-occur
with similar words in the training texts.

Finally, recent approaches also consider the position of words
in relation to each other [24-29]; Word2Vec, for instance, uses
a sliding window to estimate semantic relatedness by analyzing
surrounding words [33]. In this approach, a neural network is
trained to predict a word given its surrounding words
(continuous bag-of-words method) or to predict the surrounding
words given a centered word (skip-gram method). On the basis
of this training, semantic relatedness can be estimated from the
similarity of the learned context in which these words occur.

Most previous studies analyzed VFTs performed by people with
mild cognitive impairment, Alzheimer disease [20,25,28,30],
or psychiatric diseases [22,23,27,29]. For people with PD, there
is only very limited evidence from 1 study [17]. In this study,
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Farzanfar et al [17] showed that applying a semantic relatedness
model to semantic VFTs performed by people with PD is
feasible. Here, executive function correlated with the number
of cluster switches but not with the cluster size. Whether a
semantic relatedness model can also be applied to phonematic
VFTs performed by people with PD has not been explored yet.

Aim of This Study
The aim of this study was to evaluate the feasibility of an
automatic cluster analysis based on semantic relatedness in
people with PD using voice recordings of semantic and
phonematic VFTs. In addition, we aimed to validate the potential
of the resulting cluster parameters as digital biomarkers for
executive and language functions in people with PD. Finally,
we provide our previously trained models for semantic
relatedness in different languages to facilitate further research
by others [34,35].

Clinical Implications
Our study provides a tool for the automatic identification of
semantically related word clusters in VFTs. VFTs are a widely
used assessment for capturing cognitive functions in clinical
practice and research. Although counting the total number of
words produced within 1 minute constitutes the commonly used
analysis for VFTs, further analysis of word clusters can provide
additional information about executive and language functions.
However, traditional methods of cluster identification lack
standardization, require considerable manual work, and are
language specific, thus limiting their applicability.

We show that cluster identification is possible using a model
of semantic relatedness that overcomes these limitations. We
prove that this automated approach provides valid digital
biomarkers for executive and language functions.

By publishing our source code together with a readily trained
model, we will allow other researchers to easily use this
approach in their own studies. Thus, this study will allow further
trials to capture more information about executive and language
impairments without requiring additional time-consuming
assessments. Furthermore, this will lead to more reliable and
better comparable measurements of executive and language
functions as cognitive outcomes in clinical trials. This approach
is not limited to people with PD and can also be applied to
people with other diseases with impaired executive or language
function.

Methods

Recruitment
People with PD were recruited from 3 inpatient and outpatient
movement disorder clinics in east Saxony, Germany, between
May 2021 and August 2022. Participants with a clinically
probable diagnosis of PD according to the current clinical
diagnostic criteria [36], sufficient German language skills, and
a Montreal Cognitive Assessment (MoCA) score >15 were
included in the study. The severity of motor symptoms was
assessed using the Movement Disorder Society-Sponsored
Revision of the Unified Parkinson’s Disease Rating Scale

(MDS-UPDRS) subscale III [37]. Levodopa equivalent doses
were calculated using the recommended conversion factors [38].

Ethics Approval
This study was approved by the institutional review board of
Technische Universität Dresden, Germany (IRB00001473 and
BO-EK-149032021). Written informed consent was obtained
from all the participants before inclusion in the study.

Phonematic and Semantic VFTs
Phonematic and semantic VFTs were performed without
supervision using a self-developed app on an iPad 8 (Apple Inc)
running iOS version 14. The semantic VFT was added later to
the app, thus leading to fewer recordings for this task. For both
VFTs, words with the same word stem, word repetitions, and
proper names were not allowed. Instructions for the VFTs
outlining these rules were presented to the participants before
the test on the tablet. The phonematic VFT was performed first,
and the semantic VFT was performed second. After reading the
general instructions, the participant was requested to continue
to the next page. At this time, the letter “S” (for the phonematic
VFT) or the category “animals” (for the semantic VFT) was
shown, and the voice was recorded for 60 seconds using the
tablet’s internal microphone. Speech was detected and
transcribed automatically using the Apple Speech Framework
(Apple Inc) in iOS 14, which allows local speech processing
on the device itself. The transcripts were checked manually by
an investigator, and speech recognition errors were corrected.
The transcripts were also checked for words that violated any
of the aforementioned rules. Transcripts with >25% of violations
were excluded from the analysis. In addition, recordings with
no words spoken within the first 10 seconds were removed from
the analysis because it was deemed unclear whether the person
had understood the task.

Speech Recognition Error Rate Calculation
The error rate of the automatically transcribed VFT recordings
was measured as normalized Levenshtein distance. Therefore,
we counted the numbers of insertions, deletions, and
substitutions of words that would be required to change the
automatically transcribed word list to the correct word list. This
was done using the Python package pylev (version 1.4) [39].
Levenshtein distance was normalized by dividing it by the
number of words in the correct word list.

List-Based Clustering of the Semantic VFT
Traditional cluster analysis of the semantic VFT is based on
fixed thematic lists of animals. These are based on shared
features, such as geographical regions (eg, Africa), habitats (eg,
water, farm, and pets), or species (eg, birds). To create these
categorical lists, we translated the categories and animal lists
used in the study by Troyer [11]. All animal words that were
not covered by this translation were assigned to existing
categories by the judgment of an investigator (TH), and
additional categories were created as needed. Animal words
were allowed to be part of multiple lists (eg, parrot is part of
the lists “pet” and “bird”). The resulting categories and
corresponding animal word lists can be found in Multimedia
Appendix 1. Clusters were formed of consecutive words that
occurred on at least 1 common list. The size of a cluster was
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calculated as the number of words within the cluster minus 1.
The mean cluster size was obtained by also including clusters
of single words. The number of switches was defined as the
number of clusters, including clusters of single words, minus
1. To maintain consistency with the protocol of Troyer et al [9],
rule violations were not excluded in the calculation of these
cluster characteristics. The total word count comprised the
number of words after removing rule violations.

Rule-Based Clustering of the Phonematic VFT
Traditional cluster analysis of the phonematic VFT is based on
fixed phonematic rules. Usually, four rules are used to identify
words belonging to a cluster: (1) words starting with the same
2 letters (eg, summer and Sunday); (2) rhyming words (eg, sand
and stand); (3) words differing only in 1 vowel sound (eg, sat
and seat); and (4) homonyms, if indicated by the test person
(eg, some and sum) [9]. Clusters were formed of consecutive
words that fulfilled at least 1 common phonematic rule. The
size of a cluster was calculated as the number of words within
the cluster minus 1. The mean cluster size was obtained by also
including clusters of single words. The number of switches was
defined as the number of clusters, including clusters of single
words, minus 1. To maintain consistency with the protocol of
Troyer et al [9], rule violations were not excluded in the
calculation of these cluster characteristics. The total word count
comprised the number of words after removing rule violations.

Semantic Relatedness Clustering
In addition to the traditional clustering methods, we
implemented a semantic relatedness model based on a
Word2Vec approach. In brief, this model is based on a neural
network that depicts the semantic context of words in texts. To
achieve this, the neural network is trained on a large text corpus
in which the words surrounding each given word are analyzed.
As a result, the semantic context of each word can be
represented as a high-dimensional vector. The semantic
relatedness (“distance”) of 2 words can be expressed as the
cosine between 2 of these vectors.

The Word2Vec model was created and trained using the Python
package gensim version 4.0.1 [40] with Python 3.9.5 [41]. We
used the freely available German Wikipedia (Wikimedia
Foundation) corpus for model training [42]. To obtain optimal
training results, 3 hyperparameters needed to be set: the
dimensionality of the semantic relatedness space, window size

for the surrounding words, and training algorithm. In addition,
a fixed threshold for semantic relatedness needed to be set to
define the word clusters. To find the optimal hyperparameter
values, we performed a grid search using the following values:
(1) dimensions: 200, 500, and 1000; (2) window size: 4 and 10;
and (3) algorithm: continuous bag-of-words and skip-gram. To
find the best semantic relatedness threshold, this parameter was
varied between 0 and 1 with a step size of 0.01. We prevented
overfitting by not training the hyperparameters directly on the
word sequences obtained from the participants of this study.
Instead, random pairs of animals were drawn from the animal
category lists described earlier. We determined the set of
hyperparameters that best detected whether both animals in a
given pair shared a similar category list. For the comparison
with the animal category lists, a semantic relatedness threshold
of 0.40 performed the best in the approach described earlier and
was used for the semantic VFT. For the phonematic VFT, the
semantic relatedness threshold was set to a lower value (0.30)
to allow for reasonably sensitive cluster identification. The
hyperparameters identified using this approach for both VFTs
are summarized in Table 1. Clusters were identified as follows:
the words listed by a person were analyzed as a sequence of
word pairs (word 1 and word 2, word 2 and word 3, ...). A
cluster was defined as a sequence of word pairs in which each
sequential word pair had a semantic relatedness greater than the
thresholds stated earlier. The size of a cluster was calculated as
the number of words within the cluster minus 1. The mean
cluster size was obtained by also including clusters of single
words. The number of switches was defined as the number of
clusters, including clusters of single words, minus 1. To maintain
consistency with the protocol of Troyer et al [9], rule violations
were not excluded in the calculation of these cluster
characteristics. The mean sequential semantic relatedness was
determined by calculating the mean of the semantic relatedness
of the sequence of all word pairs. The exact implementation of
our semantic relatedness method and both traditional methods,
including formulas, hyperparameters, and source code, can be
obtained from our GitHub page [35]. Furthermore, the provided
source code can be easily used to train models in other languages
or based on other text corpora. In addition to the German model,
we provide models pretrained on the English, Spanish, and
French Wikipedia corpora using the same hyperparameters as
those stated earlier [34,35].

Table 1. Hyperparameters used for training the semantic relatedness model and identifying semantically related clusters.

Phonematic VFTSemantic VFTaParameters

500500Dimensions of semantic relatedness space

1010Word2vec window size

Skip-gramSkip-gramWord2vec algorithm

0.300.40Semantic relatedness threshold

aVFT: verbal fluency task.

The listed parameters are the result of hyperparameter
optimization, which is described in detail in this section.
Different semantic relatedness thresholds were used for the

semantic and phonematic VFTs. All other hyperparameters used
for model training were identical between both VFTs.
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Paper-Based Neuropsychological Tests
The overall cognitive function of all the participants in this
study was assessed using the MoCA [43]. In addition, the
Frontal Assessment Battery (FAB) and Trail Making Test
(TMT) B were used as measures of executive function [44,45].
The Boston Naming Test (BNT) [44] and
Mehrfachwahl-Wortschatz-Intelligenztest B (MWT) [46] were
performed to measure language function and crystallized
intelligence. In the MWT, the participant has to distinguish
existing words from fictive words in several word lists. The
German versions of all the aforementioned tests were used.

Statistical Analyses
The correlation of the MDS-UPDRS III item “Dysarthria” with
the speech recognition error rate was calculated using Spearman
rank correlation. All other correlations were calculated as
Pearson correlations. For the comparison of the
neuropsychological test results, a Mann-Whitney U test was
performed because the neuropsychological test results were not
normally distributed. Statistical tests were performed using
Python 3.10.8 [41] with the scipy 1.9.3 package [47]. The
network graph was created using the networkx 2.8.8 Python
package [48]. For clarity, the following data are not shown in
the network graph: correlations between 2 neuropsychological
test results, neuropsychological test results with no correlation
with the clustering characteristics, and Pearson correlation
coefficients between 2 cluster characteristics.

Results

Patient Characteristics and Speech Recognition
In total, 137 recordings were obtained from 85 people with PD,
specifically 80 recordings (94% of participants) for the
phonematic VFT and 57 (67% of participants) for the semantic
VFT. Of the 137 recordings, 6 (4.4%) recordings (phonematic:
n=5, 6%; semantic: n=1, 2%) were excluded because the rules
of the test were violated, 1 (1%) phonematic recording was
removed because not a single word was spoken within the first
10 seconds of the task, and 5 (6%) phonematic and 5 (9%)
semantic recordings were excluded because the participants
misunderstood the task. This resulted in 69 (out of 80, 86%)
phonematic VFT and 51 (out of 80, 89%) semantic VFT
transcripts, which were used for traditional and semantical
relatedness analyses (Figure 1).

Clinical characteristics of the patients are listed in Table 2. The
recordings were transcribed using automatic speech recognition
and checked manually for errors. The total error rate, calculated
as normalized Levenshtein distance for both VFTs, was 61.8%.
In detail, the semantic VFT showed a somewhat lower error
rate (52%) than the phonematic VFT (69%), but this difference
was not statistically significant (P=.15; Figure S1A in
Multimedia Appendix 2). Furthermore, the error rate correlated
significantly with the extent of dysarthria as reported by the
corresponding MDS-UPDRS III item (ρ=0.26, P=.005; Figure
S1B in Multimedia Appendix 2).

Figure 1. Block diagram of the study design. VFT: verbal fluency task.
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Table 2. Clinical characteristics of people with Parkinson disease included in the phonematic and semantic analyses.

Semantic VFT (n=51)Phonematic VFTa (n=69)Parameter

60.4 (12.3)61.2 (13.1)Age (years), mean (SD)

Sex, n (%)

16 (31)27 (39)Female

35 (69)42 (61)Male

Hoehn and Yahr ONb, n (%)

44 (86)52 (75)Mild (0-2)

6 (12)14 (20)Moderate (2.5-3)

1 (2)3 (4)Severe (4-5)

5.9 (4.0)7.4 (5.1)Disease duration (years), mean (SD)

Subtype, n (%)

11 (22)13 (19)Tremor dominant

19 (37)28 (41)Akinetic rigid

21 (41)28 (41)Mixed

670 (349)692 (356)LEDDc, mean (SD)

19 (10)21 (12)MDS-UPDRSd III, mean (SD)

26.7 (3.0)26.5 (2.6)MoCAe score, mean (SD)

DBSf, n (%)

4 (8)7 (10)Yes

47 (92)62 (90)No

aVFT: verbal fluency task.
bPeople with Parkinson disease can be examined in an ON or OFF state. ON refers to the typical functional state when patients are receiving medication
and have a good response.
cLEDD: levodopa equivalent daily dose.
dMDS-UPDRS: Movement Disorder Society‐Sponsored Revision of the Unified Parkinson's Disease Rating Scale.
eMoCA: Montreal Cognitive Assessment.
fDBS: deep brain stimulation.

Traditional Clusters and Semantically Related Clusters
Cluster characteristics were analyzed for both phonematic and
semantic VFTs using (1) traditional clustering methods and (2)
the novel semantic relatedness method.

For the phonematic VFT, the traditional cluster analysis is based
on phonematic rules, as described in the Methods section. In
our data, most of the phonematic word pairs (297 word pairs)
were identified as clusters because the words shared the same
first 2 letters. Only a few clusters were identified by applying
the remaining phonematic rules: 6 word pairs were identified
as clusters because the words rhymed, 1 word pair was identified
as a cluster because the words differed only in 1 vowel, and no
homonyms were found. An example of rule-based phonematic
clusters is shown in Figure 2A.

In contrast to these phonematic rules, the semantic relatedness
method identifies clusters based on a model that can quantify
the relatedness of word pairs (Figure 3). The semantic
relatedness model was trained on the German Wikipedia corpus.
On the basis of this large training data set, this method can

identify entirely different clusters from those identified through
the rule-based system, for example, the sequence salad, celery,
and salami (German: salat, sellerie, and salami) or Zambia and
Senegal (German: Sambia and Senegal), in which words did
not share phonematic similarities (Figure 2C). Compared with
the traditional rule-based clustering method, in the semantic
relatedness method, the clusters had a smaller size, and switches
between clusters occurred slightly more often (Table 3).
Nonetheless, the number of switches obtained through both
methods correlated strongly (r=0.77; P<.001), whereas the mean
cluster size did not correlate between the clustering methods
(P=.13; Figure 4), potentially because these clusters were
construed differently.

For the semantic VFT, the traditional clustering method is based
on lists of animals with different themes (eg, farm animals or
birds). Words are recognized as a cluster if they are found on
at least 1 common list. An example of such list-based clusters
is shown in Figure 2B. The clusters in the semantic VFT
identified through the list-based method were in general
comparable with those identified through the semantic
relatedness approach (Figure 2D). This is consistent with the
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fact that the clusters were generated in a more similar way for
the semantic VFT than for the phonematic VFT. However, some
additional clusters were detected through the semantic
relatedness method. For instance, the cluster bunny and
hedgehog may be based on a familiar German fairy tale, and
the cluster fox and goose may be based on a common German
nursery rhyme.

As for the phonematic VFT, switches between clusters occurred
slightly more often with the semantic relatedness method than

with the traditional list-based clustering method, and the clusters
identified through the semantic relatedness method were slightly
smaller than those identified through the traditional list-based
clustering method (Table 3). The numbers of switches obtained
using the 2 methods correlated significantly (r=0.59; P<.001),
as did the cluster sizes (r=0.32; P=.02; Figure 4). The strength
of the correlation observed in our work is comparable with that
observed in a recent study that analyzed traditional and semantic
clusters obtained from the semantic VFT performed by people
with PD [17].

Figure 2. Phonematic and semantic clustering examples. Cluster examples for the traditional rule-based (A) and list-based (B) technique and the
semantic relatedness technique (C and D). Words belonging to the same cluster are displayed in the same color (in blue or orange). For the list-based
clustering (B), the common lists for clusters with >1 word is displayed next to each word pair. VFT: verbal fluency task.

JMIR Neurotech 2023 | vol. 2 | e46021 | p.56https://neuro.jmir.org/2023/1/e46021
(page number not for citation purposes)

Hähnel et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Identification of clusters by calculating the pairwise semantic relatedness. The figure depicts the pairwise semantic relatedness of all sequential
word pairs from the phonematic verbal fluency task (VFT) shown in Figure 2C. Words with a pairwise semantic relatedness above the threshold form
clusters.

Table 3. Characteristics of the traditional (rule and list based) and semantic relatedness clusters.

Semantic VFTPhonematic VFTa

Semantic relatednessList basedSemantic relatednessRule based

19.6 (5.7)19.6 (5.7)12.3 (4.6)12.3 (4.6)Total word count, mean (SD)

0.7 (0.6)0.9 (0.6)0.2 (0.1)0.4 (0.4)Mean cluster size, mean (SD)

12.1 (4.4)10.3 (3.5)10.7 (4.0)9.5 (4.1)Switches, mean (SD)

36.8 (5.3)N/A18.9 (4.4)N/AbMean sequential semantic relatedness (%), mean (SD)

aVFT: verbal fluency task.
bN/A: not applicable.

Figure 4. Correlation of traditional rule- and list-based and semantic relatedness cluster characteristics. Correlations of the semantic-related cluster
characteristics (y-axis) with the traditional rule- and list-based cluster characteristics (x-axis) for the phonematic verbal fluency task (VFT; top row)
and the semantic VFT (bottom row). Pearson correlation coefficients and corresponding P values are shown.
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Next, we investigated the effect of sex, age, and disease duration
on clustering. Performing sex-specific subgroup analysis
revealed no differences between male and female patients except
for a slightly higher number of switches in female patients (10.9
vs 8.7; Tables S1 and S2 in Multimedia Appendix 2) in the
semantic relatedness analysis of the phonematic VFT. In general,
younger patients produced more total words (21.4 vs 17.5) than
older patients in the semantic VFT. There were no differences
in other cluster characteristics or the phonematic VFT (Tables
S3 and S4 in Multimedia Appendix 2). Longer disease duration
was associated with slightly more switches between semantically
related clusters for the phonematic VFT (11.6 vs 9.6), whereas
no difference was observed in other cluster characteristics or
the phonematic VFT (Tables S5 and S6 in Multimedia Appendix
2).

Comparing the phonematic and semantic VFTs, we obtained
higher total word counts (19.6 vs 12.3; P<.001) and larger
clusters for the semantic VFT, which is consistent with previous
research [49]. The semantic relatedness approach showed a
much higher mean sequential relatedness between sequential
words for the semantic VFT than for the phonematic VFT
(36.8% vs 18.9%; P<.001; Table 3).

When we compared the cluster characteristics of the phonematic
VFT and semantic VFT for each patient, we observed strong
correlations independent of the method used for clustering
(Figure S2 in Multimedia Appendix 2). Specifically, we found
positive correlations between the total word count and the
number of switches. A higher number of switches was associated
with a lower mean cluster size, except for the semantic
relatedness clusters of the phonematic VFT. Moreover, a higher
mean sequential relatedness was associated with larger clusters
in the semantic relatedness method, consistent with recent
publications on this matter [17,19].

In summary, our semantic relatedness method produced
meaningful results consistent with previous work by others.
Therefore, we trained the semantic relatedness model on the
English, French, and Spanish Wikipedia word corpora (see the
Methods section) [34,35]. Examples of semantic relatedness
clusters in these languages are presented in Figure S3 to S8 in
Multimedia Appendix 2.

Correlations With Neuropsychological Tests of
Executive and Language Functions
To investigate which cognitive domains are captured by the
above-described cluster characteristics, we compared the
obtained cluster characteristics with the results of paper-based
cognitive tests. In general, the VFT can be seen as a measure
of executive and language functions; specifically, the number
of switches is considered a measure of executive function, and
the cluster size is considered a measure of language function
[9,10]. To assess the executive domains in more detail, we used
the FAB and TMT B. A lower TMT B score indicates a better
result. To assess language function in a standardized fashion,

we performed the MWT and BNT. Overall cognition was
measured using the MoCA. Correlations between clustering
characteristics and neuropsychological tests are shown in Table
4 for the phonematic VFT and in Table 5 for the semantic VFT.

The most important readout of the VFT is the total word count.
It correlated with the overall cognitive performance as measured
by the MoCA for both the phonematic VFT (r=0.38; P=.002)
and semantic VFT (r=0.45; P=.001). The MoCA also correlated
significantly with cluster characteristics for both types of VFT
obtained through the semantic relatedness method. Specifically,
a higher MoCA score was associated with a higher mean
sequential relatedness in the semantic VFT (r=0.28; P=.04), a
higher mean cluster size (r=0.28; P=.02) in the phonematic
VFT, and a higher number of switches (r=0.25; P=.04) in the
phonematic VFT (Figure 5; Tables 4 and 5). Interestingly, no
significant correlations with the MoCA were found for the
cluster characteristics obtained through traditional clustering
methods (Tables 4 and 5).

With respect to executive functions, the FAB score correlated
significantly with the total word count (r=0.38; P=.005) and
number of switches in the phonematic VFT obtained through
the traditional rule-based clustering method (r=0.28; P=.04)
and semantic relatedness method (r=0.28; P=.04). Larger
clusters obtained from the semantic relatedness method were
associated with a higher FAB for the phonematic VFT (r=0.27;
P=.05). Regarding the semantic VFT, a higher number of
switches obtained through the traditional method was associated
with a higher FAB score (r=0.34; P=.04). Taken together, the
FAB score thus correlated more strongly with the results of the
phonematic VFT than with the results of the semantic VFT.
This is consistent with previous findings by other studies
[50,51]. Better TMT B results were associated with smaller
clusters (r=0.63; P=.006) and a higher number of switches
(r=−0.47; P=.05) for the semantic VFT as obtained through the
semantic relatedness clustering method. The different
correlations of FAB and TMT B demonstrate that executive
function is not a homogeneous concept and support using
different assessment methods. Collectively, these findings
demonstrate that the semantic relatedness method can reproduce
the association of VFT cluster characteristics with measures of
executive function.

With respect to language function, interestingly, we observed
no correlations of BNT and MWT with the clustering
characteristics of the phonematic VFT. As for the semantic
VFT, we found a lower number of switches to be associated
with a higher MWT score (r=−0.54; P=.02) in the traditional
clustering method. BNT scores correlated with the mean
sequential relatedness of the semantic VFT in the semantic
relatedness method (r=0.54, P=.02). These findings are
consistent with the idea that clustering in VFTs is associated
with language function [9,10] and demonstrate that the semantic
relatedness method can reproduce associations of VFT cluster
characteristics with language function.
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Table 4. Correlations of the phonematic VFTa cluster characteristics with neuropsychological test results.

Language functionExecutive functionOverall cognition

MWTfBNTeTMT BdFABcMoCAb

Total VFT word count

0.320.10−0.030.380.38 gr

.12.63.89.005.002P value

Mean cluster size (rule based)

0.120.250.000.050.16r

.58.23.99.74.20P value

Switches (rule based)

0.300.06−0.060.280.21r

.15.78.77.04.09P value

Mean cluster size (semantic relatedness)

−0.040.07−0.180.270.28r

.86.72.40.047.02P value

Switches (semantic relatedness)

0.350.150.030.280.25r

.09.47.88.04.04P value

Mean sequential relatedness (semantic relatedness)

−0.12−0.08−0.150.140.00r

.58.71.47.32.97P value

aVFT: verbal fluency task.
bMoCA: Montreal Cognitive Assessment.
cFAB: Frontal Assessment Battery.
dTMT B: Trail Making Test B.
eBNT: Boston Naming Test.
fMWT: Mehrfachwahl-Wortschatz-Intelligenztest.
gSignificant values are in italics.
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Table 5. Correlations of the semantic VFTa cluster characteristics with neuropsychological test results.

Language functionExecutive functionOverall cognition

MWTfBNTeTMT BdFABcMoCAb

Total VFT word count

0.060.37−0.010.240.45 gr

.80.13.96.16.001P value

Mean cluster size (list based)

0.340.370.20−0.160.22r

.17.13.42.34.12P value

Switches (list based)

−0.54−0.12−0.270.340.15r

.02.63.28.04.30P value

Mean cluster size (semantic relatedness)

0.220.300.630.100.19r

.39.23.006.57.18P value

Switches (semantic relatedness)

−0.230.01−0.470.160.20r

.35.97.050.34.16P value

Mean sequential relatedness (semantic relatedness)

0.250.540.450.070.28r

.32.02.06.69.045P value

aVFT: verbal fluency task.
bMoCA: Montreal Cognitive Assessment.
cFAB: Frontal Assessment Battery.
dTMT B: Trail Making Test B.
eBNT: Boston Naming Test.
fMWT: Mehrfachwahl-Wortschatz-Intelligenztest.
gSignificant values are in italics.
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Figure 5. Network graph of Pearson correlations between clustering characteristics and neuropsychological test results. Significant (P<.05) correlations
for the (A) phonematic and (B) semantic verbal fluency tasks (VFTs) are shown as a network graph. The thickness of the connections and the distance
between parameters indicate the magnitude of the correlation (thicker lines and shorter distances indicate stronger correlations). The Pearson correlation
coefficients are shown for correlations between clustering characteristics and neuropsychological test results. BNT: Boston Naming Test; FAB: Frontal
Assessment Battery; MoCA: Montreal Cognitive Assessment; MWT: Mehrfachwahl-Wortschatz-Intelligenztest; TMT: Trail Making Test.

Discussion

Principal Findings
In this study, we present an automated approach to identify
semantically related clusters in VFT transcripts. Speech
recordings of semantic and phonematic VFTs were generated
by people with PD without supervision using a tablet computer.
The obtained cluster characteristics correlated with overall
cognitive, executive, and language functions. Moreover, the
cluster characteristics provided additional information compared
with the total word count alone.

Automatic Speech Recognition
The approach presented here allows for the automated execution
and analysis of semantic and phonematic VFTs. By using a
standard tablet computer and its integrated microphone, the test
can be performed anywhere without the need for an experienced
rater, making it a promising digital biomarker for the
smartphone-based or tablet-based home monitoring of cognitive
functioning.

However, the occurrence of a high percentage of speech
recognition errors in automatic transcription for people with
PD still limits the feasibility of completely automating this
process for participants with dysarthria, consistent with previous
results [52]. Advances in speech recognition technologies may
help overcome this restriction in the future. The speech
recognition error rate may already be lower for other languages
and more advanced speech recognition algorithms [52].

Advantages of the Semantic Relatedness Method
In contrast to traditional list-based and rule-based approaches,
we used a mathematical model based on the semantic relatedness
of words in a large text corpus to identify clusters and calculate
the semantic relatedness between words. This demonstrated
that the semantic relatedness model is different from and has
advantages over the traditional approaches. First, this model

allows for an exact and quantitative measurement of the
semantic relatedness between 2 words. This is different from
traditional methods, which only allow a dichotomous distinction,
that is, whether words form a cluster or not.

Second, the estimation of semantic relatedness solely relies on
the presence of words in the text corpus that was used for
training the model. Thus, the detected clusters do not rely on
the subjective decisions of the raters who manually created the
word lists. For instance, we consider the clustering of words
that occur together in fairy tales or nursery rhymes appropriate.
In addition, we demonstrated that the semantic relatedness model
can capture more complex relationships between words that go
beyond simple lists of characteristics such as geographical
regions or simple phonematic rules.

Within our German cohort, we found only a minimal number
of rhymes and vowel-only differences and no homonyms for
the phonematic VFT. This suggests language-specific
differences in rule-based clusters, which limit their usability in
an international research context. This limitation does not apply
to the semantic relatedness model used in this study. In our
view, this method might yield results that can be easily
generalized to different languages. The strong correlation of the
cluster characteristics of the phonematic VFT as determined by
the semantic relatedness model with MoCA and FAB scores
further substantiates the validity of this approach (Figure 5;
Table 4). In addition, the semantic relatedness method allows
for a comparison between the cluster characteristics of the
semantic VFT and the cluster characteristics of the phonematic
VFT.

Advantages of the Automated Analysis
Using a semantic relatedness model as described above allows
for the automation of cluster analysis in VFTs, which results in
further advantages. Traditional list-based clustering requires a
significant amount of manual work to create the animal lists
and update them with new animals listed by the patients. If
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patients are to be tested again, a different category must be used
for the modified test, and the 2 sets of lists might yield differing
results. With the semantic relatedness approach, a modified
VFT using a different category (eg, fruits instead of animals)
can be analyzed using the same method without the need for
extensive testing of the new word lists.

The traditional rule-based approach relies on manual work. The
detection of homonyms depends on the meaning of the words,
and the detection of rhymes depends on the pronunciation and
not the spelling of the words. Both features would require more
complex approaches, that is, databases identifying the meaning
of words and algorithms incorporating the pronunciation of
words. Such an automated phonetic analysis has been described,
but it resulted in large differences between automated and
manual cluster identification [53]. This manual work is not
required when using a semantic relatedness model as described
here.

As described earlier, the semantic relatedness model shows
advantages when applied to different languages. Traditional
list-based clustering requires the animal lists to be translated
and adapted to the local and cultural circumstances. By contrast,
the semantic relatedness model can be easily adapted using a
freely available text corpus, such as Wikipedia in a different
language. No specific adaptations or list translations need to be
performed manually because all language-specific adaptations
are already integrated into the text corpus used for training the
model.

To further facilitate the use of the semantic relatedness method
for VFT analysis, we publish with this manuscript pretrained
models for the English, German, French, and Spanish languages,
which are based on the corresponding language-specific
Wikipedia corpora [34]. In addition, we provide a software to
train the model, which will allow other researchers to apply the
model to different corpora and new languages [35].

Despite these advantages, our approach also has several
limitations. Most of the texts used for training the model are
written text and not spoken language, some of which are written
in a scientific style. Thus, a corpus of more common texts such
as books or interviews may be more appropriate. Although the
Wikipedia corpus is available in many languages, not all
versions are as extensive as the German and English versions,
which could potentially result in less accurate models. In this
case, the corpus could be supplemented with books, newspaper
articles, or other types of texts.

Correlations of Cluster Characteristics With
Neuropsychological Parameters
We used the traditional clustering methods to identify
hyperparameters for the automated semantic relatedness method
that provided a good correlation with the traditional method for
the semantic VFT. For the phonematic VFT, the correlation
between the automated semantic relatedness method and the
traditional manual method was weaker. This can be explained
by the different constructs used for phonematic rules and
semantic relatedness.

We observed a correlation between executive functions and
cluster characteristics, specifically the number of switches in

the semantic and phonematic VFTs, which is consistent with
previous data [13,17] and the concept that switching in VFTs
reflects executive functioning [9,10]. We were able to replicate
these findings for both semantic and phonematic VFTs in the
semantic relatedness clustering method. Although semantic
relatedness reflects a different construct compared with
traditional rule-based clustering, the number of switches between
semantically related clusters in the phonematic VFT also showed
significant correlations with executive function as reported by
the FAB. Regarding the language function, our results do not
support the idea of cluster sizes as a marker of language function
[9,10]. Similarly conflicting results were also reported by other
researchers, and these showed either no correlations of clustering
characteristics with language function or correlations of the
number of switches with language function [17,18]. The
heterogeneity of these results may be caused by the
subjectiveness of the animal lists required for traditional
clustering and by the correlation of the mean cluster size with
the number of switches, as observed in our data and described
elsewhere [7,17,19]. By applying the semantic relatedness
method, we were able to observe that a higher mean sequential
relatedness is associated with a higher BNT score. This shows
that the cluster characteristics obtained through the semantic
relatedness method yield additional information about language
function that cannot be inferred from the total word count or
from the traditional clustering method.

Because the phonematic and semantic VFTs were conducted
in the same order in all patients, we cannot rule out a negative
bias toward the second task caused by fatigue. We assume that
the impact of not randomizing the order of the VFTs is limited
because the VFT is a very short assessment taking only 1 minute
to complete.

Overall, our semantic relatedness clustering method when
applied to the semantic VFT yielded results comparable with
those published in a recent study [17], highlighting a robust
correlation with executive function in people with PD. Our
study is the first to investigate semantically related clusters for
the phonematic VFT in people with PD. In this study, we
showed for the first time that the semantic relatedness method
can also be applied to the phonematic VFT in people with PD
and that the resulting clustering characteristics are a robust
marker of executive function.

Conclusions
In summary, our work demonstrates the feasibility of a
standardized cluster analysis of semantic and phonematic VFT
transcripts using a semantic relatedness model. This model
overcomes numerous disadvantages of traditional clustering
methods, allows for the automation of cluster identification,
and shows strong correlations with executive functions. The
presented automated approach enables a more objective
identification of semantic clusters in different languages: going
forward, it could help overcome the heterogeneity of previously
published studies in this field. Longitudinal trials are required
to determine whether cluster characteristics are associated with
differences in cognitive decline or disease progression. In the
future, this automated semantic relatedness method could
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provide easily accessible digital biomarkers for executive function in PD.
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Abstract

Background: One of the bottlenecks of visualization research is the lack of volunteers for studies that evaluate new methods
and paradigms. The increased availability of web-based marketplaces, combined with the possibility of implementing volume
rendering, a computationally expensive method, on mobile devices, has opened the door for using gamification in the context of
medical image visualization studies.

Objective: We aimed to describe a gamified study that we conducted with the goal of comparing several cerebrovascular
visualization techniques and to evaluate whether gamification is a valid paradigm for conducting user studies in the domain of
medical imaging.

Methods: The study was implemented in the form of a mobile game, Connect Brain, which was developed and distributed on
both Android (Google LLC) and iOS (Apple Inc) platforms. Connect Brain features 2 minigames: one asks the player to make
decisions about the depth of different vessels, and the other asks the player to determine whether 2 vessels are connected.

Results: The gamification paradigm, which allowed us to collect many data samples (5267 and 1810 for the depth comparison
and vessel connectivity tasks, respectively) from many participants (N=111), yielded similar results regarding the effectiveness
of visualization techniques to those of smaller in-laboratory studies.

Conclusions: The results of our study suggest that the gamification paradigm not only is a viable alternative to traditional
in-laboratory user studies but could also present some advantages.

(JMIR Neurotech 2023;2:e45828)   doi:10.2196/45828

KEYWORDS

medical image visualization; volume visualization; depth cues; angiography; gamification; mobile games; mobile phone

Introduction

Background
In the field of medical imaging, angiography is used to visualize
vascular structures inside the body. This is typically performed
by injecting a contrast substance into a patient and imaging the
patient via x-ray, magnetic resonance, or computed tomography
[1]. For 3D x-ray, magnetic resonance, or computed tomography
angiography (CTA), the result is a 3D volumetric representation
of the scanned patient’s vascular anatomy. This 3D volume can

be visualized using methods such as axis-aligned slicing [2],
volume rendering, and surface rendering [3].

Cerebral angiography specifically depicts the blood vessels of
the brain. The goal of this type of angiography is to help
radiologists and surgeons understand the cerebral vasculature
and detect abnormalities such as stenosis, arteriovenous
malformations, and aneurisms [4]. However, visualizing
angiography data such that they can be spatially well understood
presents certain challenges [1,4,5]. First, the cerebral vasculature
is complex, with intricate branching and many overlapping
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vessels, which hinders the understanding of the data in 3D [1,6].
Second, owing to variations in anatomy from patient to patient,
surgeons may not always be able to rely on past experience to
understand a new data set [1]. Third, depending on the
environment (eg, the operating room), not all visualization
methods might be suitable for rendering the data. For example,
stereoscopic viewing requires specialized equipment (eg, a
stereoscopic display or augmented reality glasses), which is not
always available. Perspective rendering may also be
inconvenient to use when displaying the data, as radiologists
and surgeons may want to perform measurements on the
angiographic image [4]; therefore, orthographic projection is
most commonly used for 3D medical image visualization [1,4].

Motivation
To improve the depth perception and spatial understanding of
vascular volumes, numerous perceptually driven vessel
visualization methods have been developed [3,4,7-10]. An
overview of the most related studies and their results is presented
in Table 1. The studies were chosen based on whether they
contained algorithms that could be implemented with direct
volume rendering (DVR). In addition, we focused exclusively
on static visualizations, as in some contexts (such as the
rendering of virtual vessels in augmented reality during a
surgical intervention), it is not possible to have dynamic
transformations. Thus, to limit the number of conditions and
achieve more uniformity among the conditions, we focused
only on static visualizations.

In all these works, user studies for determining the effectiveness
of different visualization techniques were conducted in a
laboratory environment under the supervision of a researcher
[12]. This type of laboratory study has a number of

disadvantages: the lack of diversity between the participants
(who are often young college students) [12] and a limited pool
of participants or, conversely, a high monetary cost for studies
that have many participants [13]. As can be seen in the table,
the number of participants per study was typically between 10
and 20. To overcome these issues, alternative user study
paradigms such as crowdsourcing and gamification were
explored [12].

Although crowdsourcing has previously been used to evaluate
medical image visualization techniques [8,9], to the best of our
knowledge, gamification has not been previously used for
psychophysical experiments that study the effectiveness of
medical visualization techniques. In our study, we used the
gamification paradigm to collect data on the effectiveness of
different perceptually driven vascular volume visualization
techniques. Specifically, we developed a mobile app, Connect
Brain, with 2 different games that we distributed on the web.
The app was published on Google Play (Google LLC) [14] and
the App Store (Apple Inc) [15]. Using the developed game, we
evaluated the possibility of using the gamification paradigm to
conduct user studies on medical imaging. Specifically, the
developed game had similar research questions and metrics to
those in prior laboratory studies (eg, the studies by
Kersten-Oertel et al [1], Ropinski et al [4], and Abhari et al [6])
that evaluated the effectiveness of diverse cerebral vessel
visualization techniques. We introduced specific gamification
elements, such as levels, points, and leaderboards, to engage
the participants and made the games available on the App Store
[15] and Google Play [14] to reach a wider participant base.
This paper is based on chapter 3 of the first author’s master’s
thesis [16].
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Table 1. Related works on depth volume rendering vascular visualization techniques.

MetricsGoalsTrials and sample
points

Participants, nVisualizationsStudy

Correctness, time, and
user feedback

Depth comparison50 × 14 = 70014Phong, stereo, chroma, pseudochro-
ma, overlaid edges, blended edges,
perspective edges; edge shading;

DoFa; and DoF+pseudochroma

Ropinski et al [4]

Correctness, time, and
expert feedback

Connectivity60 × 10 = 60010No cue and edgeAbhari et al [6]

Correctness, time, and
user feedback

Depth comparison160 × 13 = 2080
(novice); 6 × 50
= 300 (expert)

2 studies: 13
novices and 6
experts

No cue, kinetic, stereo, edge, pseu-
dochroma, and fog+combined cues
(for novice experiments only)

Kersten-Oertel et al [1]

Correctness, time,
pointer-target dis-
tance, and user feed-
back

Depth comparison and
targeting or reaching

80 × 20 = 160020Shading, pseudochroma, fog, dynam-
ic shading, dynamic pseudochroma,
and dynamic fog

Drouin et al [7]

Correctness and timeDepth comparison150 × 19 = 285019Phong, chroma, pseudochroma,

VSSb chroma, and VSS pseudochro-
ma

Kreiser et al [10]

Correctness, time,
pointer-target dis-
tance, head move-
ment, and user feed-
back

Depth comparison and
targeting or reaching

80 × 12 = 96012Shading, pseudochroma, fog, dynam-
ic shading, dynamic pseudochroma,
and dynamic fog; all cues were visu-

alized with a VR HMDc

Titov et al [11]

aDoF: depth of field.
bVSS: void space surface.
cVR HMD: virtual reality head-mounted display.

Gamification
Gamification is similar to crowdsourcing and shares its
advantages [12]. Crowdsourcing is a method of conducting user
studies that distributes a given task to a larger network of
participants [12]. An example of a platform for crowdsourcing
is the Amazon Mechanical Turk (MTurk) [17], which has been
used in studies on a variety of topics, such as the perceptual
effectiveness of line drawings to depict shapes [18], natural
language processing [19], and audio transcription [20].
Crowdsourcing enables a larger study population than traditional
methods because the task can be distributed on the web. In
addition, the participant pool becomes more diverse because
the study is no longer limited to a physical environment (eg, a
university laboratory). Finally, crowdsourcing is less time
consuming for each individual participant and allows a lower
per-participant cost [17]. This model also has some
disadvantages; the main disadvantage being low data quality
because researchers do not have much control over the unfolding
of the experiment and because participants may be motivated
only by monetary gain [12,13].

The main difference between gamification and crowdsourcing
is that gamification introduces gaming elements to the study
[12]. Through gamification, a study is transformed into a game
that is fun to play, and the gameplay data are collected and
analyzed as the results of the study. The most important
advantage of gamification is that users are motivated to perform
well, which consequently increases the quality of the collected
data compared with crowdsourcing. Further, players are
motivated to perform well not because of monetary incentives

but because they enjoy playing the game [13]. As gamification
scales well with a large number of participants (because players
download and play the games on their own devices), these types
of studies have an even lower runtime cost than crowdsourcing
[13]. However, there are several disadvantages. First, not every
study can be transformed into a game that is fun to play.
Furthermore, developing and publishing a game requires more
time and effort than creating an experimental task. Finally, for
success, the researcher should develop interesting game
mechanics that follow the rules of game design [13].

The goal of our work is to determine whether the gamification
paradigm is a valid approach to performing user studies,
specifically in the context of medical imaging.

Methods

Overview
Connect Brain was developed using the Unity engine (Unity
Technologies) [21] for the Android and iOS platforms. Before
starting to play the game, all players had to provide informed
consent for their gameplay data to be collected anonymously
and used for research purposes. They could do this by manually
checking the corresponding box during the initial profile
creation. In addition, an email address was provided in case
players had any questions regarding the user study.

A total of 7 different visualizations were implemented in the
mobile app: Blinn-Phong shading [22], edge enhancement [23],
aerial perspective (also called fog) [5], chromadepth [24],
pseudochromadepth [4], and chromadepth and
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pseudochromadepth versions of void space surfaces (VSSs)
[10]. In all visualizations, the medical data set was rendered
using real-time DVR. Note that all visualizations are shaded
using the Blinn-Phong shading model in addition to the specified
method.

Implemented Visualizations
In the following section, we describe the details of the vascular
volume visualization techniques (Figure 1) that were
implemented in the Connect Brain game.

Blinn-Phong shading [22] is a photorealistic illumination model
that describes how a surface reflects light when illuminated by
one or multiple light sources. Similar to Drouin et al [7], we
used it as the baseline visualization technique. In our
implementation, a single-directional light source was used whose
direction was parallel to the view direction (Figure 1A). In terms
of color, both the volume and the light source were white.

Edge enhancement is used to emphasize the occlusion depth
cue, where a viewer determines the relative depth between
different objects based on the way they overlap [23]. In vessel
visualization, the contours of vessels are emphasized, typically
by rendering dark lines around the edges of the vessels [25]
(Figure 1E). This cue is especially helpful when the transfer
function (TF) produces a translucent result. In this case, the
highly contrasted black silhouettes occlude the silhouettes of
the vessels that are farther away from the viewer, thus providing
a better understanding of the depth ordering of vessels.

Following the work of Drouin and Collins [23], in our
implementation, edge enhancement was combined with
Blinn-Phong shading. To do this, the volume is rendered using
Blinn-Phong shading, and each pixel that forms the silhouette
is darkened based on its interpolated normal vector. Pixels with
a gradient that is almost perpendicular to the viewer are
considered part of the silhouette. Drouin et al [23] described
the following formula for calculating the intensity of edge
enhancement for a given pixel:

(1)

where α is the intensity of the edge enhancement factor, is

the gradient (normal vector) of the surface, is the direction
of the ray (from the volume toward the viewer), and stepMin
and stepMax are user-defined parameters.

Aerial perspective (sometimes referred to as fog) is a monocular
depth cue caused by the atmosphere and the way in which light
scatters. Specifically, the farther the distance between an object
and a viewer, the less contrast there is between the object and
the background. With this technique, the vessels that are closer
to the viewer appear more saturated and more contrasted,
whereas farther vessels fade into the background [1,5] (Figure
1D). By comparing the saturation of 2 vessels, it is possible to
deduce which one is closer and which one is farther away.

To render a data set with an aerial perspective cue, the pixels
representing the color should be correctly blended with the

background. Rheingans and Ebert [26] described the following
formula for distance-color blending:

C = (1 – d) co + d cb (2)

where d is the depth of the volume at the current pixel in the
range of {0,1}, co is the color of the object, and cb is the color
of the background. Preim et al [5] noted that the relationship
between the depth of the projected vessel and saturation of the
pixel does not need to be linear but can rather be exponential
(by replacing d with an exponential function). To ensure the
visualization of the entire volume (such that no vessels are
blended completely into the background), Kersten et al [27]
determined that the best upper bound for d was between 0.75
and 0.85. In our implementation, we used the original linear
formulation with d=0.8.

Chromadepth, a technique developed by Steenblik [28], encodes
depth using color. Specifically, the color of the pixels in depth
follows the colors of the visible light spectrum, starting from
red; progressing through orange, yellow, green, and cyan; and
concluding with blue [24]. Thus, for a vascular volume, the
closest vessels are red, the farthest vessels are blue, and vessels
in between have a color that is linearly interpolated between
these values (Figure 1B). Bailey and Clark [24] described the
chromadepth TF as a 1D texture containing all colors (from red
to blue), where s is defined as the sampling parameter. D1 and
D2 are parameters defined by the viewer such that D1≥0, D2≥1,
and D1<D2, and for any depth d where d ε {0,1}, TF is defined
as follows:

if d<D1, then the color of the pixel is red, and if d>D2, then the

color of the pixel is blue; otherwise, (3)

Figure 2A shows the TF used in our implementation for
chromadepth as well as a sample volume shaded in this manner.

Pseudochromadepth, which incorporates only 2 colors (red and
blue) instead of the full color spectrum, was used by Ropinski
et al [4] to deal with the large number of hues presented in a
chromadepth image, which can distract the viewer from the
understanding of the depth. Red and blue colors are used (Figure
1C) because of the visual phenomena of chromostereopsis [29],
which is caused by the light of different colors refracting into
different parts of the retina in the eye depending on the
wavelength. Chromostereopsis can be used to make red objects
appear closer in depth than blue objects.

When using pseudochromadepth for vasculature, the closest
vessels are red; the farthest vessels are blue; and for any
intermediate depth, the color of the pixel is calculated by
interpolating between red and blue. Thus, using the
pseudochromadepth depth cue, a depth comparison between 2
shaded objects can be simplified to a simple comparison of the
hue, with warmer hues representing closer objects and colder
hues representing farther objects. The pseudochromadepth cue
was implemented in the same way as chromadepth, with the
only difference being that the 1D rainbow-like texture was
replaced by one where the color is linearly interpolated between
red and blue, as shown in Figure 2B.
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VSS, a technique used in vessel visualization, was developed
by Kreiser et al [10] (Figures 1F and 1G). Unlike many other
vessel visualization techniques that are based on shading the
vessels in a certain manner, VSS concentrates on shading the
area around the vessels; the background is colored to indicate
the relative depth of the surrounding vessels. Therefore, to
understand the relative depth of a certain vessel, one must look
at the color of the background that surrounds the vessel. The
motivation behind VSS is that in more traditional depth
rendering methods, there is a lot of unused empty space.
Therefore, instead of being limited by the area that vessels
occupy on the screen, the entire screen can be used, allowing
the vessel pixels to represent any other information that may
be deemed necessary.

To determine the color of each pixel, a weighted average of the
depths of the surrounding border pixels is calculated. To do
this, a rendered image of a vessel structure in the form of a depth
map on which the filled pixels (representing the volume) can
be distinguished from the empty pixels (representing the
background) is required. The Suzuki and Abe [30]
border-following algorithm is then executed on the depth map,
creating a hierarchy of the borders of the depth map. This
hierarchy indicates what border pixels contribute to what part
of the background. Subsequently, the interpolated depth for
each background pixel is calculated using inverse distance
weighting [31]:

(4)

where Depth is the calculated depth of the background pixel,
pi is the ith border pixel whose depth is used in the weighted

average calculation, N is the total number of border pixels that
affect the depth of pb, w (pi), is the weight of the border pixel
pi, and d (pi) is the depth of the border pixel pi.

The weight w (pi) of a border pixel pi is calculated in the
following manner:

(5)

where pb is the background pixel for which the depth calculation
is performed, pi is the ith border pixel whose depth is used in
the weighted average calculation, m (pb, pi) is the magnitude of
the vector between the position of the pixel pb and pi, and s is
a user-defined smoothing parameter that results in closer border
pixels giving exponentially more weight.

After calculating the depth of every background pixel, a TF is
applied to the depths, transforming them into a color. Typically,
chromadepth (Figure 1F) and pseudochromadepth (Figure 1G)
are used [10]. In addition, VSS implements an approximated
version of global illumination in the form of screen space
directional occlusion (SSDO) [32]. SSDO darkens some regions
of the generated VSS that may be occluded from the light
emitted by neighboring parts of the VSS and performs an
indirect light bounce. Finally, isolines are generated on the
surface of the VSS in the form of black lines to improve the
understanding of the generated shape by the VSS.

Owing to the hardware limitations of mobile devices, we used
screen space ambient occlusion [33] instead of SSDO, which
does not include indirect bounce.

Figure 1. All the implemented vessel visualization techniques: (A) shading (Blinn-Phong), (B) chromadepth, (C) pseudochromadepth, (D) aerial
perspective, (E) edge enhancement, (F) void space surface (VSS) chromadepth, and (G) VSS pseudochromadepth.
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Figure 2. (A) Chromadepth and (B) pseudochromadepth with 1D transfer functions indicating near to far color mapping.

Ethics Approval
The user study was approved by the Natural Sciences and
Engineering Research Council of Concordia University
(certification 30016074).

DVR on the Mobile Device
To visualize the volumes, the DVR technique described by
Drouin et al [23], which is based on a well-known 2-pass
rendering algorithm described by Kruger et al [34], was used.
This technique describes a real-time ray casting algorithm that
consists of 2 rendering passes. In the first pass, the front and
back faces of a colored cube representing the bounding box of
the volume are rendered into 2 different textures. The red, green,
and blue colors encode the start and end positions (as 3D
coordinates) of the ray for each pixel. In the second pass, for
each pixel, a ray is sent through the volume, and the opacity is
accumulated while sampling the volume using trilinear
interpolation. The ray stops, and the distance traveled by the
ray is recorded into a third texture. Next, a compute shader scans
the third texture to determine the smallest and highest nonzero
depths of the texture such that the visible interval of the volume
inside the 3D texture is known. Finally, in the second pass, the
final image of the volume is rendered using the recorded pixel
depths, which are adjusted using the minimum and maximum
values calculated previously so that the entire range of depth
values (from 0 to 1) lies within the visible part of the volume.
A TF maps the adjusted depth values to the red, green, blue,
and alpha colors for each pixel. This TF is encoded as a 1D
texture that is passed to the shader.

As mobile device graphics processing units are typically slower
than their desktop equivalents, additional optimizations were
made to allow for real-time rendering. First, the ray casting
algorithm was simplified so that instead of accumulating opacity
at each ray step until full opacity was reached, the ray stopped
immediately when the sampled value in the volume reached a
given threshold, similar to the early ray termination described
by Levoy [35]. Second, the ray casting algorithm was modified
to reduce the frequency at which the volume was sampled. To
achieve this, the 3D Chamfer distance approach described by
Zuiderveld et al [36] was used. This method speeds up ray
casting without compromising the quality of the rendered image

by determining the distance to the closest nonzero voxel for
every voxel and storing it in a 3D texture. This distance
corresponds to the number of voxels that must be traversed to
create a path in 3D space, assuming a 26-cell cubic
neighborhood. Here, a small threshold value was defined to
distinguish the empty voxels from the nonempty voxels. When
performing ray casting, the value from the Chamfer distance
3D texture, which indicates the distance that the ray can safely
travel without missing any interesting voxels, is used. Thus, the
empty areas of the volume are traversed faster. It should be
noted that although the algorithm does not compromise the
quality of the volume, it requires more space to store the
additional volume.

Finally, to save the battery life of the mobile device and have
a smoother user interface, when the volume is not being rotated,
it is rendered once to a texture and then displayed in future
frames. In addition, when the volume is rotated, it is temporarily
downscaled during ray casting, the smaller volume is rendered
to a temporary frame buffer, and then the image obtained from
this frame buffer is upscaled using linear interpolation. The
intensity of the downscaling is directly proportional to the speed
of the rotation of the volume, making the downsampling less
perceptible to the viewer.

Using these optimizations, real-time rendering was achieved
on the mobile devices tested for all cues except VSSs. Despite
attempts to improve the calculation time of VSS, rendering
times of only a few seconds per frame were achieved. As a
result, a static version of VSS that cannot be interacted with
was used in Connect Brain.

Connect Brain Gameplay
Connect Brain consists of two minigames: (1) the Near-Far
Game, a game in which players compare the relative depth
between the indicated vessels, and (2) the Blood Circulation
Game, a game in which players must understand the connectivity
between different points in the vascular volume (Figure 3, where
the phone frame was adapted from Wikimedia [37]; the original
uploader of the frame was MDXDave at German Wikipedia,
CC BY-SA 3.0 [38]). Both minigames are split into a tutorial
level that teaches the player the basics of the minigame and 11
levels that can be played in any order after the completion of
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the tutorial. Each level is defined by 4 parameters: the CTA
data set used, threshold used for early ray termination, depth of
the near and far clipping planes, and number of points selected
on the volume (≥2). Each level in the game consists of 14 rounds
in total, with each round showing a single visualization among
those that were implemented. A legend was always present to
help the players understand the color encodings for each
visualization, and the player could also read the description of

the visualization by pressing on a question mark icon. To avoid
confusing the player and prevent biases, we decided to use the
same visualization technique for 2 consecutive rounds before
randomly selecting a new visualization. Videos demonstrating
the gameplay of these games can be found in the multimedia
appendices (see Multimedia Appendix 1 for the Near-Far Game
and Multimedia Appendix 2 for the Blood Circulation Game).

Figure 3. Connect Brain screenshots: (A) gameplay of the Near-Far Game, (B) feedback for the Near-Far Game, (C) gameplay of the Blood Circulation
Game, and (D) feedback for the Blood Circulation Game. Phone frame source: adapted from Wikimedia. The original uploader was MDXDave at
German Wikipedia, CC BY-SA 3.0.

Near-Far Game
The Near-Far Game focuses on understanding the relative depth
between vessels. This game is based on the experimental task
described and used by Ropinski et al [4], Kersten-Oertel et al
[1], and Kreiser et al [10]. The typical experimental task
involves participants determining the nearest vessel between 2
selected vessels rendered using a given visualization technique.
The Near-Far Game in our app uses the same principle but
introduces some gameplay elements to make it more fun for
players.

Players are presented with a CTA on which ≥2 points on vessels
are indicated. The task of the player is to connect the points
from the point closest to them to the point farthest from them
using their finger. The points are indicated on the volume using
a contrasting color, and to ensure that they are visible, a black
and white circle is placed around them (Figure 3A). This circle
also indicates the region where the player can touch the screen
to select the point. To further help indicate the positions of the
points, arrows appear on the screen, indicating the location of
the points during the first second of each round. The selected
points and view of the CTA are randomly chosen, meaning that
the player cannot simply learn the correct answers. This also
makes replaying a level more interesting, as the player will
always have new data to view and interact with. Although
random, a number of rules are applied to choose the points: (1)

they are always clearly visible from the player’s perspective;
(2) they have a small minimum depth difference between them;
and (3) there is a minimum xy pixel position difference between
them, which is equal to the diameter of the black-and-white
circle × 1.5 to avoid the overlapping of 2 indicator circles.

By connecting the points in the correct order, the player gains
score points; and additional bonus points are provided for doing
this quickly. The number of bonus points is calculated by
applying a reciprocal function to the round time. However, if
the player makes an incorrect decision, the bonus is subtracted
from their current score. This gives players an incentive to
complete rounds as fast as possible while simultaneously
motivating them to make accurate decisions. Further, the score
accumulates through the rounds and is saved on a global
leaderboard where players can compare their score to others.
The score of a player is only visible to other players if it is one
of the top 3 scores for the current level, and this setting cannot
be changed.

Some levels have rounds in which >2 points are indicated to
the player. In these rounds, the player can connect any number
of points at once. The goal in this case is to select all the
connected points in the ascending depth order, starting from the
closest point in terms of depth (similar to the work of Ritter et
al [3]). However, if a point with a larger depth is selected before
a point with a smaller depth, then the entire selection is
considered incorrect, and the player loses the bonus time points.
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If all the points are connected in the correct order, the player
will receive significantly more points than if they connected
each pair of points individually. Thus, selecting multiple points
at once is a high-risk, high-reward strategy.

During gameplay, we enable players to rotate the volume as a
last resort measure when they get stuck at a certain round. The
players can rotate the volume with an offset of up to 45° from
the initial position. If x and y are the rotation in degrees around
the x- and y-axis from the initial position, then the rotation of

the volume always follows the formula . To discourage
rotation (as we wanted players to understand the data using the
given visualization technique), we designed the game such that
players lose score points for rotating the volume. The amount
of points lost is directly proportional to the rotation of the
volume in degrees. This feature was added to reduce the
frustration of the player and lower the chance that they will
completely abandon the game.

A preliminary in-laboratory study was conducted with 12
participants to test the gameplay aspect of Connect Brain. One
of the findings of this preliminary study was that users wanted
to know how they were wrong when they made an incorrect
decision. Thus, a feedback feature was added; if enabled, at the
end of each incorrectly completed round, the volume is rotated
by 90° around the x-axis so that the points that are closer to the
viewer are positioned on the bottom of this view and the points
that are farther are positioned on the top. Vertical lines are then
drawn like a ruler to demonstrate the relative depth between the
points (Figure 3B).

Blood Circulation Game
The Blood Circulation Game focuses on the connectivity
between different vessels in the vascular volume. This game is
an adaptation of the experiment that was described by Abhari
et al [6], in which participants were presented with static 2D
images and asked to determine whether a path exists between
2 selected points on the visible vessel structure. We built on
this experiment by adding motivating gameplay features to it.

As in the Near-Far Game, players are presented with ≥2 points
selected on the vascular volume. However, the goal of this game
is to determine which points are directly connected, in other
words, whether a path exists between the 2 vessels. As each
selected point on the 2D image is associated with a specific
voxel in 3D, connectivity refers to the path between the 2 voxels
inside the 3D volume. When the player finds 2 connected points,
they link them using their finger in any order. However, if no
2 points seem to be connected with each other, the player should
press the “no connected points” button that is located at the
bottom of the screen (Figure 3C).

As described in the first game, the initial rotation of the volume
at the beginning of each round and the selection of points are
performed randomly. This means that we need to compute at
runtime whether 2 voxels are connected with each other within
the 3D data set. To achieve this, the A* search algorithm [39],
which determines the path (if it exists) between 2 voxels inside
a 3D texture, was used. A* is an informed search algorithm that
considers both the distance traversed so far and an estimation
(heuristic) of the remaining path, allowing it to perform very

quickly and find the optimal path in case the heuristic function
is admissible (never overestimates the cost to reach the goal).
This algorithm requires a priority queue data structure to
function, and we chose the Fibonacci heap [40] because of its
efficient performance. The threshold used to define the
boundaries of the vessels during path finding is the same as that
used for ray casting.

The score system works in the same manner as in Near-Far
Game, with points awarded for correct decisions about whether
a path exists and for fast decision response times. The rotation
of the volume also works in the same manner, resulting in a
loss of points.

The Blood Circulation Game also features a feedback system;
if the player decides that 2 points are connected, but in fact they
are not, the feedback view shows the minimum distance that
separates the 2 independent parts of the vessel structure.
Conversely, if the player decides that no points are connected
with each other, but some of them are, then this view
demonstrates the path between the connected points (Figure
3D).

Once Connect Brain was made available on the Apple App
Store and Google Play, we advertised it not only on various
social media channels, such as LinkedIn [41], Twitter [42], and
Facebook [43], but also through email lists to encourage users
to play.

Results

Overview
At the time of our analysis, a total of 111 participants (men:
n=68, 61.3%; women: n=39, 35.1%; nonbinary: n=4, 3.6%) had
downloaded and played the mobile game. In addition to the 111
participants who played the game, 21 others downloaded it but
did not play. Of the 111 participants, 54 (48.6%) played on
Android, and the remainder (n=57, 51.4%) played on iOS.
Owing to the restriction on the collection of age data on iOS
apps, age was collected only from the participants who used
the Android version; the age range of these participants was
from 14 to 62 (mean 30, SD 11) years. Among the 111
participants, 50 (45%) had experience with medical
visualization, 30 (27%) were familiar with angiography, and
36 (32.4%) had experience with vessel visualization techniques.
More precisely, of the 111 participants, 26 (23.4%) had
experience in all 3 previously listed domains (we refer to them
as experts), and 31 (27.9%) had experience in either 1 or 2
domains (we refer to them as semiexperts). All 111 (100%)
users participated in the Near-Far Game, completing, on average,
39 (SD 61) rounds, but only 44 (39. 6%) players participated
in the Blood Circulation Game, completing, on average, 37 (SD
39) rounds. We hypothesize that the reason why some
participants decided to quit the game too early was because they
were playing the game in an environment that was not
controlled, so they could stop at any moment if they were bored
or did not want to continue playing. It is also possible that some
players downloaded the game without knowing its purpose and
were simply uninterested in playing after downloading. An
ANOVA and a post hoc Tukey honest significant difference
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tests were used to measure and analyze correctness and response
time variables. This analysis was performed using the SPSS
software (version 26; IBM Corp) [44].

Similar to Kersten-Oertel et al [1] and Lawonn et al [9], for both
games, in addition to correctness and response time, we
examined the effect of both the distance between the indicated
vessels on the screen (xy distance) and the distance in depth
between the indicated vessels (z distance). Both xy and z
distances were equally divided into 2 categories, near or far,
measured in world coordinates. For the xy variable, the ranges
are defined in the following manner: near (0.162-0.369) and far
(0.369-0.951). For the z variable, the ranges are defined as
follows: near (0.021-0.104) and far (0.104-0.792; note that z
distances are distributed unequally because the close and far
clipping planes in some levels greatly limit the total depth range
of the volume, resulting in a larger number of entries with a
small depth distance).

Owing to a lack of control over the timing and how the game
was played (eg, a person might get interrupted during the game,
thus increasing the decision time), we removed all extreme
outliers equal to Q3 + 3 × IQR, where Q3 represents the value
at the third quartile and IQR equal to Q3 – Q1. In addition, we
discarded all data completed during the tutorial levels.

Near-Far Game
A total of 5367 entries were collected for the Near-Far Game.
In cases where multiple points (3 or 4) were connected
simultaneously, each individual pair of connected points was
treated as an individual entry.

Correctness
Correctness was represented by either 1 (correct) or 0 (incorrect)
and determined based on whether the connection between points
was done in the correct order. The mean correctness and SE for
each visualization method are shown in Table 2. A 3-way
repeated measures ANOVA was used to examine the main
effects as well as the interactions of the visualization method,
xy distance, and z distance, as they relate to correctness. The
ANOVA showed that the visualization method had a significant
effect on correctness (F6,5339=22.404; P<.001). A Tukey post
hoc test showed that pseudochromadepth (mean 83%, SE 1.5%),
aerial perspective (mean 82%, SE 1.5%), and chromadepth
(mean 81%, SD 1.5%) allowed for better depth perception than
VSS chromadepth (mean 72%, SE 1.6%), VSS
pseudochromadepth (mean 72%, SE 1.6%), edge enhancement
(mean 66%, SE 1.6%), and shading (mean 65%, SE 1.6%).
Although both VSS versions performed better than shading and
edge enhancement, only the difference with shading was found
to be statistically substantial according to the Tukey honestly
significant difference test.

We found a significant main effect of distance on correctness
(F1,5339=24.708; P<.001). As expected, the near z distance (mean
71%, SE 0.9%) resulted in worse correctness compared with
the far z distance (mean 77%, SE 0.8%). However, we found
no main effect of the xy distance on correctness (F1,5339=1.329;
P=.25). Moreover, there was no significant 2-way interaction
between xy distance and visualization method on correctness
of depth ordering (F6,5339=0.627; P=.71), between z distance
and visualization (F6,5339=1.836; P=.09), or between the xy and
z distances (F1,5339=0.619; P=.43). There was also no significant
3-way interaction between the variables (F6,5339=0.595; P=.74).

Table 2. Mean correctness and decision time for the Near-Far Game, depending on the visualization that was useda.

Time (s), mean (SE)Correctness (%), mean (SE)

4.77 (0.117)82 (1.5)Arial perspective

5.29 (0.120)65 (1.6)Shading

5.03 (0.117)81 (1.5)Chroma

4.98 (0.12)66 (1.6)Edges

4.89 (0.118)83 (1.5)Pseudochroma

5.58 (0.122)72 (1.6)VSSb chroma

5.44 (0.122)72 (1.6)VSS pseudochroma

aError bars represent the SE.
bVSS: void space surface.

Decision Time
The decision time for levels with 2 points corresponds to the
interval between the moment when the round starts, To, and the
moment when the finger of the player reaches the second point,
T2. When >2 indicated vessels (ie, n) are connected in the same
level, the time for connecting n– 1 with n is calculated as Tn =
T1 + Tn – Tn–1. Thus, we consider the time taken to touch the
first indicated vessel, which we consider the time taken by the
player to make decisions about the spatial layout of the

vasculature as a whole, plus the time interval to connect the 2
indicated vessels n – 1 and n. The mean decision time and SE
for each visualization method is shown in Table 2.

A 3-way repeated measures ANOVA was used to examine the
main effects and interactions of visualization methods, xy
distance, and z distance on decision time. The ANOVA showed
that the visualization method had a significant effect on response
time (F6,5339=6.334; P<.001). A post hoc Tukey test showed
that aerial perspective (mean 4.77, SD 0.117 s) and
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pseudochromadepth (mean 4.89, SE 0.12 s) resulted in the
fastest decision times and performed better than both VSS
chromadepth (mean 5.58, SE 0.12 s) and VSS
pseudochromadepth (mean 5.44, SE 0.12 s). However, only
aerial perspective performed better than shading (mean 5.29,
SE 0.12 s), which had the third worst decision time.
Chromadepth (mean 5.03, SE 0.12 s) and edge enhancement
(mean 4.98, SE 0.12 s) were faster than VSS chromadepth but
not VSS pseudochromadepth.

There was a significant main effect of xy distance
(F1,5339=12.630; P<.001) on decision time. Far xy distances
(mean 5.30, SE 0.06 s) resulted in longer decision times than
near xy distances (mean 4.98, SE 0.06 s). In addition, there was
a significant main effect of z distance (F1,5339=12.924; P<.001)
on decision time. Far z distances (mean 4.98, SE 0.06 s) resulted
in a shorter decision time than near z distances (mean 5.30, SE
0.07 s).

There was no significant 2-way interaction between the
visualization method and the xy distance (F6,5339=0.476; P=.83),
the visualization method and the z distance (F6,5339=1.190;
P=.31), or the xy distance and the z distance (F1,5339=0.063;

P=.80). There was no 3-way interaction either (F6,5339=1.455;
P=.19).

Blood Circulation Game
The total number of entries collected for the Blood Circulation
Game was 1810. A 3-way repeated measures ANOVA was used
to examine the main effects as well as the interactions of
visualization method, xy-distance, and z-distance, as they relate
to correctness and response time for the Blood Circulation
Game.

Correctness
Correctness in the Blood Circulation Game corresponds to
whether the player correctly identified the indicated vessels as
connected (Table 3). The ANOVA showed that there was no
main effect of visualization technique (F6,1782=1.383; P=.22),
xy distance (F1,1782=0.032; P=.86), or z distance (F1,1782=0.004;
P=.95) on correctness. Furthermore, there was no significant
2-way interaction between the visualization method and xy
distance (F6,1782=0.867; P=.52), between the visualization
method and z distance (F6,1782=1.406; P=.35), or between xy
distance and z distance (F1,1782=2.251; P=.13). No significant
3-way interaction was found either (F6,1782=1.536; P=.16).

Table 3. Mean correctness and decision time for the Blood Circulation Game, depending on the visualization that was useda.

Time (s), mean (SE)Correctness (%), mean (SE)

3.46 (0.135)80 (2.4)Arial perspective

3.18 (0.137)80 (2.5)Shading

3.4 (0.138)81 (2.5)Chroma

3.27 (0.136)84 (2.4)Edges

3.11 (0.133)87 (2.4)Pseudochroma

3.52 (0.138)81 (2.5)VSSb chroma

3.49 (0.141)80 (2.5)VSS pseudochroma

aError bars represent the SE.
bVSS: void space surface.

Decision Time
The mean decision time and SE for each visualization method
are shown in Table 3. ANOVA showed that there was a
significant 2-way interaction between the xy and z distances on
correctness (F1,1782=4.583; P=.03). The combination of far xy
and far z distances correspondingly resulted in a substantially
longer decision time (mean 3.59, SE 0.11 s) than any other
combination. There were no significant main effects of
visualization method (F6,1782=1.441; P=.20), xy distance
(F1,1782=1.550; P=.21), or z distance (F1,1782=1.559; P=.21) on
decision time. No significant 2-way interactions were found for
the visualization technique and the xy distance (F6,1782=1.409;
P=.21) or for the visualization technique and the z distance
(F6,1782=1.044; P=.40). Finally, no 3-way interaction was found
either (F6,1782=0.708; P=.64).

Discussion

In general, we found that our results match those of studies that
contain a larger number of participants, which suggests that the
gamification paradigm is a viable alternative to conducting
studies in the domain of medical imaging and, more precisely,
angiography visualization.

Depth Perception and Connectivity
The analysis of the gameplay data showed that aerial
perspective, chromadepth, and pseudochromadepth allow for
the best relative depth perception. These techniques led to the
most correct responses and the quickest times, although only
aerial perspective resulted in a faster decision time than shading.
For vessel connectivity, no cue performed substantially better
than the others.

Similar to the study by Kersten-Oertel et al [1], we found that
for depth perception, the aerial perspective and
pseudochromadepth visualization techniques performed very
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well in terms of both correctness and decision time. However,
unlike Kersten-Oertel et al [1] and Ropinski et al [4], who found
pseudochromadepth to be significantly better than chromadepth,
we found no difference between the cues. However, this is in
line with the results reported by Kreiser et al [10], who found
no difference between these 2 cues.

As for the VSS cues, we found that they performed slightly
worse compared with the results obtained by Kreiser et al [10].
Although VSS chromadepth and VSS pseudochromadepth
resulted in a substantially higher accuracy than shading, both
performed worse than the non-VSS versions of chromadepth
and pseudochromadepth. In terms of decision response time,
we found a similar result to that found by Kreiser et al [10];
VSS had longer times than the directly applied visualization
methods. This can be expected owing to the indirect nature of
this vessel visualization technique. The correctness results may
be explained by the fact that the visualized vasculature is
complex, and on small devices (eg, smartphones), there is a
limited amount of background, which is needed for VSS. In
addition, because of the hardware limitations of mobile devices,
VSS was the only cue that was not adjusted in real time when
the player was rotating the volume. However, despite this
constraint, VSS cues still managed to be more effective than
shading, so VSS would be preferable in a context where the
color of the vessels cannot be changed.

Edge enhancement was not found to be an effective cue. In
terms of depth perception, it resulted in the lowest correct
responses, similar to shading. In terms of decision response
times, it was substantially better than only VSS chromadepth,
and VSS techniques are known to require a significant amount
of time to understand. In terms of vessel connectivity
understanding, unlike Abhari et al [6], edge enhancement did
not improve accuracy or decision time. In fact, this visualization
technique had no significant impact on either correctness or
response time in terms of understanding vessel connectivity.
We posit that this is the case because we tended to demonstrate
simpler vessel structures in the Blood Circulation Game, which
was achieved by using closer clipping planes to avoid having
all vessels connected with each other. The negative side effect
of this was that accuracy was high across all visualizations, and
decision times were generally similar. These similarities in time
could be explained by the fact that players rotated the volume
using their finger, but even after removing all entries where
players rotated the volume, no effect was observed on the
decision time.

In terms of distances between the indicated vessels, as expected,
having a far z distance between the vessels improves relative
depth perception and, surprisingly, decision time, which is
different from what was observed by Kersten-Oertel et al [1].
The reason behind shorter decision times at long z distances
could be that with shorter z distances, the players had to resort
to rotating the volume with their finger to understand the depth
using motion parallax. Regarding xy distance, although it had
no effect on accuracy, it did have an effect on the decision
response times, with longer xy distances resulting in a longer
decision time. This may have been caused by the fact that for
longer xy distances, players had to perform a longer gesture
when connecting the indicated vessels. By contrast, in the Blood

Circulation Game, where players had to perform a similar
gesture, a long xy distance resulted in longer decision times
only when it was combined with a long z-distance, which could
mean that the hand gesture does not have a big impact on the
decision time. Another reason for this is that players may look
back and forth between indicated vessels more often in case of
longer distances.

For the Blood Circulation Game, the combination of long xy
and long z distances resulted in the longest decision times. This
may have been because in such a combination, the vessels were
the farthest apart from each other, so players had to analyze the
data set more carefully to draw any conclusion about the
connectivity.

Crowdsourcing and Gamification
In this paper, we describe the results of a study that compared
the effectiveness of cerebral blood vessel visualization
techniques, which was conducted using a mobile game, rather
than in a traditional laboratory setting. Similar to previous
studies, we found that aerial perspective, chromadepth, and
pseudochromadepth allow for the best relative depth perception.
In terms of determining the connectivity between 2 vessels, we
found that the visualization method did not affect the result.

What differentiates our study from related works is the
gamification paradigm that was used to conduct the study.
Rather than having participants perform an experiment in a
laboratory, we created a mobile game that was distributed using
mobile app distribution platforms. Gamification presented
multiple advantages compared with traditional in-laboratory
user studies. First, it allowed us to have a high number of
participants (111 at the time of analysis) with no additional
per-participant cost. Second, the participants were also highly
diverse, with 39 (35.1%) out of 111 participants identifying as
women and 4 (3.6%) identifying as nonbinary. Third,
gamification made it easier for us to recruit experts, as 16 (62%)
out of 26 experts downloaded the app either from another
country or another province of Canada, whereas among the
semiexperts, this proportion was 18 (58%) out of 31. Finally,
in cases where the study targets a broader range of participants,
including nonexperts, gamification incentivizes the nonexperts
to join because they might be interested in the game elements
rather than the domain of the study. If we look at the average
number of rounds completed by experts and semiexperts
combined (mean 63, SD 107), it is approximately the same as
that for nonexperts (mean 60, SD 83), which indicates that the
interests of the 2 groups were approximately the same toward
the game. We hypothesize that experts and semiexperts were
primarily interested in continuing to play the game because of
the domain of study, whereas nonexperts were interested because
of the game elements, such as competing for a high score.

Limitations
Gamification also presented some important disadvantages,
both during the development of the game and with data
collection.

First, transforming the experiment into a game that is fun to
play required more development time and additional research
to create interesting game mechanics. In our case, the user study
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could be transformed into a game because it integrated simple
visual tasks for both minigames, which were visual comparison
(in the Near-Far Game) and path finding (in the Blood
Circulation Game). These tasks can both be used for an
experiment, but they are also common game principles.
However, by themselves, these visual tasks were not interesting
enough to make the game fun, so additional game elements had
to be added, such as the score system or high-risk, high-reward
multiple connection mechanic.

Second, implementing volume rendering such that it allows
real-time rendering on mobile devices required additional
optimizations of the rendering code. In addition, to ensure that
the game worked on different devices and operating systems,
graphics processing units, resolutions, and aspect ratios also
required additional development. Even though we tested our
game on a variety of Android and iOS devices, we still could
not guarantee that our game worked perfectly on all hardware
configurations, as we received feedback from 1 (0.9%) of the
111 participants that one of the rendering techniques crashed
on their device. In addition, we did not have control over the
resolution or aspect ratio of the screen, which might have had
an impact on performance. However, to achieve at least some
consistency, we scaled the volume such that it was proportional
to the vertical resolution of the screen.

Third, the lack of a controlled environment may have impacted
the collected data. As we could not observe how the game was
played, we cannot be sure whether players were motivated to
try to do their best. At the same time, we think that adding a
competitive element to the study in the form of a leaderboard
did indeed motivate most players to perform well, which should
have resulted in a higher quality of the collected samples. We
also had little control over the credibility of the data that users
filled when creating their account and could not create a detailed
pretest or posttest questionnaire, which was not possible on iOS
owing to privacy concerns and in general could lead to a player
abandoning the game before even starting to play.

Conclusions
Despite some of the drawbacks of gamification, using this
paradigm allowed this study to collect more data samples than
many similar studies [1,4,6,7,10]. Furthermore, it showed that
our results were more similar to those of studies with more data
samples and participants (2380 for Kersten-Oertel et al [1] and
2850 for Kreiser et al [10]) than those of studies with fewer
samples (700 for Ropinski et al [4] and 600 for Abhari et al [6]).
These results suggest that gamification is a viable paradigm for
conducting user studies in the domain of medical imaging.
Moreover, as demonstrated by our number of participants and
results, if the game is fun to play and motivates the players to
perform well in the study, it may lead to a higher number of
participants compared with an in-laboratory user study while
still maintaining a high quality of the collected data. Another
advantage of web distribution-based paradigms, such as
gamification, is that they make it possible to perform user studies
or help with surgical education in societal situations where
meeting in person is not possible [45]. Such was the case in this
study, which was performed during the lockdown caused by
the COVID-19 pandemic. Gamification is a promising technique
for collecting large data samples; however, it is important to
have fun games that users will continue to play. In the future,
we could further improve the game by adding sound and music
and examine whether these aspects have a positive impact on
the time players spend in the game. In addition, we could pay
the participants to play our game to determine how having a
monetary incentive affects the behavior of the players, as they
may enjoy the game more this way [46]. Regarding the study
itself, in the future, illustrative techniques could be added to
compare an even higher number of visualizations. Some good
candidates are the hatching and distance-encoded shadows
technique described by Ritter et al [3]; illustrative shadows,
supporting lines, and contours technique described by Lawonn
et al [9]; and anchors technique described by Lawonn et al [8].
Finally, we could compare our gamified user study to
crowdsourcing, such as the EvalViz [47] wizard.
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Multimedia Appendix 1
Gameplay video of the Near-Far Game.
[MP4 File (MP4 Video), 75413 KB - neuro_v2i1e45828_app1.mp4 ]

Multimedia Appendix 2
Gameplay video of the Blood Circulation Game.
[MP4 File (MP4 Video), 90143 KB - neuro_v2i1e45828_app2.mp4 ]
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Abstract

Background: Telemedicine practice for neurological diseases has grown significantly during the COVID-19 pandemic.
Telemedicine offers an opportunity to assess digitalization of examinations and enhances access to modern computer vision and
artificial intelligence processing to annotate and quantify examinations in a consistent and reproducible manner. The Myasthenia
Gravis Core Examination (MG-CE) has been recommended for the telemedicine evaluation of patients with myasthenia gravis.

Objective: We aimed to assess the ability to take accurate and robust measurements during the examination, which would allow
improvement in workflow efficiency by making the data acquisition and analytics fully automatic and thereby limit the potential
for observation bias.

Methods: We used Zoom (Zoom Video Communications) videos of patients with myasthenia gravis undergoing the MG-CE.
The core examination tests required 2 broad categories of processing. First, computer vision algorithms were used to analyze
videos with a focus on eye or body motions. Second, for the assessment of examinations involving vocalization, a different
category of signal processing methods was required. In this way, we provide an algorithm toolbox to assist clinicians with the
MG-CE. We used a data set of 6 patients recorded during 2 sessions.

Results: Digitalization and control of quality of the core examination are advantageous and let the medical examiner concentrate
on the patient instead of managing the logistics of the test. This approach showed the possibility of standardized data acquisition
during telehealth sessions and provided real-time feedback on the quality of the metrics the medical doctor is assessing. Overall,
our new telehealth platform showed submillimeter accuracy for ptosis and eye motion. In addition, the method showed good
results in monitoring muscle weakness, demonstrating that continuous analysis is likely superior to pre-exercise and postexercise
subjective assessment.

Conclusions: We demonstrated the ability to objectively quantitate the MG-CE. Our results indicate that the MG-CE should
be revisited to consider some of the new metrics that our algorithm identified. We provide a proof of concept involving the
MG-CE, but the method and tools developed can be applied to many neurological disorders and have great potential to improve
clinical care.

(JMIR Neurotech 2023;2:e43387)   doi:10.2196/43387
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Introduction

With the COVID-19 pandemic, there was a rapid increase in
the use of telemedicine in routine patient care [1] and in clinical
trials that moved to video evaluations to maintain subject
follow-up [2]. Telemedicine was already commonly used for
acute stroke care and was in development for Parkinson disease,
but the vast majority of neurologists were not using such
approaches and were suddenly thrust into unfamiliar territory
[3-5]. Diagnosis and monitoring of neuromuscular disorders,
in particular, rely on a nuanced physical examination, and
specialists would be particularly reticent to use telemedicine.
However, telemedicine has great potential to provide improved
assessment of aspects of neurological examinations, and
facilitate patient monitoring and their education [6], while
reducing patient burden in attending in-person clinic visits and
potentially increasing access. Further, there is great potential
for rigorous video assessment to enhance clinical trial
performance, which could reduce the burden on study
participants and thereby enhance recruitment and retention.

The Myasthenia Gravis Core Examination (MG-CE) [7] was
recommended for telemedicine evaluation of patients with
myasthenia gravis (MG), and it involves specific aspects of
neurological examinations critical to the comprehensive
assessment of patients with MG. The National Institutes of
Health Rare Disease Clinical Research Network dedicated to
MG, MGNet, initiated an evaluation to assess the feasibility

and validity of MG-CE for use in future clinical trials. These
assessments were video recorded using the software Zoom
(Zoom Video Communications), and we used the evaluations
performed at George Washington University with the following
2 objectives: (1) assess workflow efficiency by making the data
acquisition and analytics fully automatic and (2) evaluate the
potential to quantitate the evaluations.

Methods

MG-CE and Automatic Data Acquisition
The study used recorded telemedicine evaluations of individuals
with a clinical- and laboratory-confirmed diagnosis of MG. The
patients were provided instructions regarding their position in
relation to the cameras and level of illumination, and were told
to follow the examiner’s instructions. We used videos of 6
subjects recorded twice within 7 days to develop our algorithms.
One normal control subject was used to evaluate the
methodology prior to evaluating MG subject videos.

The MG-CE is summarized in Table 1, and a full description
has been provided previously [7]. The examination required 2
broad categories of processing: (1) the computer vision
algorithm to analyze video focusing on eye or body motions
and (2) the analysis of the voice signal, which requires a
completely different category of signal processing methods.
We describe successively each of the techniques used in these
categories and summarize the digitalization process in Table 2.

Table 1. Myasthenia Gravis Core Examination exercises and evaluation metrics [7].

Severe (3)Moderate (2)Mild (1)Normal (0)Variable

Eyelid below the pupilEyelid at the pupilEyelid above the pupilNo ptosisEyelid droop (ptosis)

Immediate diplopiaDiplopia with a gaze of 1-10
seconds

Diplopia with a gaze of 11-
60 seconds

No diplopia with a gaze of
61 seconds

Double vision (right/left)

Cannot perform the exerciseOpposes lips but air escapesTransverse puckerNormal “seal”Cheek puff

Cannot perform the exerciseAble to move the tongue to
the cheek, but no deformity

Partial convex deformity in
the cheek

Normal: full convex deformi-
ty in the cheek

Tongue to cheek

Dysarthria at 1-9Dysarthria at 10-29Dysarthria at 30-49No dysarthria at 50Counting to 50

Drift at 0-9 secondsDrift at 10-89 secondsDrift at 90-119 secondsNo drift for >120 secondsArm strength

Count of <20Count of 20-24Count of 25-29Count of ≥30Single-breath count

Unable to stand unassistedNeed to use handsSlow with effort but no
hands

No difficultySit-to-stand maneuver
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Table 2. Summary of our algorithm tool box to assist the clinician with the Myasthenia Gravis Core Examination.

Digital toolMetricObservationDescriptionExercise

High-definition camera and eye
segmentation.

Distance between the eyelid
and the pupil, and distance
between the upper and lower
eyelids.

Weakness of the upper eyelid
and eyelid going above the
pupil.

Patients hold their gaze
up for 60 seconds.

Ptosis

High-definition camera and eye
segmentation.

Track the distance between
anatomic landmarks such as
the upper/lower lid, and
pupil and iris left and right
boundaries.

Misalignment of the eyes and
moment of double vision.

Patients hold their gaze
right and then left for 60
seconds.

Double vision

Track face feature variation,
mouth curvature, and dimen-
sion in particular.

Patients puff their cheeks
and hold it.

Cheek puff •• Depth camera or Lidar.Assess muscle strength
and fatiguability. • High-definition camera with

face landmark monitoring.• Extent of puffiness at
baseline and versus exter-
nal pressure placed on
the cheeks.

• Track change of illumination
in the region of interest.

• Symmetry of cheek puff
(left vs right).

Track face feature variation,
mouth curvature, dimension,
and orientation in particular.

Tongue muscle strength and
symmetry.

Patients use their tongue
to push the cheek.

Tongue pushing • Depth camera or Lidar.
• High-definition camera with

face landmark monitoring.
• Track change of illumination

in the region of interest.

Lip tracking and sound analysis of
the exercise clip.

Assess for respiratory muscle
fatigue and shortness of
breath.

Patients count out loud
from 1 to 50.

Counting to 50 • Loudness of the voice.
• Various types of spec-

tral analysis of the
voice and mouth mo-
tion.

• Energy metric of the
voice.

Pose detection on high-definition
images.

Assess for muscle fatigue via
sustained abduction of the
arm.

Patients hold their arms
straight.

Arm strength • Track body pose and
different angles.

• Length of time the pa-
tient can hold the arm
in the pose.

• Trajectory of the arm
over time.

Lip tracking and sound analysis of
the exercise clip.

Length of the breath.Assess for respiratory muscle
fatigue.

Patients count with only
1 breath.

Single-breath test

Pose detection on high-definition
images.

Patients stand up with
and without crossing
their arms.

Sit-to-stand maneuver •• Body pose tracking.Assess for muscle fa-
tigue. • Compare standing up

speed between clips.• Ability of the patient to
stand without using the
arms for assistance.

Deep Learning and Computer Vision Analysis

Machine Learning to Track Body Landmarks and Face
Landmarks
Tracking faces or all body motions has become a standard tool
[8] thanks to publicly available deep learning libraries with a
standard model (Figure 1). To track body positions during the
test of arm position fatigue and the sit-to-stand maneuver (Figure

1), we used a deep learning model that is publicly available (the
pretrained machine learning model BlazePose GHUM 3D from
MediaPipe) (Figure 1) [9]. For eye detection, we first needed
to localize the face in the video frame.

Among the most commonly used algorithms [10,11], we chose
OpenCV’s implementation of the Haar Cascade algorithm [12],
based on the detector from Lienhart et al [13]. Our criteria to
select the method were speed and reliability for real-time
detection.
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Figure 1. Pretrained machine learning models used with characteristic points.

To focus on the regions of interest (ROIs) of the eyes and lids,
we used the pretrained DLib 68 points facial landmark detector
that is based on the shape regression approach [14,15]. It is a
machine learning algorithm that places 68 characteristic points
on a detected face. The model is pretrained on the I-BUG 300-W
data set, which is comprised of 300 face pictures (Figure 1)
[16]. This software was used for the assessment of ptosis and
eye position, as well as for the test of counting to 50 and the
single-breath test in order to document lip reading and tracking
of jaw motion (Table 1).

Overall, both libraries provided robust results and could be used
to annotate the video in real time for the ROIs. However, we
found that the accuracy of the landmark points in the model of
Figure 1 obtained by this library was not adequate to provide
metrics that could be used in eye motion assessment in the
context of a standard telehealth session. Therefore, we developed
a hybrid method that began from deep learning to identify the
ROIs and refine the search for the pupil, eyelid, and iris as
described next.

Eye and Lid Image Segmentation
Assessment of ptosis and ocular motility requires precise
tracking of the eyelid, pupil, and iris. Precise metrics of these
measures have been developed [17-20]. Established techniques
to detect the iris location [21] are the circular Hough transform
[22] and the Daughman algorithm method [23]. However, we

found that these methods lack robustness due to their
insensitivity to the low resolution of the ROIs of the eyes, poor
control for illumination of the subject, and specific eye geometry
consequent to ptosis. The eye image in a standard Zoom meeting
may not be bigger than about 40 pixels wide and 20 pixels high.
Liu et al [24] assessed eye movements for a computer-aided
examination, but with highly controlled data and a highly
controlled environment. We did not have optimum control of
telehealth footage with patients at home, and the eye region has
only one-tenth, at best, of the image frame dimension. Therefore,
we took a more versatile approach that began with the ROI
given by the previous deep learning library that we had used
and then concentrated on a local search of the iris boundary,
pupil center, and upper/lower eyelid (Figure 2). Since we started
from a good estimate of the ROI for the eye, we used a
combination of a local gradient method and clustering technique
to compute the spatial coordinate and distance between
landmarks of interest, and we have described this in the Results
section. There are 2 classes of assessment depending on whether
we compute the geometric dimension on an individual image
or the dynamic of eye motion on video clips. We retrieved, for
example, the relaxation time of the eyelid versus equilibrium,
with some of the patients performing both eye exercises (Figure
2). However, there is no mention of such a metric in the core
examination [11]. The incorporation of this new information in
the standard core remains to be determined.

Figure 2. Approximations on ptosis to assess the field of view: distance between the upper and lower eye lids (left), eye area opening (center), and
distance from the upper lid to the pupil (right).
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Body Image Segmentation
To have reproducible results with the entire view of the body
during the examination, we tested our telehealth platform
Inteleclinic on 1 patient and several control subjects. The
pretrained machine learning model BlazePose GHUM 3D from
MediaPipe [9] has been evaluated extensively, so we only
provide some examples of the results obtained with the MG-CE.
The arms of the patient are extended for 2 minutes during the
exercise, and we used the segments joining the landmark point
(12) to (14) to track the right arm position and the landmark
point (11) to (13) to track the left arm position (Figure 1B). We
computed the angle formed by the arm’s segment as described
above and the horizontal line going through the landmark points
(11) and (12) of the upper torso in the model (Figure 1B). If the
arms stay horizontal, the 2 angles we track for the model (Figure
1B) should be approximately zero. As the arm strength of the
patient may fatigue during the exercise, the arms fall from the
horizontal position, and the angle would decrease and become
negative. A similar approach was used for the sit-to-stand
exercise by tracking the hip landmarks (23) and (24) of the body
motion model (Figure 1B).

Cheek Deformation
The ROI for cheek deformation was the polygon delimited by
points (3), (15), (13), and (5) of model 1 (Figure 1A) for the
cheek puff exercise. We could restrict this ROI to one half of
the polygon for the tongue-to-cheek push exercise that is only
performed on one side. As we aimed to reconstruct the local
curvature of the cheek during the test involving (3) and (4) that
can lead to cheek deformation, we used a depth camera and
computed the depth map to assess the contour of the deformation
in the ROI. When it came to the depth map, our first approach
was to use a depth camera that could directly reconstruct the
local curvature of the surface seen. The depth camera Intel
Realsense D435 (Intel) has, according to the vendor, a relative
accuracy below 2% for a distance less than 2 meters. This
technology uses infrared and stereo cameras to analyze the
deformation of a projected pattern of a scene and reconstruct
from this information the depth, but requires camera calibration
[25-28]. All tests were performed in realistic conditions for
telehealth, that is, the distance of the face from the camera was
1 meter at minimum and the patient was directly facing the
camera.

The second approach we used was to assess a pure computer
vision technique that works on a standard video. Our objective
was to define basic information regarding when the cheek
deformation starts, when it ends, and how it may become weaker
during the examination period. In practice, this is what the
medical doctor may grade during a telehealth consultation.

The first solution exploits the local skin appearance alterations
as the cheek becomes dilated [29]. We could then compute the
ROI “centered” on the cheek area where we expect the
deformation to be most significant and the average pixel value
of the blue dimension of the RGB code. To track the ROI, we
used the mouth location and external boundary of the cheek
that can be recovered from the model (Figure 1A). We could
then track the average value over time during the exercise, that
is, before the push to its end. We show in the Results section

the limitation of this method that is a priori not robust with
respect to light conditions and may depend on skin color.

The second solution is based on the observation that cheek
deformation impacts the mouth geometry. For example, in the
cheek puff exercise, the mouth is closed and invariably the lip
shape features change from those in the rest position. In the
one-side tongue-to-cheek push, the upper lip is deformed. All
these changes can be monitored in time easily by tracking the
relative position of the points in the facial model that mark the
mouth (Figure 1A).

We describe our computer vision methods based on an analysis
performed with 3 different formats of videos. The first was
acquired with our new telehealth platform using a
high-definition camera with a patient who has a normal cheek
puff response. The second was acquired on a control subject
with a cell phone camera (Apple 13 system, Apple Inc), and the
third was extracted from the MGNet data set. We tested the
impact of diversity with White subjects, subjects with dark sun
tan, and subjects who were African American. We demonstrate
in the Results section which metrics appeared to provide the
best assessment.

Voice Analysis
Our goal was to assess breathing and change in speech in
patients with MG from analyzing counting to 50 and
single-breath count. Dysarthria is not a simple concept and is
classified in several ways [30]. Shortness of breath was easier
to define but could be compromised by multiple factors.
Shortness of breath and pulmonary function can be assessed
from speech as appreciated by others [29,31]. Previous studies
have used machine learning and artificial intelligence (AI)
techniques that require large training sets, and they are not
specific to any neurological disorder or specific to a voice
acquisition protocol.

A good example of dysarthria detection has been published
previously [32]. The rate of success of a neural network is
modest, that is, about 70% when competing with standard
diagnostic performance. An alternative solution is to use a fractal
feature as reported previously [33]. This methodology seems
to reach a greater accuracy of about 90% and does not require
a training set.

Lip and jaw movements are related to dysarthria [34]. We are
not aware of any systematic study that combines automatic lip
motion tracking and speech digital analysis to assess breathing
and dysarthria in patients with MG. We assessed more than half
a dozen algorithms producing various sound metrics to check
for the potential best voice analysis candidate to assess MG
patients. As the analysis of the pitch of voice did not show any
outliers in the data set and the energy metric analysis was
impacted by the environment and control of the exercise, we
restricted the description to the most promising algorithm. To
compute voice features, we used the following steps. We
separated the interval of time when the subject spoke from when
the subject was silent. We used the MATLAB function
“detectSpeech” [35] on the original signal. The function
“detectSpeech” provides the start and end times of each so called
“speech segment.” The frequency of signal acquisition was
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about 1000 Hz. For comparison, we used our own custom-made
algorithm to extract speech segments using sampling of size 60
of the voice signal. The signal now had an equivalent frequency
of acquisition of about 17 Hz. We then used averaging on each
sample of the original signal to dampen noise. The signal was
then smoother, and we could use a threshold to filter out noise
without building up a large number of small gaps corresponding
to “no sound.” We looked in the sound track of “counting to
50” exercises for the largest 50 time intervals of sound above
noise level. All voice features presented below were computed
on the sound track that contained speech only.

We present below the list of voice features we computed
systematically for each of the sound tracks for both voice
exercises. All these individual metrics or combinations of
metrics were candidates to grade the severity of symptoms. The
Results section reports which metric worked the best. The
features are as follows:

• Loudness of voice: Loudness was computed based on the
algorithms defined in the ITU-R BS.1770-4 and EBU R
128 standards. The loudness of voice was integrated over
all speech segments.

• Pitch or fundamental frequency of voice: The pitch was
computed for each speech segment. The speech of a typical
adult man will have a fundamental frequency from 85 Hz
to 155 Hz and that of a typical adult woman will have a
fundamental frequency from 165 Hz to 255 Hz.

• Spectral energy on a frequency interval: Both voice
exercises were considered as breathing exercises, so we
computed the L2 norm spectral energy of the voice signal
over all speech segments in a frequency window that
focused on the breathing rate (5 Hz to 25 Hz).

• Teager-Kaiser energy: It was used in tone detection [36].
• Spectral entropy of the voice signal: Spectral entropy is a

measure of spectral power distribution. Spectral entropy’s

concept is based on Shannon entropy or information
entropy. Spectral entropy treats the signal’s normalized
power distribution in the frequency domain as a probability
distribution and calculates the Shannon entropy of it. The
Shannon entropy has been used for feature extraction in
fault detection and diagnosis [37,38]. Spectral entropy has
also been widely used as a feature in speech recognition
[39] and biomedical signal processing [40].

• Special feature of the single-breath count: The airflow
volume expansion during speech is in first approximation
related to the square of the amplitude of the sound wave
[41]. We computed the integral of the square of the
amplitude of the sound wave during the time window of
the patient’s speech. Since there is no calibration of the
microphone, the metric might be biased. There was
considerable variability of diction during this exercise.
Some subjects counted more slowly, while others appeared
anxious and pronounced words quickly. We computed as
an additional feature the percentage of time with vocal
sound versus total time.

For the voice analysis test in particular and for tests in general,
there was significant variability in the parameters of data
acquisition under clinical conditions, such as sound level.
Providing guidance in real time to the patient will be essential
to improve the ability to quantitate the telehealth examination.

The Need for a Novel Telehealth Platform to Support
the Protocol and Improvement of Data Acquisition
Reproducibility requires that the various examinations are run
in similar conditions. While we have mainly evaluated our
algorithms on an existing data set of standard Zoom video
evaluations with 6 patients, we next describe our new hardware
and software solution named “Inteleclinic” (Figure 3) designed
to improve data acquisition.
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Figure 3. View on the patient side of our cyber-physical system named “Inteleclinic” used to uniformize the sessions and improve the quality of the
metrics. HD: high-definition.

Controlling the Setting and Hardware
To avoid changes in the quality of the recording (frames and
audio), it is important that the hardware used is identical for all
sessions and is calibrated. In an attempt to improve the quality
of data acquisition with the future development of clinical
studies, we built a new telehealth system with a high-definition
camera and microphone that can be controlled remotely by the
examiner. The recording is now performed on the patient side
to obtain the raw footage of the video and audio in order to
optimize maximum resolution and avoid any issues with network
connection quality during the examination. Different interfaces
and tools are added compared to Zoom’s control system to assist
the patient and the doctor to focus on the consultation and not
the technology. We demonstrate in the Results section the
benefits of Inteleclinic compared to a standard Zoom video call
of a patient at home using various technologies.

Controlling Time
Some of the tests, such as lid and eye positions as well as arm
position, require precise timing from start to end. To avoid any
manual entry errors, our digital heath system automatically
computes start and end times. The single-breath test as practiced
now has no control on loudness and timing. Breath capacity is
the product of the air outflow flux and the duration of the
exercise. To be more precise, breath capacity is the time
integration of the time-dependent output flow on the time

interval of the exercise. We found that the maximum number
counted is weakly correlated with the duration of the counting
exercise. The maximum number reached is dependent on diction
and may not be used as a valuable metric. Outflow during speech
is proportional in the first approximation to the square of the
energy source of sound [41]. Depending on how loud the count
is, one may expect different airflow output values for the patient.
We tested on our platform a visual aid on the telehealth display
to guide patient counting with a consistent rhythm of about 1
number counted per second in both the count to 50 and
single-breath counting exercises.

Controlling the Framing of the ROI and the Distance
From the ROI to the Camera
The digitalization of the tests involving ptosis, diplopia, cheek
puff, tongue to cheek, arm strength, and sit-to-stand movement
depends heavily on vision through the telehealth system. While
we used a standard Zoom video that was preregistered in this
study, it is straightforward with our system to provide guidance
on the quality of video acquisition to make sure that distance
between landmarks of interest use approximately the same
number of pixels in order to provide quality and consistency
for the results. In practice, we can provide a mark on the display
of the patient with Inteleclinic to make sure the individual is
properly centered and distanced from the camera.
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Controlling Sounds
Every telehealth session may have different loudness of the
sound track depending on the microphone setting and how loud
or how soft the patient is speaking. Loudness is computed based
on the algorithms defined in the ITU-R BS.1770-4 and EBU R
128 standards. If the microphone is calibrated with a benchmark
sound, the loudness of the sound track can be computed
continuously and guidance can be provided to the patient on
how loud or soft they should try to keep their voice during the
exercises.

Ethics Approval
All participants provided written consent for inclusion in the
study. The study that provided the data has been approved by
the George Washington University Institutional Review Board
(IRB# NCR224008).

Results

Standardization of the Data Acquisition
We evaluated our methods and identified large variability in
the data acquisition and mode of operation for the assessments
performed by the single examiner. The purpose of the primary
study from which we obtained the videos was to assess test/retest
variability and interexaminer variation in performance of
telemedicine evaluations (manuscript in preparation). Our goal
was to assess accurate and robust measurements from the
MG-CE in order to remove human bias. The videos from the
clinical study are quickly showing some limitations as the
hardware used to film was not identical and the recording was
performed on the doctor side, linking the quality of the frames
to the quality of the network on both sides. We will next present
our methodology and the platform. One of the purposes of our
project was to standardize the data acquisition during the
telehealth session and provide real-time feedback of the quality
of the assessments for the examiner.

Eyelid Position and Eye Movements
We have used a data set of images of 6 patients and 3 healthy
subjects with broad diversity in skin color, eye color, ocular
anatomy, and image frame resolution to test the accuracy of our
approach. We identified 72 ROIs of patients’ eye movements
and then annotated them with ground true measures obtained
by manually zooming in the computer images. On average, we
found the pupil location within 3 pixels and the distance from

the pupil to the upper eyelid within 2 pixels independent of the
image frame resolution. The relative accuracy in pixels was
independent of the camera used. The standard Zoom video has
450×800 pixels per frame, a smartphone has 720×1280 pixels,
and the Lumens B30U PTZ camera (Lumens Digital Optics
Inc) has a resolution of 1080×1920. Overall, Inteleclinic doubles
the resolution of a standard Zoom call and provides a
submillimeter accuracy of lid position and eye motion. Figure
4 provides an example of the localization of the upper lid, lower
lid, and iris lower boundary detected automatically with our
hybrid method using digital zooming of the face of the patient
with both ROIs. We underline that the patient is sitting about
1 meter from the camera during the telehealth eye exercises,
and one can see the patient’s face and shoulders. No particular
effort was made to focus on the eyes of the patient in the video.
The 6 red circles in each eye correspond to the markers of the
ROI obtained with the deep learning library of model 1 (Figure
1A). The bottom markers are slightly off, and our local computer
vision technique provides the ability to correct the position of
the lower lid.

In Figure 5, we show tracking of the distance between the lower
boundary of the iris and the upper lid with a black curve, and
the distance between the bottom of the iris and the lower lid
with a red curve. One can check that the patient performs the
exercise properly and can measure a 15% decay of the ptosis
distance during the 1-minute exercise. As shown in the green
least square fit with the green line, this decay is both linear and
statistically significant. This decay is in fact difficult to notice
during a medical examination without our method.

In Figure 6, we report on the second exercise that tests diplopia.
The red circle locations of the deep learning model of Figure
1A in the ROIs are accurate. We tracked the vertical border of
the iris and computed the barycentric coordinate of the most
inner points of the boundaries to compute any eventual
misalignment of both eyes. The patient did not report double
vision, and the quasisteady variation of the barycentric
coordinates, as reported in Figure 7, confirmed this.

However, the positions of the eyes of patients might be so
extreme that some of the pupils might be partially obstructed
during the exercise, which limits the value of the conclusion.
In addition, we clearly observed ptosis during the exercise as
the vertical dimension of the eye opening reached about half of
what it was during the ptosis exercise.
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Figure 4. Image during the ptosis exercise. Digital zoom on the view of the patient obtained with the Inteleclinic system showing anatomic markers
obtained by computer vision in green, starting from the landmarks of the regions of interest obtained by deep learning.

Figure 5. Graphic representation of the distance between anatomic landmarks to asses ptosis dynamically during the first eye exercise.
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Figure 6. Image during the diplopia exercise. Digital zoom on the view of the patient obtained with the Inteleclinic system showing anatomic markers
obtained by computer vision in green, starting from the landmarks of the regions of interest obtained by deep learning.

Figure 7. Graphic representation of the bariatric coordinate of the anatomic landmarks used to assess eye alignment dynamically during the third eye
exercise.
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Cheek Puff and Tongue to Cheek
We used a low-cost depth camera from Intel to reconstruct the
local curvature of the cheek in laboratory conditions with a
healthy subject who produced a large deformation, which was
at the noise level of the signal. This evaluation would have
failed for any patient who has difficulty to push the tongue into
the cheek. Better depth accuracy could be obtained by sensors
that use time-of-flight technology [42].

The variety of videos demonstrates the limits and potential of
our approach. In one video of the cheek puff exercise, the patient
was told to blow his cheeks for about 2 seconds. The video was
cut after 15 seconds because the patient was asked to test the
stiffness of the skin with his fingers. The placement of the
fingers on the cheek completely confused the AI tracking
algorithm. The change in the mean value of the third component
(blue) of the RGB classification inside the ROI on both sides
of the cheek of the patient is not reliable unless the left cheek
or right cheek ROI has good illumination. The detection is
usually far less reliable on one of these ROIs because it is
difficult to achieve good illumination on both sides of the face
of the patient.

Tracking mouth deformation during the exercise was a superior
approach. First, we easily detected if and when the patient had

the ability or did not have the ability to keep the mouth closed.
Second, we tested several features, such as the distance between
the corners where the upper and lower lip meet, that is, the
segment delimited by the points (49) and (55) in the model
(Figure 1A), the deformation of the mouth in the vertical
direction, and the mean curvature of the upper lip and lower
lip. Figure 8 shows the feature that measures the normalized
distance between the upper lip and the bottom of the nose during
the cheek puff exercise using a standard Zoom video with
450×800 pixels per frame in an ADAPT (Adapting Disease
Specific Outcome Measures Pilot Trial) patient. We obtained
a curve that was close to the step function in this ADAPT
patient, which accurately detected when the deformation of the
cheek started and ended, and indicated how strong the
deformation was. Not all features work all the time for all
patients. As expected, variability in the anatomy of patients
causes differences in which features work the best. Form our
experience, we found that the combination of several features
helps identify the extent of cheek puff during the exercise.

We obtained very similar results for the tongue-to-cheek push
exercise. In Figure 9, an ADAPT patient pushes the left cheek
with the tongue and then pushes the right cheek at 5.6 seconds.

Figure 8. Normalized distance of the upper lip to the lower part of the nose during the cheek puff exercise.
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Figure 9. Exercise involving the tongue pushing the left cheek and then the right cheek with an ADAPT (Adapting Disease Specific Outcome Measures
Pilot Trial) patient and a standard Zoom video. Tracking modifications of the lip shape orientation during the exercise. The red vertical bar in the middle
corresponds to the patient switching from pushing the left cheek to pushing the right cheek.

The geometric feature we used was the angle formed by the
mouth and the horizontal axis. The exercise breaks the symmetry
of the face, and this feature is particularly adapted to capture
the one-side deformation of the cheek. The illumination figure
shows only marginal change for the second part of the exercise
and is therefore not very robust. One may expect however that
better control of the light during the telehealth session will
resolve this issue.

These techniques will not work for a subject with a moustache
or beard. The shape of the face of patients with a high BMI may
also impact the quality of the results. More work needs to be
done on the digitalization of this specific test. As mentioned
before, the depth camera would need to be highly accurate in
order for the signal to be above the noise level, which is not the
case with entry-level and low-cost systems.

Arm Position and Sit-to-Stand Movement
Most videos of the MGNet data set offered only partial views
of the body during these exercises and showed great variability.
The model (Figure 1) failed under such conditions.

Figure 10 shows a representative example of the arm angle
decay due to weakening during the 120-second assessment of

one of the ADAPT patients. The measurement exhibited some
minor noise. We used a high-order filtering method [43] to
provide a meaningful graphic to limit the noise of the method
and maintain the trend that could be used for the physical
examination assessment. The decay of both arms was linear and
significant. It was however difficult for the medical examiner
to quantify the slope or even notice it.

Figure 11 shows an example of the vertical elevation
examination with respect to time for both hips, involving
tracking the elevation of landmark points (23) and (24) (Figure
1B) as a function of time. From this measurement, we could
not only compute acceleration and speed as indicators of muscle
function but also assess the stability of the motion by measuring
lateral motion in the x-coordinate.

One of the benefits of having the whole body tracked during
these MG-CE evaluations is the ability to access additional
information, such as the ability of the patient to stay stationary
and keep their balance. While all measures are in pixels in the
video itself, we recovered a good approximation of the physical
dimension using the known dimension of the seat.
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Figure 10. Patient performing one of the exercises of the protocol with movement of the arms. Tracking the angle of right and left arm lowering during
the exercise.

Figure 11. Elevation of both hips during the exercises: (A) normal stand up; (B) weak stand up. The right hip is indicated in blue, and the left hip is
indicated in green.

Counting Exercise
This evaluation is used to assess breathing and speech quality.
We used a data set of 6 patients involving 2 sessions and 9
additional healthy subject voice exercises. Audio files were cut
to start and end approximately within 1 to 3 seconds of initiation
and the end of counting. Based on the evaluation of patients
performed by the physician according to the protocol [7], there
were rarely differences between the first visit and the second
controlled visit for ptosis and diplopia grading. We found
however that most of the metrics described above had some
variability from one visit to another, and might be considered

as more sensitive metrics than the current physician examination.
We will report here on our main findings with these metrics.

Instead of using the maximum number reached during the
single-breath counting exercise, we used the duration of the
exercise itself to grade the exercise. We found that the maximum
number counted was weakly correlated with the duration of the
single-breath counting exercise. The maximum number reached
was indeed dependent on the speed of diction that varies greatly
from one patient to another. To be more precise, one may expect
that the airflow output value for the patient depends on the
loudness of the voice and the pitch of the voice. In fact, we
found that loudness and pitch computed with our algorithm

JMIR Neurotech 2023 | vol. 2 | e43387 | p.94https://neuro.jmir.org/2023/1/e43387
(page number not for citation purposes)

Garbey et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


varied dramatically from one patient to another. There had been
no calibration of the microphone at the patient’s home, so we
used the duration of the single-breath counting exercise as an
indicator of MG severity. We suspected that a lower duration
of the single-breath counting exercise is associated with more
severe shortness of breath symptoms. We formulated the
hypothesis that breathing difficulty might be detected by
analyzing the signal in a range of frequencies concentrating on
the typical breathing rate window. We used a fast Fourier
transform to obtain the spectrum of the voice signal during the
complete duration of the counting to 50 exercise and computed
the energy of the signal restricted in the low-frequency window
(5 Hz to 25 Hz). We found a weak correlation between the
energy and MG severity estimated as described above (Figure
12). There were 2 outliers corresponding to 1 of the 6 patients
who had severe symptoms according to the examiner annotation

(Figure 12). The voice of the patient was so weak in the
acquisition that the breathing signal information might have
been at the noise level of the method.

We did not proceed with the identification of dysarthria per say,
but looked for a relationship involving one of the generic metrics
that could be computed such as spectral entropy or
Teager-Kaiser energy. An example of the mean entropy of the
voice signal (Figure 13) shows that this criterion is promising
and may separate patients from healthy controls. Counting the
number of singular picks in entropy during the examination
provides better separation between patients and healthy subjects.
The argument would be that an MG patient has a more
monotonic voice than a healthy subject. More evaluations will
be needed to confirm if entropy is a good metric. In contrast,
Teager-Kaiser energy did not clearly separate MG patients.

Figure 12. Weak correlation between the duration of counting and the energy of the signal in the low-frequency bandwidth corresponding to the
breathing range. Three patient sessions with voice loudness below the threshold were not counted in the fitting. The 2 outliers are from 1 patient who
had a very weak voice acquisition.
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Figure 13. Mean Entropy of the voice signal during Exercise 7.

Discussion

Principal Findings
We have systematically built a series of algorithms that can
automatically compute the metrics of the MG-CE, which is a
standardized telemedicine physical examination for patients
with MG. This effort was motivated by the increasing use of
telemedicine and the appreciation of inherent limitations of
presently used clinical outcome measures [44,45]. For the
MG-CE, the examiner ranked the subjective observation of each
examination item into categories, but this separation among
classes was performed a priori and was not the result of data
mining in a large population. In that context, the threshold
numbers used to separate metrics, such as duration, are likely
to be artificial. The data collection for these tests during a
teleconsultation is tedious, repetitive, and demanding for the
physician. We demonstrated a methodology, which can
accelerate the data collection and provide the rational for a
posteriori classification of MG severity based on a large
population of patients.

Other ranking of the test might be intuitive, for example, how
to define or compare difficulty in standing up. It may involve
tedious motion due to muscle weakness, arthritis, or obesity.
Currently, the duration of cheek deformation is not counted,
but our methodology may eventually provide a precise

measurement. Based on the new data set that our method
provides, one should investigate further if the MG-CE
classification, as well as all other categorical measures in MG,
should be revisited to consider the new metrics that our
algorithm can provide. In particular, the dynamic component
of muscle weakness, which is a hallmark of MG and an
important factor in quality of life, is not captured well by
existing clinical outcome measures and not at all in routine
clinical practice [46].

Our study exposed limitations in aspects of neuromuscular
examination. The ability to deform the cheek does not say much
about the ability to hold pressure and for how long. The cheek
deformation exercise did prove to be the most difficult for
achieving proper digitalization. The scoring of this exercise in
the original medical protocol appeared particularly limited. We
have refined mouth deformation monitoring under laboratory
conditions with our Inteleclinic system to better apply computer
learning techniques. Moreover, the counting exercises can be
used to assess respiration function, but the number achieved
does not fully equate to the severity of respiratory insufficiency.

Another challenge for our evaluation is that patients can
compensate for some level of weakness and reduce the apparent
severity assessed by the examination. For example, the ability
to precisely compute the trajectory of the patient’s hip movement
during the sit-to-stand exercise may identify if there is
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compensation by one leg supporting the movement more than
the other. This situation could be particularly difficult for a
human examiner to identify. Overall, our algorithms should
give unbiased results and remove any potential subjectivity
from the medical examination.

The accuracy of every computer algorithm must be constantly
interrogated. Every metric should, in principle, come with an
error estimate, which is not frequently the case in the current
solutions, including that of the human examiner. One key
component to ensure such quality of results is to control the
condition of the acquisition of video and sound during the
telemedicine session. With voice analysis, we would need to
ensure proper calibration of the microphone at the patient’s
home, as well as check during the sound registration that the
patient speaks with a loudness within acceptable bounds. The
later can be done automatically in order to provide guidance
during the examination. Similarly, the AI and computer vision
aspects of the data acquisition require the patient’s distance
from the camera and the light condition to always be consistent
with the exercise requested. This is technically feasible because
the telehealth system can compute in real time the dimension
in pixels of any ROI and the quality of segmentation in order
to correct any obvious mistake in the data acquisition. For
example, the AI model of Figure 1B that tracks the sit-to-stand

exercise fails if the patient’s head leaves the video frame. This
kind of problem can be immediately reported to the examiner
during the test. Another example is that the single-breath
counting test may poorly define the initial state, speed, and
loudness of speech, as counting greatly varies between patients
and has an impact on breath performance evaluation.

Conclusion
Systematic digitalization and control of quality of the MG-CE
are advantageous and would allow trained medical assistants
to perform standardized examinations, allowing the physician
to concentrate on patient questions and education instead of
managing the logistics of the test. We also assessed our
hardware-software “Inteleclinic” solution for telehealth
consultation, which appears to be able to enhance data quality
(described in a provisional patent; number 63305420; Garbey
M and Joerger G, 2020). Our methods and technology would
be particularly applicable to clinical trials, which are limited in
requiring a large number of examiners who all perform
assessments in slightly different manners. A trial could substitute
present operations with a central telemedicine facility. We
envision that our telehealth approach can be applied to other
neuromuscular diseases beyond MG and will provide objective,
reproducible, and quantitative health care assessments that go
beyond the present capabilities.
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Abstract

Background: Tourette syndrome is a neurological disorder that is characterized by repeated unintentional physical movement
and vocal sounds, better known as tics. Cases of mild Tourette can have tics numerous times throughout the day, while severe
cases may have tics every 5 to 10 seconds. At certain times, typically during high levels of stress, tics become chained in an
incessant, continuous fashion—this is known as a tic attack. Tic attacks incapacitate the patient, rendering it difficult for them to
move, perform daily actions, and even communicate with others. Caretakers—usually guardians, family members, or nurses—can
help reduce the time tic attacks last with their presence and by providing emotional support to the patient.

Objective: We describe TSBand, a wearable wristband that uses machine learning algorithms and a variety of sensors to monitor
for tic attacks and notify caretakers when an attack occurs.

Methods: We conducted a research survey with 70 Tourette patients to determine the usability and functionality of TSBand;
internal review board approval was not required.

Results: This study has resulted in a smart wristband prototype that costs US $62.74; it uses movement, heart rate, sweat, and
body temperature to detect tic attacks using a hybrid local outlier factoring and regression algorithm. An audio tic attack detection
mechanism is also included, using recurrent neural networks, and a manually activated backup button and backup audio mechanism
are fitted to alert caretakers on the personalized companion app.

Conclusions: TSBand enables the caretaker to provide support faster and prevent excessive self-harm or injury during the attack.
It is an affordable and effective solution, solving a problem that many Tourette patients, often children, face. This study has not
had the opportunity to test TSBand with any Tourette patients, and we aim to perform rigorous testing and analysis after grant
funding is secured.

(JMIR Neurotech 2023;2:e43351)   doi:10.2196/43351
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Tourette syndrome; neurological diseases; tic attacks; wearable technology; movement disorders; tremor monitoring; biosensing
technology; automatic tic detection
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Introduction

Background
An estimated 350,000 to 450,000 children and adults in the
United States alone have Tourette syndrome (TS), a neurological
disorder that causes involuntary movements or vocal sounds
known as tics, and about 1 million children and adults in the
United States have other persistent tic disorders [1]. Tics are
usually most prevalent in adolescents, and the severity of the
disorder tends to decrease with age, making children with TS
a community that needs medical and technological innovation.
Research has shown that around 1% to 3% of children in
mainstream schools are affected by TS [2]. Specific tics and
their severity vary from person to person (eg, hand gestures vs
whole-arm movements), but nearly all tics can be categorized
as uncontrollable movements or audible noises. Specific tics
can both develop and disappear at random. People who have
TS often also experience symptoms of obsessive-compulsive
disorder and attention deficit hyperactivity disorder in addition
to tics [3].

Under certain situations of high stress or anxiety, a tic attack
may occur, an event characterized by nonstop tics of higher
severity that often incapacitate the physical motion and verbal
communication of the patient. The frequency of tic attacks can
range from occasional (less than once a month) to daily; attacks
can vary dramatically from person to person, and they can last
from a few minutes to several hours [4]. There is no cure for
tics or tic attacks, but the severity of tic attacks can potentially
be reduced by medications such as neuroleptics or fluphenazine
[5]. Providing medicine and emotional support is typically the
job of caretakers, such as parents, guardians, and nurses, but
constant surveillance is not always possible.

Product/Need
Few products currently exist for patients with TS. There are
some products designed to mitigate tics through slight electrical
pulses, but these do not help solve the problem of detection and
alerting someone for help. TSBand is a wearable wrist device
that aims to automatically detect when a tic attack is occurring
and then alert a nearby caretaker with a mobile notification. The
device serves as a bridge between caretakers and patients,
allowing those in need to receive help without physically
needing to call for it. This can potentially decrease the span of
a tic attack from hours to just a few minutes with help from the
caretaker, limiting the time of struggle and the possibility of
self-harm. This is helpful for adults but is especially helpful for
children, who are more inexperienced with handling attacks, as
caretakers can be notified instantly via TSBand and help the
child by quickly practicing behavioral techniques to calm the
child down, reducing the time of the attack. Additionally, studies
have shown that medical technologies integrating mobile phones
and wearable sensors need improvement and further scrutiny
[6]. This paper proposes the development of TSBand to detect
tic attacks and notify caretakers.

Methods

Sensors Used for Detection
To facilitate the detection mechanism of the device, common
patterns that people with TS usually exhibit must be analyzed.
TSBand is equipped with a triaxial gyroscope and accelerometer,
a pulse sensor, and a body temperature and humidity sensor.
When tic attacks occur, patients usually exhibit uncontrollable
and repetitive upper limb movement. The gyroscope and
accelerometer help in providing data to perform the necessary
computations to determine tic attacks from arm movement. The
accelerometer is used to gather data on the speed and
acceleration of the arm during tic attacks, while the gyroscope
is used to provide information on roll, pitch, and yaw to account
for the variation in angle and thus calculate the angular speed
and acceleration. Furthermore, a microphone is used to assist
with the detection and account for vocal tics as well (described
in the Audio Analysis section).

In one previously published paper, researchers described a
detailed clinical study showing that high blood pressure, stress,
and an increased heart rate during tic attacks are all signs and
symptoms commonly reported by patients with TS [7]. By using
these vital signs in combination with movement, the tic detection
algorithm can be enhanced for a higher degree of accuracy. To
measure these factors and symptoms, TSBand includes a pulse
sensor that actively measures the heart rate of the user. As
temperature and sweat can increase because of both movement
and stress, the body temperature and humidity sensor monitors
for increasing fluctuations in these 2 vital signs. Combined,
these sensors are used to detect changes in the vital signs of
patients with TS and serve as another method to monitor for tic
attacks.

Machine Learning
Because tics and tic attacks vary from person to person, the
detection model cannot be generalized, rather, it needs to be
custom-tailored to each individual. To monitor for and detect
tic attacks, TSBand requires a 2-day calibration period in which
the user’s movement patterns are stored to determine the tic
patterns of the individual patient. The wristband will need to
be worn both during the day and at night for calibration, as
severe tics persist throughout the night and during sleep in some
people. The device calibration is used primarily to detect the
regular movement patterns of the user to determine a common
baseline and allow the wristband to adapt to the unique baseline
of the patient. There does not need to be any tic attack during
the calibration period for the algorithm to work as intended; if
there are any tic attacks, the algorithm will likely classify them
as outliers based on the other data collected during this period.
Using the local outlier factor (LOF) algorithm, TSBand separates
tic attacks from normal, everyday movements. The variables
that the LOF model analyzes are speed and acceleration; these
were chosen because traditional models such as random forest
and regression are less accurate at detecting tic attacks with
these parameters. LOF models use a vast amount of data to form
clusters and, when optimized, can be used to find outliers in the
data set.
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LOF uses unsupervised machine learning techniques that use
the density distribution and standard deviation of data points to
detect outliers in the data. Considering reachability distance
and the density of the data values, TSBand uses a fine-tuned
algorithm to limit the nearest neighbor’s parameter to ensure
that clusters will not be formed near a tic attack, helping reduce
the number of false positives:

By obtaining data for 2 days to train the model, TSBand can
uniquely tailor the detection system to each individual user for
ease of customization and personalization. The 2-day calibration
period also helps limit both the number of false positives that
occur and the number of clusters around tic attacks, thus
increasing the overall accuracy of the model. The data during
the 2-day calibration are the only data used to determine outliers;
all later data are not recorded or stored for detecting tic attacks.

In addition to the outlier algorithm, a linear regression
model—used to find trends over data points—was implemented
as a measure to enhance the detection process. The regression
model measures data from the last hour to search for dramatic
increases and changes in vital signs parsed through a certain
threshold value. The threshold is passed when the rate of change
at the data point is greater than or equal to 4/3 or less than or
equal to –4/3. The ±4/3 threshold value was chosen because
vital signs such as heart rate are usually stable, and when
variations occur, the changes are dramatically visible, allowing
±4/3 to be a sensible rate of change to use. However, as this
threshold range was chosen through a reasonable estimate, it is
subject to change after refinement of the algorithms with patient
testing:

y=b0+b1x1

Threshold Range: –43 ≤ y’ ≤43

The algorithm uses this principle to determine whether vital
signs such as stress, sweat, body temperature, and heart rate are
increasing or are predicted to increase for the wristband bearer.
This mechanism can be used to find general trends in vital signs
that are clear indicators of tic attacks. The combined algorithms
output a percentage that conveys the likeliness of a tic attack
occurring. Although variations in heart rate, temperature, and
humidity might signify an attack, these parameters are not
always correlated with a tic attack, while movements are. To
place greater emphasis on movement, 70% of the final prediction
relies on this parameter, while the other values equally share
the remaining 30%. These ratios are subject to change after
testing among real patients with TS is completed and data are
aggregated:

PTotal=0.7PMovement+0.1PHeartRate+0.1PTemperature+
0.1PSweat/Humidity

Once the probability of the total attack (PTotal) is calculated, any
result over 80% will register an alert and notify the caretaker.
When the threshold is passed for the linear regression models,
the attack is considered “true” (ie, PVital=1), and the model will
stop analyzing new data until the patient can confirm the attack
is over on the mobile app or there has not been a tic attack
registered (ie, PTotal>80%) for an hour. When either of these
conditions is met, the model will then assess the data from the
last hour and continue monitoring new vital sign data from
thenceforth. The value of 80% for PTotal is a default value and
can be changed manually by the caretaker and the patient to suit
their specific needs through our companion mobile app. This
feature was added in consideration of people who may not
experience large fluctuations in health vital signs during tic
attacks; however, the value should remain above 70% so as to
not rely only on movement.

Band Design and Schematics
The wristband has a sleek design to enhance the experience of
the user. The band is powered using an ESP32 Wi-Fi chip
(Espressif Systems), which is used to send data to a live-updated
database hosted on Firebase (Google Inc). To program the
ESP32, the Arduino C++ language was used. All the sensor
data collected from the user are securely stored in Google’s
real-time Firebase server, where the algorithms, hosted on
Google Cloud, execute decisions and determine whether a tic
attack is occurring. The wristband may also potentially be able
to predict tic attacks before they occur. Although movement
cannot be used as the sole factor for prediction because stress
is often a precursor to tic attacks, increased heart rate and body
temperature can potentially be used as a predictive mechanism.
When a tic attack is detected, an alert is immediately sent to the
caretaker’s phone through the companion mobile app. A buzzer
is built into the band that sounds to act as an audio cue to notify
the user that an alert has been sent.

A backup method exists in case a tic attack occurs but the
algorithm does not detect the attack; this allows the user to
manually send an alert to the caretaker. A button on the device
can be pressed and held for 5 seconds to send a request to the
caretaker for help. A potential issue with the button is that a
user could develop a motor tic and press the button without the
intention to call a caretaker for help. Therefore, the button must
be held for 5 seconds to give the user time to reconsider the
action and let go of the button if necessary. Additionally, a
cancellation feature was implemented in case a faulty alert was
sent for any reason. If the user notices the buzzer going off, they
can press the button 3 times (or more) in the span of 1 second
to cancel the request to the caretaker. Figures 1 and 2 show a
computer-aided design model of the prototype, and Figure 3
displays the prototype being worn. Because of budget
constraints, we were not able to scale down the size of our
central processing unit, which is why wires can be seen coming
out of the device in Figure 3.
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Figure 1. Computer-aided design model of the TSBand prototype (bottom view).

Figure 2. Computer-aided design model of the TSBand prototype (bottom view inside the compartment).

Figure 3. TSBand prototype being worn on the wrist.

Audio Analysis
Tics do not only occur in the form of motor movements—they
can also appear as verbal noises. Vocal tics are common and
words or specific phrases are typically blurted out at random
moments. During tic attacks, patients with TS usually repeat
those specific phrases or other sounds over a very short period.
On the device, audio files obtained through a microphone are
passed through a high-pass filter to limit background noise. By
converting speech to text and analyzing patterns in speech over
a certain time interval, the wristband is able to detect and process
vocal tics. The model used to train the speech recognition
software is a recurrent neural network model that uses a long
short-term memory algorithm. The data were compared with
the Google Speech data set and had an accuracy rate of 92%.
To limit the amount of error in this trial, the algorithm was
designed to listen for and catch the frequency of a specific word
repeated over a period of 10 seconds. If the repetition occurs

for a duration that is longer than average for the user, a
notification is sent to the caretaker. This audio detection
mechanism is independent of the physical detection mechanism;
if one detects an attack while the other does not, an alert will
still be sent.

Furthermore, a backup vocal alert system is also included in
the band as a supplement to the audio analysis. Much like smart
home devices such as Amazon Alexa or Google Home Mini, a
prerecorded audio cue phrase can be set to instantly send an
alert notification to the caretaker. For example, if the cue phrase
is “notify TSBand,” a notification is sent to the caretaker alerting
them of an ongoing attack any time the wristband detects this
specific phrase. The phrase only needs to be said once, which
is why it is important to pick a specific, uncommon phrase. This
is intended for an absolute emergency backup case, such as
when the automatic detection and repeated phrase detection fail
and the backup button is not pressable due to an excessive
number of tics that limit movement. There is potential that the
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user develops a regular verbal tic for this exact phrase, causing
the alert to be triggered when there is no tic attack. Thus, the
audio phrase that triggers the alert can be changed and
prerecorded again through the mobile app to preserve the use
of this feature. Again, the buzzer will sound to notify the user
that an alert has been sent, and the cancellation feature is still

valid in this scenario if it is necessary to cancel the request. The
flowchart in Figure 4 summarizes the process. Figure 5 shows
the vocalization diagram of the phrase “notify TSBand” in a
signal diagram. Figure 6 shows the vocalization in a spectrum
diagram. Figures 7 and 8 show the audio vocalization under a
spectrogram and a mel spectrogram, respectively.

Figure 4. Flowchart diagram and schematics of the TSBand in operation. LOF: local outlier factor.
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Figure 5. “Notify TSBand” vocalization signal diagram.

Figure 6. TSBand spectrum diagram.

Figure 7. TSBand spectrogram diagram.
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Figure 8. TSBand mel spectrogram diagram.

Mobile App
TSBand has a companion mobile app to send notifications to
caretakers. After downloading the app, a caretaker or a group
of caretakers can pair with the wristband—this can be done as
each band has a unique hash code associated with it that can be
used to accurately pair up with the app. The app displays certain
health vitals, namely heart rate and body temperature, and an
audio monitor that shows the frequency of words and reports
if there is anything abnormal. The value is shown as either
“stable” or “unstable” depending on the count of the repetition
of words (it is determined the same way as described in the
Audio Analysis section). Heart rate and body temperature are
read directly from Firebase and are displayed live on the app.

As shown in Figure 9, typical activity will result in the bar at
the top showing the status “no issues.” If a tic attack is detected
by the algorithm, a push notification (pop-up notification) will
appear on the phone to alert the caretaker. Upon opening the
app, as shown in Figure 10, the “no issues” bar at the bottom
will have changed to the “possible attack” status. The app will
not send any new push notifications on the phone while the
status is “possible attack.” If the situation has been handled, the
“possible attack” button can be pressed on the app to revert the
status back to the normal “no issues” value, and at that point,
the app will once again send push notifications in case another
tic attack happens. Pressing this button will lead to the restart
of the regression models.
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Figure 9. Mobile app when tic attack is not occurring.

Figure 10. Mobile app when tic attack is occurring.
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Additional Procedure
We have not yet had the opportunity to evaluate or test our
device with physical participants or patients due to funding and
time constraints. This paper focuses on introducing the
technology behind the device and analyzes its potential
introduction into the market. We have performed said analysis
through a preliminary research survey to obtain perspective on
the potential of the device. This survey—mainly consisting of
questions inquiring about the personal experiences of tic attacks
among patients with TS and asking for feedback and new
features for the wristband—was filled out by 70 people with
TS and is detailed in the sections below.

Ethical Considerations
The survey did not contain any questions that would induce
physiological stress or anxiety and collected only nonsensitive
data; thus, we did not need ethics approval. A link to the
quantitative questions and results is available in the Data
Availability section.

Results

Finances
For the economic and financial analysis, we determined the
current cost of our prototype in US dollars (Table 1), but since
parts and materials are subject to change, we did not predict a
potential final price. In the future, since the current prototype
is bulky, we plan to further size it down. We hypothesize that
the overall prototype cost will be reduced with mass
manufacturing, but it is difficult to estimate the price of a smaller
central processing unit and other final parts, as there are many
variables involved with finding new components.

With a final cost of $62.74, TSBand will be suitable for potential
users. Furthermore, on the mobile app side of this service, it is
estimated that server upkeep and fees for application
programming interfaces used for the software behind the device
will cost an additional US $5.00 per user per year. If the
wristband is mass manufactured with a custom-printed circuit
board, both the cost and size of TSBand can be reduced.

Table 1. Prototype cost structure.

Cost (US $)Components

9.95ESP32 feather

10.99Pulse sensor

5.00Humidity and temperature sensor (DHT11)

6.00Gyroscope and accelerometer sensor (GY-521)

4.45Audio microphone (AOM-5035L-HD3-R; PUI Audio)

1.25Buzzer (WT-1614T; Soberton Inc)

19.99Battery source (130 maH)

0.11Velcro

5.003D printing

62.74Total cost

Research Survey
The questionnaire was an online survey consisting of 11
questions, both qualitative and quantitative, directly addressing
the TS community. The survey was a completely blinded review
survey performed online on social media platforms that posed
both quantitative and open-ended questions. To ensure
anonymity and to abide by Health Insurance Portability and
Accountability Act and the General Data Protection Regulation,
data on the participants were not tracked so that responses would
be more transparent. The collected data are held securely.

Survey Findings
Notably, 64 of 70 (91%) respondents said that they struggle to
communicate with caretakers when having a tic attack, and 67
of 70 (96%) respondents believed that stress and anxiety are
contributing causes of tic attacks. In qualitative responses, one
common comment was that an alert could help bring forth a
trusted caretaker who could help calm the patient down and
ensure they do not cause self-harm. Some mentioned that the
material of the wristband is also extremely important due to
skin irritation that some face. In addition, the structural integrity

of the band must be strong to ensure longevity and so the band
does not break when exposed to movement during an attack.
We found that 30 of 70 (43%) respondents believed that having
a person near them would help them cope with the attack, while
13 of 70 (19%) respondents said it would only help if the figure
was trusted. Overall, 53 of 70 (76%) respondents stated that
such a device would be useful for them. Those who stated that
the device would not be beneficial to them were adults who did
not have caretakers or did not use medication, as their tic attacks
were of shorter duration.

Discussion

Limitations
Certain limitations still exist with wristband detection. For
example, it is difficult to differentiate exercise from a tic attack,
as both include excessive movement of the body. If the
machine-learning model is not trained with exercise data, it may
consider simple tasks like running to be a tic attack, but if the
model is trained with exercises like running, it may potentially
consider a tic attack to be another aspect of a daily routine and
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not trigger an alert. A model trained without exercise would
force the user to take off the wristband during physical activity
and leave them vulnerable to a sudden tic attack with no
automatic detection. Ideally, someone else would supervise
them in this scenario, but adding measures such as the ability
to turn off the automatic detection algorithm of the band while
still keeping backup elements active would be optimal for users
when exercising. Alternatively, if the model is trained with
exercise, there is potential that with vast data on previous
patterns of the patient and an exercise mode built into the
wristband, the algorithm can stay powered on during activities

like running and assess differences between tic attacks and
exercise. Creating an exercise mode would need much
experimentation and previous data on the user’s personal tic
attacks to accurately differentiate between physical activity and
tic attacks. We also recognize that the survey of 70 respondents
does not represent the entire population of people with TS.

Comparisons to Similar Wristbands
Similar studies have been conducted for tic movements and
other tremors, such as those caused by Parkinson disease (Table
2).

Table 2. Comparison with similar wearable technologies.

Audio analy-
sis

Recognition methodMeasure of vital signsMeasure of movementProject purposePaper

Long short-
term memory

Local outlier factor, regres-
sion, threshold

Heart rate, body temperature,
sweat

Accelerometer, gyroscopeMonitor for and detect tic
attacks

This paper

NoneTime variant thresholdNoneAccelerometerDetect tic movementsBernabei et al
[8]

NoneDeep-learning neural net-
works

NoneMobile phone accelerome-
ter

Monitor Parkinson tremorsFraiwan et al
[9]

NoneStatistical pattern recogni-
tion

NoneAccelerometer, gyroscopeDifferentiate upper limb
tremors from regular
movement

Kim et al [10]

NoneSupport vector machine
and Markov models

Surface electromyographyAccelerometerDetect tremor and dyskine-
sia in Parkinson patients

Cole et al [11]

The most similar wristband to TSBand is the band developed
by Bernabei et al [8], which uses a triaxial accelerometer to
determine tic movements. It corroborates video analysis with
the wristband data to detect tic activities, but it cannot detect
tic attacks. Furthermore, it does not use any other factors, such
as angular acceleration, vital signs fluctuations, or audio analysis
to determine tic movements, and is not tailored to each
individual that uses it. Kim et al [10] applied an inertial
measurement unit on a worn device to differentiate typical daily
movement from tremors in the upper limbs. Artificial tremors
were generated, and the data were passed through statistical
pattern recognition to determine if a reading was a tremor or
standard activity. The studies conducted by Fraiwan et al [9]
and Cole et al [11] both monitored for tremors in Parkinson
patients, with the former using the accelerometer in a
smartphone and the latter using a separate accelerometer sensor.
Both used neural networks for the detection of tremors, but Cole
et al also used surface electromyography for a higher rate of
accuracy. The machine-learning techniques used in both studies
were used only for tremor detection accuracy and did not
incorporate customizability for individual patients, as all
Parkinson tremors are quite similar. The machine learning
models used in TSBand, however, are intended to adapt to each
person’s unique tics and tic attacks for better detection purposes.
This wristband serves as a complete solution that could
immediately be used by those in need, with backup and
emergency situations accounted for in its design. Because of
the personalization TSBand provides, it could also potentially
be used for similar conditions with similar symptoms, including
myoclonus, tremors, chorea, athetosis, dystonia, akathisia
movements, paroxysmal dyskinesias, and ballistic movements.

Future Work
Initially, TSBand was designed to be a thin bracelet strapped
around the wrist, but because the sensors took up a large amount
of space, a storage compartment was added to hold them.
However, this storage compartment now gives the potential to
add a light emitting diode screen, among other options, on top
of the compartment, which could be used to enhance the user
experience. Based on survey responses, certain features could
be added to the band and mobile app to improve user benefit.
One common suggestion was a GPS system to determine the
location of the attack to better notify the caretakers, as well as
a screen on the wristband itself that shows how far away the
caretaker is to give an estimate of how long it would take for
them to arrive. Another feature was for the app to not only notify
caretakers, but also inform teachers or coworkers that a tic attack
is occurring. Several individuals who were students mentioned
that they were embarrassed to raise their hands to tell teachers
that they needed to leave the classroom during a tic attack, so
this mechanism would effectively avoid said embarrassment
by providing a tacit signal to the teacher that the user needs
some time and space away from class to calm down.

We would like to test the current accuracy of the band among
patients with TS to determine specific values for the regression
model, see which areas need to be improved on, and understand
how new features can be incorporated (eg, the exercise mode).
A common request from the survey was a way to also send
information on the severity of the attack so as not to worry the
caretaker if the attack is only mild. Adding this would be
extremely helpful but would require a great deal of testing and
experimentation to measure severity. We are also looking to
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enhance our algorithm to potentially predict tic attacks before
they occur based on previous behavior patterns and also scale
down the size and cost of TSBand through a custom-printed
circuit board to fit better on the wrist. In terms of sensors,
upgrading the band to include more accurate and precise sensors,
such as galvanic skin response and blood pressure sensors,
would allow it to detect tic attacks more effectively and
accurately. We filed a provisional patent with the United States
Patent and Trademark Office on October 8, 2022, and we hope
to finalize these upgrades and finish conducting this research
by September 2023.

Conclusion
In this work, machine learning and audio analysis are used to
detect tic attacks. LOF is used to individualize the detection
process, with a regression model used to ensure greater accuracy.
To reiterate, we were not able to test these machine learning
components with actual patients due to funding and other
concerns; we aim to do this in the future. Audio analysis is used
to check for repeated phrases over a time interval to detect vocal

tics. In addition to these features, we also have an emergency
audio backup method along with our standard backup button.
A recurrent neural network was trained on a Google Speech
data set to obtain a 92% speech accuracy rate. Within the next
year, we hope to add new features, scale down the size of the
device, add new sensors, and test the wristband among patients
with TS. We conducted a survey involving 70 participants with
TS to gather data on commonalities in tic attacks, the efficacy
of having a caretaker nearby, and qualitative feedback to help
determine limitations and solicit suggestions on the development
of the wristband. The benefit of a platform that connects patients
at risk with caretakers is not limited to those with TS. The
elderly or people at risk of seizures can benefit from having an
alert automatically sent to a caretaker when they are not able to
physically move or request help themselves. Any person that
requires an easy method of requesting assistance can use this
wristband and receive help faster. This wristband has vast
potential and can not only be applied to TS but used in many
different fields of health care and for patient treatment.
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Abstract

Background: Implementing automated seizure detection in long-term electroencephalography (EEG) analysis enables the
remote monitoring of patients with epilepsy, thereby improving their quality of life.

Objective: The objective of this study was to explore an mHealth (mobile health) solution by investigating the feasibility of
smartphones for processing large EEG recordings for the remote monitoring of patients with epilepsy.

Methods: We developed a mobile app to automatically analyze and classify epileptic seizures using EEG. We used the
cross-database model developed in our previous study, incorporating successive decomposition index and matrix determinant as
features, adaptive median feature baseline correction for overcoming interdatabase feature variation, and postprocessing-based
support vector machine for classification using 5 different EEG databases. The Sezect (Seizure Detect) Android app was built
using the Chaquopy software development kit, which uses the Python language in Android Studio. Various durations of EEG
signals were tested on different smartphones to check the feasibility of the Sezect app.

Results: We observed a sensitivity of 93.5%, a specificity of 97.5%, and a false detection rate of 1.5 per hour for EEG recordings
using the Sezect app. The various mobile phones did not differ substantially in processing time, which indicates a range of phone
models can be used for implementation. The computational time required to process real-time EEG data via smartphones and the
classification results suggests that our mHealth app could be a valuable asset for monitoring patients with epilepsy.

Conclusions: Smartphones have multipurpose use in health care, offering tools that can improve the quality of patients’ lives.

(JMIR Neurotech 2023;2:e50660)   doi:10.2196/50660

KEYWORDS

Android; epileptic seizures; mobile health; mHealth; mobile phone–based epilepsy monitoring; support vector machine; seizure;
epileptic; epilepsy; monitoring; smartphone; smartphones; mobile phone; neurology; neuroscience; electroencephalography;
EEG; brain; classification; detect; detection; neurological; electroencephalogram; diagnose; diagnosis; diagnostic; imaging

Introduction

According to the International League Against Epilepsy,
epileptic seizures are characterized by an unpredictable

occurrence pattern and transient dysfunctions of the central
nervous system due to excessive and synchronous abnormal
neuronal activity in the cortex [1]. Electroencephalography
(EEG) can be used to determine the epileptogenic zone or to
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monitor patients in the intensive care unit for seizures or monitor
seizures for therapy adjustment. EEG signals are collected over
a period of time and analyzed to detect seizure events. Today,
almost everyone uses smartphones, and smartphone apps are
being used to solve real-world human challenges including
health-related issues. Regarding the remote monitoring of
patients with epilepsy, there is a need to develop an efficient
smartphone app that processes long-term EEG recordings for
seizure detection. Therefore, the goal of this paper was to
develop and evaluate the feasibility of a mobile app for the
remote monitoring of patients with epilepsy.

In this context, an automatic mobile phone–based approach for
epileptic seizure detection was proposed by Menshawy et al [2]
using time, frequency, entropy, and discrete wavelet
transform–based features with k-means clustering. EEG signals
recorded from the EEG headset were stored in smartphones and
transmitted to a server. The preprocessing, feature extraction,
feature normalization, feature selection, and classification model
of EEG signals were performed on a cloud server. The results
were sent to the smartphones of patients and physicians via a
backend server. Based on the classification results, caretakers
were notified to take appropriate action. This study faced
limitations in terms of memory as the complete EEG signal had
to be sent to the server. Additionally, this approach was
computationally expensive due to the use of a large number of
features. McKenzie et al [3] assessed the ability of Smartphone
Brain Scanner-2 to detect epileptiform abnormalities using an
Android tablet that was wirelessly connected to a 14-electrode
EasyCap headset. An Android-based smartphone app for
monitoring patients with epilepsy was proposed using subband
features and a support vector machine (SVM) classifier [4].

mHealth (mobile health) has been proposed to detect generalized
tonic-clonic seizures, whereby an alarm is triggered for timely
interventions resulting in a possibly reduced risk of sudden
unexpected death in epilepsy [5].

Kiral-Kornek et al [6] proposed a mobile system–based epileptic
seizure prediction using big data and deep learning using
intracranial EEG signals. Typical statistics like seizures per
month, average sensitivity, and average warning time were
reported. Moreover, other studies have proposed a cloud-based
alert system using advanced statistics [7] and have explored
seizure prediction through deep learning techniques for EEG
big data [8,9]. Some studies [2,6-14] have used cloud computing
for EEG analysis and seizure detection. Additionally, a few
mobile devices, namely SmartWatch, Embrace Watch, Brain
Sentinel, and EpiWatch App, have been developed for seizure
detection to alert caretakers and to prevent sudden unexpected
death due to epilepsy [15].

Our study focuses on harnessing smartphone capabilities to
implement the entire seizure detection model, which eliminates
the need for cloud technology. The Sezect (Seizure Detect) app,
our mobile phone–based seizure detection model, provides
information such as the number of channels, sampling
frequency, EEG signal duration, seizure frequency per channel,
and seizure-affected channels. Further, the app was developed
using open-source software, allowing researchers public access
and the ability to replicate the process. Therefore, the proposed
approach could be a valuable tool for the remote monitoring of
patients with epilepsy. Figure 1 shows a block diagram of the
proposed smartphone-based monitoring approach for patients
with epilepsy.

Figure 1. Block diagram of the proposed smartphone-based monitoring approach for patients with epilepsy. EEG: electroencephalography; SVM:
support vector machine.
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Methods

Clinical EEG Recordings
In order to deploy the seizure detection model via smartphone,
the cross-database model in our previous study was developed
using EEG recordings from Ramaiah Medical College and
Hospitals (RMCH) (Bengaluru, India), Children’s Hospital
Boston-Massachusetts Institute of Technology (CHB-MIT)
(Boston, MA), Temple University Hospitals (TUH)
(Philadelphia, PA), Maastricht University Medical Centre
(MUMC) (Maastricht, Netherlands), and the University of Bonn
(UBonn) (Bonn, Germany) [16]. The same cross-database model
was implemented on a smartphone and validated using 20 new
patients’EEG recordings collected from the RMCH and MUMC
databases. EEG recordings with a total duration of 13 hours
were tested via smartphone.

Ethical Considerations
The 3 EEG recordings used in our study, namely from
CHB-MIT, TUH, and UBonn, are available publicly. Ethical
committee approval was sought for the RMCH and MUMC
EEG recordings before use in this study.

Chaquopy
Chaquopy is the Python software development kit for Android
[17], which allows reuse of existing Python code on Android
and takes advantage of Python Package Index packages
including numpy, sci-kit learn, scipy, and others. The GitHub
repository provides more details on how to use Chaquopy [18].
The chaquopy-console template was used to run the seizure
detection Python code on the app.

Seizure Detection Model
The methods followed in this study were introduced by us in
our previous studies [16,19-21]. The optimized cross-database
seizure detection model was built in our previous study [16].
Two features, the successive decomposition index [19] and
matrix determinant [20], were extracted from all 5 databases
and their baseline was updated using adaptive median feature
baseline correction [21]. The features were classified using the
SVM classifier via the leave-one-database-out cross-validation
method and a postprocessing technique was implemented by
applying a 10-tap moving average filter to the classifier output
to reduce false detections. This model was then coded in Python

and exported into a pickle file for smartphones to test the new
EEG recordings.

Mobile Phone–Based Seizure Monitoring
To demonstrate proof of concept, the Sezect Android app was
tested for epileptic seizure detection using EEG signals. It is
important to investigate how different versions or models of
smartphones perform in processing EEG signals, which will be
useful to know to make the proposed method scalable.
Therefore, we tested the proposed algorithm on the following
mobile phones: Nokia, Moto X Play, and Redmi Note 4. Overall,
20 new EEG recordings from patients with epilepsy from both
MUMC and RMCH were used to evaluate the efficiency of
these smartphones for seizure detection. Using joblib from the
sklearnexternals library, the trained SVM model was dumped
into a .pkl file and loaded into the Sezect app to test the
recordings.

Results

The Sezect app was tested on 3 Android mobile phones with
the following configurations: (1) Nokia 8.1 (Android 10), (2)
Moto X Play (Android 8), and (3) Redmi Note 4 (Android 10).
Screenshots of the Sezect app results using Nokia are shown in
Figure 2, and a video of running the app is available online [22].
As shown in Figure 2, the app pulls information such as the
number of channels, sampling frequency, and duration of the
complete EEG data file. Further, it displays the elapsed time
required to process the complete EEG file, the number of seizure
events detected per channel, and the total number of seizure
epochs (each epoch length is 10 seconds).

Figure 3 illustrates the time taken by various smartphones to
process EEG recordings of different durations. The processing
time of the Sezect app shows that a mobile platform is capable
of handling large amounts of EEG data and perform feature
calculation and classification. The various mobile phones did
not differ substantially in processing time, which indicates a
range of phone models can be used for implementation. Further,
the robustness and scalability of the app was examined using
various hardware configurations for all 3 smartphones. We
observed a sensitivity of 93.5%, a specificity of 97.5%, and a
false detection rate of 1.5 per hour for new EEG recordings
using the Sezect app. The results suggest that our proposed
seizure detection algorithm could be a valuable asset to remotely
monitor patients with epilepsy using smartphone apps.
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Figure 2. Screenshots of the Sezect app results: (A) the Maastricht University Medical Centre database with 22 minutes of electroencephalography
(EEG) data and the Ramaiah Medical College and Hospitals database with (B) 3.73 hours, (C) 8.88 hours, and (D) 13.22 hours of EEG data.

Figure 3. The processing time required to analyze and classify various durations of EEG signals on different smartphones. EEG: electroencephalography.

Discussion

Comparison With State-of-the-Art Studies
Few studies have used cloud technology, the internet of things,
and smartphones to analyze EEGs and detect seizure epochs.
Menshawy et al [2] used server-based processing for data
preprocessing, feature engineering, and classification;
subsequently, generated reports were sent to doctors, and
caretakers were alerted upon detecting seizures. Cloud
computing was effectively used in some studies [4,10,12,14]
to perform feature engineering and classification using cloud

technology. Moreover, mobile devices like SmartWatch,
Embrace Watch, Brain Sentinel, and the EpiWatch App are in
use, designed to detect specific types of seizures [15]. However,
the proposed Sezect app was built using the cross-database
model from 5 EEG databases and has been found to be effective
in terms of computational time when tested on 3 different
smartphones. Physicians and nurses working in rural areas can
record EEG data and validate it using the Sezect app.

Contributions
The following is a summary of our contributions:
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1. We developed the Sezect app for Android using open-source
software to remotely monitor patients with epilepsy. The
app is made available as open-source software to improve
the reproducibility of our results. The source code for the
Sezect app can be found online [23].

2. The feasibility of smartphones for handling large EEG
recordings was determined using the Sezect app. Further,
we examined the time complexity by assessing the elapsed
time of the mobile app across various EEG durations.

3. Running all tasks on the cloud demands substantial memory
and can be costly. This study’s major contribution lies in
demonstrating the feasibility of automated seizure detection
via smartphones, eliminating the involvement of cloud
infrastructure.

Clinical Significance
Remote monitoring using smartphone apps will be useful to
monitor patients with epilepsy by analyzing EEG signals

collected over a period of time. Smartphones can serve multiple
uses in health care to improve the quality of patients’ lives. The
advanced technology of smartphones can be applied to solve
the workload burden of experts.

Future Directions
This study presented a proof of concept for a low-cost mHealth
solution aimed at the automated detection of epileptic seizures
for remote monitoring. Figure 4 illustrates the architectural
scope for a future remote monitoring system. In such a system,
a wireless EEG headset will be provided to the patient and
continuous real-time EEG signals will be recorded and stored
on smartphones. A cross-database classification model within
the smartphone will analyze EEG signals, generating a report
sent directly to the relevant physician for further action.

Figure 4. A future scope architecture for real-time smartphone-based seizure detection and the remote monitoring of patients with epilepsy. EEG:
electroencephalography.

Limitations
In our current implementation, we observed a slightly elevated
false detection rate, which needs to be addressed in the future.

Conclusion
The feasibility of a mobile phone–based app for the remote
monitoring of patients with epilepsy using a

database-independent optimized algorithm was demonstrated.
The app is open source, allowing researchers to reproduce it
according to their specific needs. It was tested using 3 different
types of smartphones. The results suggest that smartphones are
capable of handling large amounts of EEG data for feature
calculation and classification.
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