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Abstract

Background: Telemedicine practice for neurological diseases has grown significantly during the COVID-19 pandemic.
Telemedicine offers an opportunity to assess digitalization of examinations and enhances access to modern computer vision and
artificial intelligence processing to annotate and quantify examinations in a consistent and reproducible manner. The Myasthenia
Gravis Core Examination (MG-CE) has been recommended for the telemedicine evaluation of patients with myasthenia gravis.

Objective: We aimed to assess the ability to take accurate and robust measurements during the examination, which would allow
improvement in workflow efficiency by making the data acquisition and analytics fully automatic and thereby limit the potential
for observation bias.

Methods: We used Zoom (Zoom Video Communications) videos of patients with myasthenia gravis undergoing the MG-CE.
The core examination tests required 2 broad categories of processing. First, computer vision algorithms were used to analyze
videos with a focus on eye or body motions. Second, for the assessment of examinations involving vocalization, a different
category of signal processing methods was required. In this way, we provide an algorithm toolbox to assist clinicians with the
MG-CE. We used a data set of 6 patients recorded during 2 sessions.

Results: Digitalization and control of quality of the core examination are advantageous and let the medical examiner concentrate
on the patient instead of managing the logistics of the test. This approach showed the possibility of standardized data acquisition
during telehealth sessions and provided real-time feedback on the quality of the metrics the medical doctor is assessing. Overall,
our new telehealth platform showed submillimeter accuracy for ptosis and eye motion. In addition, the method showed good
results in monitoring muscle weakness, demonstrating that continuous analysis is likely superior to pre-exercise and postexercise
subjective assessment.

Conclusions: We demonstrated the ability to objectively quantitate the MG-CE. Our results indicate that the MG-CE should
be revisited to consider some of the new metrics that our algorithm identified. We provide a proof of concept involving the
MG-CE, but the method and tools developed can be applied to many neurological disorders and have great potential to improve
clinical care.

(JMIR Neurotech 2023;2:e43387) doi: 10.2196/43387
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Introduction

With the COVID-19 pandemic, there was a rapid increase in
the use of telemedicine in routine patient care [1] and in clinical
trials that moved to video evaluations to maintain subject
follow-up [2]. Telemedicine was already commonly used for
acute stroke care and was in development for Parkinson disease,
but the vast majority of neurologists were not using such
approaches and were suddenly thrust into unfamiliar territory
[3-5]. Diagnosis and monitoring of neuromuscular disorders,
in particular, rely on a nuanced physical examination, and
specialists would be particularly reticent to use telemedicine.
However, telemedicine has great potential to provide improved
assessment of aspects of neurological examinations, and
facilitate patient monitoring and their education [6], while
reducing patient burden in attending in-person clinic visits and
potentially increasing access. Further, there is great potential
for rigorous video assessment to enhance clinical trial
performance, which could reduce the burden on study
participants and thereby enhance recruitment and retention.

The Myasthenia Gravis Core Examination (MG-CE) [7] was
recommended for telemedicine evaluation of patients with
myasthenia gravis (MG), and it involves specific aspects of
neurological examinations critical to the comprehensive
assessment of patients with MG. The National Institutes of
Health Rare Disease Clinical Research Network dedicated to
MG, MGNet, initiated an evaluation to assess the feasibility

and validity of MG-CE for use in future clinical trials. These
assessments were video recorded using the software Zoom
(Zoom Video Communications), and we used the evaluations
performed at George Washington University with the following
2 objectives: (1) assess workflow efficiency by making the data
acquisition and analytics fully automatic and (2) evaluate the
potential to quantitate the evaluations.

Methods

MG-CE and Automatic Data Acquisition
The study used recorded telemedicine evaluations of individuals
with a clinical- and laboratory-confirmed diagnosis of MG. The
patients were provided instructions regarding their position in
relation to the cameras and level of illumination, and were told
to follow the examiner’s instructions. We used videos of 6
subjects recorded twice within 7 days to develop our algorithms.
One normal control subject was used to evaluate the
methodology prior to evaluating MG subject videos.

The MG-CE is summarized in Table 1, and a full description
has been provided previously [7]. The examination required 2
broad categories of processing: (1) the computer vision
algorithm to analyze video focusing on eye or body motions
and (2) the analysis of the voice signal, which requires a
completely different category of signal processing methods.
We describe successively each of the techniques used in these
categories and summarize the digitalization process in Table 2.

Table 1. Myasthenia Gravis Core Examination exercises and evaluation metrics [7].

Severe (3)Moderate (2)Mild (1)Normal (0)Variable

Eyelid below the pupilEyelid at the pupilEyelid above the pupilNo ptosisEyelid droop (ptosis)

Immediate diplopiaDiplopia with a gaze of 1-10
seconds

Diplopia with a gaze of 11-
60 seconds

No diplopia with a gaze of
61 seconds

Double vision (right/left)

Cannot perform the exerciseOpposes lips but air escapesTransverse puckerNormal “seal”Cheek puff

Cannot perform the exerciseAble to move the tongue to
the cheek, but no deformity

Partial convex deformity in
the cheek

Normal: full convex deformi-
ty in the cheek

Tongue to cheek

Dysarthria at 1-9Dysarthria at 10-29Dysarthria at 30-49No dysarthria at 50Counting to 50

Drift at 0-9 secondsDrift at 10-89 secondsDrift at 90-119 secondsNo drift for >120 secondsArm strength

Count of <20Count of 20-24Count of 25-29Count of ≥30Single-breath count

Unable to stand unassistedNeed to use handsSlow with effort but no
hands

No difficultySit-to-stand maneuver
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Table 2. Summary of our algorithm tool box to assist the clinician with the Myasthenia Gravis Core Examination.

Digital toolMetricObservationDescriptionExercise

High-definition camera and eye
segmentation.

Distance between the eyelid
and the pupil, and distance
between the upper and lower
eyelids.

Weakness of the upper eyelid
and eyelid going above the
pupil.

Patients hold their gaze
up for 60 seconds.

Ptosis

High-definition camera and eye
segmentation.

Track the distance between
anatomic landmarks such as
the upper/lower lid, and
pupil and iris left and right
boundaries.

Misalignment of the eyes and
moment of double vision.

Patients hold their gaze
right and then left for 60
seconds.

Double vision

Track face feature variation,
mouth curvature, and dimen-
sion in particular.

Patients puff their cheeks
and hold it.

Cheek puff •• Depth camera or Lidar.Assess muscle strength
and fatiguability. • High-definition camera with

face landmark monitoring.• Extent of puffiness at
baseline and versus exter-
nal pressure placed on
the cheeks.

• Track change of illumination
in the region of interest.

• Symmetry of cheek puff
(left vs right).

Track face feature variation,
mouth curvature, dimension,
and orientation in particular.

Tongue muscle strength and
symmetry.

Patients use their tongue
to push the cheek.

Tongue pushing • Depth camera or Lidar.
• High-definition camera with

face landmark monitoring.
• Track change of illumination

in the region of interest.

Lip tracking and sound analysis of
the exercise clip.

Assess for respiratory muscle
fatigue and shortness of
breath.

Patients count out loud
from 1 to 50.

Counting to 50 • Loudness of the voice.
• Various types of spec-

tral analysis of the
voice and mouth mo-
tion.

• Energy metric of the
voice.

Pose detection on high-definition
images.

Assess for muscle fatigue via
sustained abduction of the
arm.

Patients hold their arms
straight.

Arm strength • Track body pose and
different angles.

• Length of time the pa-
tient can hold the arm
in the pose.

• Trajectory of the arm
over time.

Lip tracking and sound analysis of
the exercise clip.

Length of the breath.Assess for respiratory muscle
fatigue.

Patients count with only
1 breath.

Single-breath test

Pose detection on high-definition
images.

Patients stand up with
and without crossing
their arms.

Sit-to-stand maneuver •• Body pose tracking.Assess for muscle fa-
tigue. • Compare standing up

speed between clips.• Ability of the patient to
stand without using the
arms for assistance.

Deep Learning and Computer Vision Analysis

Machine Learning to Track Body Landmarks and Face
Landmarks
Tracking faces or all body motions has become a standard tool
[8] thanks to publicly available deep learning libraries with a
standard model (Figure 1). To track body positions during the
test of arm position fatigue and the sit-to-stand maneuver (Figure
1), we used a deep learning model that is publicly available (the

pretrained machine learning model BlazePose GHUM 3D from
MediaPipe) (Figure 1) [9]. For eye detection, we first needed
to localize the face in the video frame.

Among the most commonly used algorithms [10,11], we chose
OpenCV’s implementation of the Haar Cascade algorithm [12],
based on the detector from Lienhart et al [13]. Our criteria to
select the method were speed and reliability for real-time
detection.
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Figure 1. Pretrained machine learning models used with characteristic points.

To focus on the regions of interest (ROIs) of the eyes and lids,
we used the pretrained DLib 68 points facial landmark detector
that is based on the shape regression approach [14,15]. It is a
machine learning algorithm that places 68 characteristic points
on a detected face. The model is pretrained on the I-BUG 300-W
data set, which is comprised of 300 face pictures (Figure 1)
[16]. This software was used for the assessment of ptosis and
eye position, as well as for the test of counting to 50 and the
single-breath test in order to document lip reading and tracking
of jaw motion (Table 1).

Overall, both libraries provided robust results and could be used
to annotate the video in real time for the ROIs. However, we
found that the accuracy of the landmark points in the model of
Figure 1 obtained by this library was not adequate to provide
metrics that could be used in eye motion assessment in the
context of a standard telehealth session. Therefore, we developed
a hybrid method that began from deep learning to identify the
ROIs and refine the search for the pupil, eyelid, and iris as
described next.

Eye and Lid Image Segmentation
Assessment of ptosis and ocular motility requires precise
tracking of the eyelid, pupil, and iris. Precise metrics of these
measures have been developed [17-20]. Established techniques
to detect the iris location [21] are the circular Hough transform
[22] and the Daughman algorithm method [23]. However, we

found that these methods lack robustness due to their
insensitivity to the low resolution of the ROIs of the eyes, poor
control for illumination of the subject, and specific eye geometry
consequent to ptosis. The eye image in a standard Zoom meeting
may not be bigger than about 40 pixels wide and 20 pixels high.
Liu et al [24] assessed eye movements for a computer-aided
examination, but with highly controlled data and a highly
controlled environment. We did not have optimum control of
telehealth footage with patients at home, and the eye region has
only one-tenth, at best, of the image frame dimension. Therefore,
we took a more versatile approach that began with the ROI
given by the previous deep learning library that we had used
and then concentrated on a local search of the iris boundary,
pupil center, and upper/lower eyelid (Figure 2). Since we started
from a good estimate of the ROI for the eye, we used a
combination of a local gradient method and clustering technique
to compute the spatial coordinate and distance between
landmarks of interest, and we have described this in the Results
section. There are 2 classes of assessment depending on whether
we compute the geometric dimension on an individual image
or the dynamic of eye motion on video clips. We retrieved, for
example, the relaxation time of the eyelid versus equilibrium,
with some of the patients performing both eye exercises (Figure
2). However, there is no mention of such a metric in the core
examination [11]. The incorporation of this new information in
the standard core remains to be determined.

Figure 2. Approximations on ptosis to assess the field of view: distance between the upper and lower eye lids (left), eye area opening (center), and
distance from the upper lid to the pupil (right).
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Body Image Segmentation
To have reproducible results with the entire view of the body
during the examination, we tested our telehealth platform
Inteleclinic on 1 patient and several control subjects. The
pretrained machine learning model BlazePose GHUM 3D from
MediaPipe [9] has been evaluated extensively, so we only
provide some examples of the results obtained with the MG-CE.
The arms of the patient are extended for 2 minutes during the
exercise, and we used the segments joining the landmark point
(12) to (14) to track the right arm position and the landmark
point (11) to (13) to track the left arm position (Figure 1B). We
computed the angle formed by the arm’s segment as described
above and the horizontal line going through the landmark points
(11) and (12) of the upper torso in the model (Figure 1B). If the
arms stay horizontal, the 2 angles we track for the model (Figure
1B) should be approximately zero. As the arm strength of the
patient may fatigue during the exercise, the arms fall from the
horizontal position, and the angle would decrease and become
negative. A similar approach was used for the sit-to-stand
exercise by tracking the hip landmarks (23) and (24) of the body
motion model (Figure 1B).

Cheek Deformation
The ROI for cheek deformation was the polygon delimited by
points (3), (15), (13), and (5) of model 1 (Figure 1A) for the
cheek puff exercise. We could restrict this ROI to one half of
the polygon for the tongue-to-cheek push exercise that is only
performed on one side. As we aimed to reconstruct the local
curvature of the cheek during the test involving (3) and (4) that
can lead to cheek deformation, we used a depth camera and
computed the depth map to assess the contour of the deformation
in the ROI. When it came to the depth map, our first approach
was to use a depth camera that could directly reconstruct the
local curvature of the surface seen. The depth camera Intel
Realsense D435 (Intel) has, according to the vendor, a relative
accuracy below 2% for a distance less than 2 meters. This
technology uses infrared and stereo cameras to analyze the
deformation of a projected pattern of a scene and reconstruct
from this information the depth, but requires camera calibration
[25-28]. All tests were performed in realistic conditions for
telehealth, that is, the distance of the face from the camera was
1 meter at minimum and the patient was directly facing the
camera.

The second approach we used was to assess a pure computer
vision technique that works on a standard video. Our objective
was to define basic information regarding when the cheek
deformation starts, when it ends, and how it may become weaker
during the examination period. In practice, this is what the
medical doctor may grade during a telehealth consultation.

The first solution exploits the local skin appearance alterations
as the cheek becomes dilated [29]. We could then compute the
ROI “centered” on the cheek area where we expect the
deformation to be most significant and the average pixel value
of the blue dimension of the RGB code. To track the ROI, we
used the mouth location and external boundary of the cheek
that can be recovered from the model (Figure 1A). We could
then track the average value over time during the exercise, that
is, before the push to its end. We show in the Results section

the limitation of this method that is a priori not robust with
respect to light conditions and may depend on skin color.

The second solution is based on the observation that cheek
deformation impacts the mouth geometry. For example, in the
cheek puff exercise, the mouth is closed and invariably the lip
shape features change from those in the rest position. In the
one-side tongue-to-cheek push, the upper lip is deformed. All
these changes can be monitored in time easily by tracking the
relative position of the points in the facial model that mark the
mouth (Figure 1A).

We describe our computer vision methods based on an analysis
performed with 3 different formats of videos. The first was
acquired with our new telehealth platform using a
high-definition camera with a patient who has a normal cheek
puff response. The second was acquired on a control subject
with a cell phone camera (Apple 13 system, Apple Inc), and the
third was extracted from the MGNet data set. We tested the
impact of diversity with White subjects, subjects with dark sun
tan, and subjects who were African American. We demonstrate
in the Results section which metrics appeared to provide the
best assessment.

Voice Analysis
Our goal was to assess breathing and change in speech in
patients with MG from analyzing counting to 50 and
single-breath count. Dysarthria is not a simple concept and is
classified in several ways [30]. Shortness of breath was easier
to define but could be compromised by multiple factors.
Shortness of breath and pulmonary function can be assessed
from speech as appreciated by others [29,31]. Previous studies
have used machine learning and artificial intelligence (AI)
techniques that require large training sets, and they are not
specific to any neurological disorder or specific to a voice
acquisition protocol.

A good example of dysarthria detection has been published
previously [32]. The rate of success of a neural network is
modest, that is, about 70% when competing with standard
diagnostic performance. An alternative solution is to use a fractal
feature as reported previously [33]. This methodology seems
to reach a greater accuracy of about 90% and does not require
a training set.

Lip and jaw movements are related to dysarthria [34]. We are
not aware of any systematic study that combines automatic lip
motion tracking and speech digital analysis to assess breathing
and dysarthria in patients with MG. We assessed more than half
a dozen algorithms producing various sound metrics to check
for the potential best voice analysis candidate to assess MG
patients. As the analysis of the pitch of voice did not show any
outliers in the data set and the energy metric analysis was
impacted by the environment and control of the exercise, we
restricted the description to the most promising algorithm. To
compute voice features, we used the following steps. We
separated the interval of time when the subject spoke from when
the subject was silent. We used the MATLAB function
“detectSpeech” [35] on the original signal. The function
“detectSpeech” provides the start and end times of each so called
“speech segment.” The frequency of signal acquisition was
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about 1000 Hz. For comparison, we used our own custom-made
algorithm to extract speech segments using sampling of size 60
of the voice signal. The signal now had an equivalent frequency
of acquisition of about 17 Hz. We then used averaging on each
sample of the original signal to dampen noise. The signal was
then smoother, and we could use a threshold to filter out noise
without building up a large number of small gaps corresponding
to “no sound.” We looked in the sound track of “counting to
50” exercises for the largest 50 time intervals of sound above
noise level. All voice features presented below were computed
on the sound track that contained speech only.

We present below the list of voice features we computed
systematically for each of the sound tracks for both voice
exercises. All these individual metrics or combinations of
metrics were candidates to grade the severity of symptoms. The
Results section reports which metric worked the best. The
features are as follows:

• Loudness of voice: Loudness was computed based on the
algorithms defined in the ITU-R BS.1770-4 and EBU R
128 standards. The loudness of voice was integrated over
all speech segments.

• Pitch or fundamental frequency of voice: The pitch was
computed for each speech segment. The speech of a typical
adult man will have a fundamental frequency from 85 Hz
to 155 Hz and that of a typical adult woman will have a
fundamental frequency from 165 Hz to 255 Hz.

• Spectral energy on a frequency interval: Both voice
exercises were considered as breathing exercises, so we
computed the L2 norm spectral energy of the voice signal
over all speech segments in a frequency window that
focused on the breathing rate (5 Hz to 25 Hz).

• Teager-Kaiser energy: It was used in tone detection [36].
• Spectral entropy of the voice signal: Spectral entropy is a

measure of spectral power distribution. Spectral entropy’s

concept is based on Shannon entropy or information
entropy. Spectral entropy treats the signal’s normalized
power distribution in the frequency domain as a probability
distribution and calculates the Shannon entropy of it. The
Shannon entropy has been used for feature extraction in
fault detection and diagnosis [37,38]. Spectral entropy has
also been widely used as a feature in speech recognition
[39] and biomedical signal processing [40].

• Special feature of the single-breath count: The airflow
volume expansion during speech is in first approximation
related to the square of the amplitude of the sound wave
[41]. We computed the integral of the square of the
amplitude of the sound wave during the time window of
the patient’s speech. Since there is no calibration of the
microphone, the metric might be biased. There was
considerable variability of diction during this exercise.
Some subjects counted more slowly, while others appeared
anxious and pronounced words quickly. We computed as
an additional feature the percentage of time with vocal
sound versus total time.

For the voice analysis test in particular and for tests in general,
there was significant variability in the parameters of data
acquisition under clinical conditions, such as sound level.
Providing guidance in real time to the patient will be essential
to improve the ability to quantitate the telehealth examination.

The Need for a Novel Telehealth Platform to Support
the Protocol and Improvement of Data Acquisition
Reproducibility requires that the various examinations are run
in similar conditions. While we have mainly evaluated our
algorithms on an existing data set of standard Zoom video
evaluations with 6 patients, we next describe our new hardware
and software solution named “Inteleclinic” (Figure 3) designed
to improve data acquisition.
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Figure 3. View on the patient side of our cyber-physical system named “Inteleclinic” used to uniformize the sessions and improve the quality of the
metrics. HD: high-definition.

Controlling the Setting and Hardware
To avoid changes in the quality of the recording (frames and
audio), it is important that the hardware used is identical for all
sessions and is calibrated. In an attempt to improve the quality
of data acquisition with the future development of clinical
studies, we built a new telehealth system with a high-definition
camera and microphone that can be controlled remotely by the
examiner. The recording is now performed on the patient side
to obtain the raw footage of the video and audio in order to
optimize maximum resolution and avoid any issues with network
connection quality during the examination. Different interfaces
and tools are added compared to Zoom’s control system to assist
the patient and the doctor to focus on the consultation and not
the technology. We demonstrate in the Results section the
benefits of Inteleclinic compared to a standard Zoom video call
of a patient at home using various technologies.

Controlling Time
Some of the tests, such as lid and eye positions as well as arm
position, require precise timing from start to end. To avoid any
manual entry errors, our digital heath system automatically
computes start and end times. The single-breath test as practiced
now has no control on loudness and timing. Breath capacity is
the product of the air outflow flux and the duration of the
exercise. To be more precise, breath capacity is the time
integration of the time-dependent output flow on the time

interval of the exercise. We found that the maximum number
counted is weakly correlated with the duration of the counting
exercise. The maximum number reached is dependent on diction
and may not be used as a valuable metric. Outflow during speech
is proportional in the first approximation to the square of the
energy source of sound [41]. Depending on how loud the count
is, one may expect different airflow output values for the patient.
We tested on our platform a visual aid on the telehealth display
to guide patient counting with a consistent rhythm of about 1
number counted per second in both the count to 50 and
single-breath counting exercises.

Controlling the Framing of the ROI and the Distance
From the ROI to the Camera
The digitalization of the tests involving ptosis, diplopia, cheek
puff, tongue to cheek, arm strength, and sit-to-stand movement
depends heavily on vision through the telehealth system. While
we used a standard Zoom video that was preregistered in this
study, it is straightforward with our system to provide guidance
on the quality of video acquisition to make sure that distance
between landmarks of interest use approximately the same
number of pixels in order to provide quality and consistency
for the results. In practice, we can provide a mark on the display
of the patient with Inteleclinic to make sure the individual is
properly centered and distanced from the camera.
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Controlling Sounds
Every telehealth session may have different loudness of the
sound track depending on the microphone setting and how loud
or how soft the patient is speaking. Loudness is computed based
on the algorithms defined in the ITU-R BS.1770-4 and EBU R
128 standards. If the microphone is calibrated with a benchmark
sound, the loudness of the sound track can be computed
continuously and guidance can be provided to the patient on
how loud or soft they should try to keep their voice during the
exercises.

Ethics Approval
All participants provided written consent for inclusion in the
study. The study that provided the data has been approved by
the George Washington University Institutional Review Board
(IRB# NCR224008).

Results

Standardization of the Data Acquisition
We evaluated our methods and identified large variability in
the data acquisition and mode of operation for the assessments
performed by the single examiner. The purpose of the primary
study from which we obtained the videos was to assess test/retest
variability and interexaminer variation in performance of
telemedicine evaluations (manuscript in preparation). Our goal
was to assess accurate and robust measurements from the
MG-CE in order to remove human bias. The videos from the
clinical study are quickly showing some limitations as the
hardware used to film was not identical and the recording was
performed on the doctor side, linking the quality of the frames
to the quality of the network on both sides. We will next present
our methodology and the platform. One of the purposes of our
project was to standardize the data acquisition during the
telehealth session and provide real-time feedback of the quality
of the assessments for the examiner.

Eyelid Position and Eye Movements
We have used a data set of images of 6 patients and 3 healthy
subjects with broad diversity in skin color, eye color, ocular
anatomy, and image frame resolution to test the accuracy of our
approach. We identified 72 ROIs of patients’ eye movements
and then annotated them with ground true measures obtained
by manually zooming in the computer images. On average, we
found the pupil location within 3 pixels and the distance from

the pupil to the upper eyelid within 2 pixels independent of the
image frame resolution. The relative accuracy in pixels was
independent of the camera used. The standard Zoom video has
450×800 pixels per frame, a smartphone has 720×1280 pixels,
and the Lumens B30U PTZ camera (Lumens Digital Optics
Inc) has a resolution of 1080×1920. Overall, Inteleclinic doubles
the resolution of a standard Zoom call and provides a
submillimeter accuracy of lid position and eye motion. Figure
4 provides an example of the localization of the upper lid, lower
lid, and iris lower boundary detected automatically with our
hybrid method using digital zooming of the face of the patient
with both ROIs. We underline that the patient is sitting about
1 meter from the camera during the telehealth eye exercises,
and one can see the patient’s face and shoulders. No particular
effort was made to focus on the eyes of the patient in the video.
The 6 red circles in each eye correspond to the markers of the
ROI obtained with the deep learning library of model 1 (Figure
1A). The bottom markers are slightly off, and our local computer
vision technique provides the ability to correct the position of
the lower lid.

In Figure 5, we show tracking of the distance between the lower
boundary of the iris and the upper lid with a black curve, and
the distance between the bottom of the iris and the lower lid
with a red curve. One can check that the patient performs the
exercise properly and can measure a 15% decay of the ptosis
distance during the 1-minute exercise. As shown in the green
least square fit with the green line, this decay is both linear and
statistically significant. This decay is in fact difficult to notice
during a medical examination without our method.

In Figure 6, we report on the second exercise that tests diplopia.
The red circle locations of the deep learning model of Figure
1A in the ROIs are accurate. We tracked the vertical border of
the iris and computed the barycentric coordinate of the most
inner points of the boundaries to compute any eventual
misalignment of both eyes. The patient did not report double
vision, and the quasisteady variation of the barycentric
coordinates, as reported in Figure 7, confirmed this.

However, the positions of the eyes of patients might be so
extreme that some of the pupils might be partially obstructed
during the exercise, which limits the value of the conclusion.
In addition, we clearly observed ptosis during the exercise as
the vertical dimension of the eye opening reached about half of
what it was during the ptosis exercise.
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Figure 4. Image during the ptosis exercise. Digital zoom on the view of the patient obtained with the Inteleclinic system showing anatomic markers
obtained by computer vision in green, starting from the landmarks of the regions of interest obtained by deep learning.

Figure 5. Graphic representation of the distance between anatomic landmarks to asses ptosis dynamically during the first eye exercise.
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Figure 6. Image during the diplopia exercise. Digital zoom on the view of the patient obtained with the Inteleclinic system showing anatomic markers
obtained by computer vision in green, starting from the landmarks of the regions of interest obtained by deep learning.

Figure 7. Graphic representation of the bariatric coordinate of the anatomic landmarks used to assess eye alignment dynamically during the third eye
exercise.
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Cheek Puff and Tongue to Cheek
We used a low-cost depth camera from Intel to reconstruct the
local curvature of the cheek in laboratory conditions with a
healthy subject who produced a large deformation, which was
at the noise level of the signal. This evaluation would have
failed for any patient who has difficulty to push the tongue into
the cheek. Better depth accuracy could be obtained by sensors
that use time-of-flight technology [42].

The variety of videos demonstrates the limits and potential of
our approach. In one video of the cheek puff exercise, the patient
was told to blow his cheeks for about 2 seconds. The video was
cut after 15 seconds because the patient was asked to test the
stiffness of the skin with his fingers. The placement of the
fingers on the cheek completely confused the AI tracking
algorithm. The change in the mean value of the third component
(blue) of the RGB classification inside the ROI on both sides
of the cheek of the patient is not reliable unless the left cheek
or right cheek ROI has good illumination. The detection is
usually far less reliable on one of these ROIs because it is
difficult to achieve good illumination on both sides of the face
of the patient.

Tracking mouth deformation during the exercise was a superior
approach. First, we easily detected if and when the patient had

the ability or did not have the ability to keep the mouth closed.
Second, we tested several features, such as the distance between
the corners where the upper and lower lip meet, that is, the
segment delimited by the points (49) and (55) in the model
(Figure 1A), the deformation of the mouth in the vertical
direction, and the mean curvature of the upper lip and lower
lip. Figure 8 shows the feature that measures the normalized
distance between the upper lip and the bottom of the nose during
the cheek puff exercise using a standard Zoom video with
450×800 pixels per frame in an ADAPT (Adapting Disease
Specific Outcome Measures Pilot Trial) patient. We obtained
a curve that was close to the step function in this ADAPT
patient, which accurately detected when the deformation of the
cheek started and ended, and indicated how strong the
deformation was. Not all features work all the time for all
patients. As expected, variability in the anatomy of patients
causes differences in which features work the best. Form our
experience, we found that the combination of several features
helps identify the extent of cheek puff during the exercise.

We obtained very similar results for the tongue-to-cheek push
exercise. In Figure 9, an ADAPT patient pushes the left cheek
with the tongue and then pushes the right cheek at 5.6 seconds.

Figure 8. Normalized distance of the upper lip to the lower part of the nose during the cheek puff exercise.
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Figure 9. Exercise involving the tongue pushing the left cheek and then the right cheek with an ADAPT (Adapting Disease Specific Outcome Measures
Pilot Trial) patient and a standard Zoom video. Tracking modifications of the lip shape orientation during the exercise. The red vertical bar in the middle
corresponds to the patient switching from pushing the left cheek to pushing the right cheek.

The geometric feature we used was the angle formed by the
mouth and the horizontal axis. The exercise breaks the symmetry
of the face, and this feature is particularly adapted to capture
the one-side deformation of the cheek. The illumination figure
shows only marginal change for the second part of the exercise
and is therefore not very robust. One may expect however that
better control of the light during the telehealth session will
resolve this issue.

These techniques will not work for a subject with a moustache
or beard. The shape of the face of patients with a high BMI may
also impact the quality of the results. More work needs to be
done on the digitalization of this specific test. As mentioned
before, the depth camera would need to be highly accurate in
order for the signal to be above the noise level, which is not the
case with entry-level and low-cost systems.

Arm Position and Sit-to-Stand Movement
Most videos of the MGNet data set offered only partial views
of the body during these exercises and showed great variability.
The model (Figure 1) failed under such conditions.

Figure 10 shows a representative example of the arm angle
decay due to weakening during the 120-second assessment of

one of the ADAPT patients. The measurement exhibited some
minor noise. We used a high-order filtering method [43] to
provide a meaningful graphic to limit the noise of the method
and maintain the trend that could be used for the physical
examination assessment. The decay of both arms was linear and
significant. It was however difficult for the medical examiner
to quantify the slope or even notice it.

Figure 11 shows an example of the vertical elevation
examination with respect to time for both hips, involving
tracking the elevation of landmark points (23) and (24) (Figure
1B) as a function of time. From this measurement, we could
not only compute acceleration and speed as indicators of muscle
function but also assess the stability of the motion by measuring
lateral motion in the x-coordinate.

One of the benefits of having the whole body tracked during
these MG-CE evaluations is the ability to access additional
information, such as the ability of the patient to stay stationary
and keep their balance. While all measures are in pixels in the
video itself, we recovered a good approximation of the physical
dimension using the known dimension of the seat.
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Figure 10. Patient performing one of the exercises of the protocol with movement of the arms. Tracking the angle of right and left arm lowering during
the exercise.

Figure 11. Elevation of both hips during the exercises: (A) normal stand up; (B) weak stand up. The right hip is indicated in blue, and the left hip is
indicated in green.

Counting Exercise
This evaluation is used to assess breathing and speech quality.
We used a data set of 6 patients involving 2 sessions and 9
additional healthy subject voice exercises. Audio files were cut
to start and end approximately within 1 to 3 seconds of initiation
and the end of counting. Based on the evaluation of patients
performed by the physician according to the protocol [7], there
were rarely differences between the first visit and the second
controlled visit for ptosis and diplopia grading. We found
however that most of the metrics described above had some
variability from one visit to another, and might be considered

as more sensitive metrics than the current physician examination.
We will report here on our main findings with these metrics.

Instead of using the maximum number reached during the
single-breath counting exercise, we used the duration of the
exercise itself to grade the exercise. We found that the maximum
number counted was weakly correlated with the duration of the
single-breath counting exercise. The maximum number reached
was indeed dependent on the speed of diction that varies greatly
from one patient to another. To be more precise, one may expect
that the airflow output value for the patient depends on the
loudness of the voice and the pitch of the voice. In fact, we
found that loudness and pitch computed with our algorithm
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varied dramatically from one patient to another. There had been
no calibration of the microphone at the patient’s home, so we
used the duration of the single-breath counting exercise as an
indicator of MG severity. We suspected that a lower duration
of the single-breath counting exercise is associated with more
severe shortness of breath symptoms. We formulated the
hypothesis that breathing difficulty might be detected by
analyzing the signal in a range of frequencies concentrating on
the typical breathing rate window. We used a fast Fourier
transform to obtain the spectrum of the voice signal during the
complete duration of the counting to 50 exercise and computed
the energy of the signal restricted in the low-frequency window
(5 Hz to 25 Hz). We found a weak correlation between the
energy and MG severity estimated as described above (Figure
12). There were 2 outliers corresponding to 1 of the 6 patients
who had severe symptoms according to the examiner annotation

(Figure 12). The voice of the patient was so weak in the
acquisition that the breathing signal information might have
been at the noise level of the method.

We did not proceed with the identification of dysarthria per say,
but looked for a relationship involving one of the generic metrics
that could be computed such as spectral entropy or
Teager-Kaiser energy. An example of the mean entropy of the
voice signal (Figure 13) shows that this criterion is promising
and may separate patients from healthy controls. Counting the
number of singular picks in entropy during the examination
provides better separation between patients and healthy subjects.
The argument would be that an MG patient has a more
monotonic voice than a healthy subject. More evaluations will
be needed to confirm if entropy is a good metric. In contrast,
Teager-Kaiser energy did not clearly separate MG patients.

Figure 12. Weak correlation between the duration of counting and the energy of the signal in the low-frequency bandwidth corresponding to the
breathing range. Three patient sessions with voice loudness below the threshold were not counted in the fitting. The 2 outliers are from 1 patient who
had a very weak voice acquisition.
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Figure 13. Mean Entropy of the voice signal during Exercise 7.

Discussion

Principal Findings
We have systematically built a series of algorithms that can
automatically compute the metrics of the MG-CE, which is a
standardized telemedicine physical examination for patients
with MG. This effort was motivated by the increasing use of
telemedicine and the appreciation of inherent limitations of
presently used clinical outcome measures [44,45]. For the
MG-CE, the examiner ranked the subjective observation of each
examination item into categories, but this separation among
classes was performed a priori and was not the result of data
mining in a large population. In that context, the threshold
numbers used to separate metrics, such as duration, are likely
to be artificial. The data collection for these tests during a
teleconsultation is tedious, repetitive, and demanding for the
physician. We demonstrated a methodology, which can
accelerate the data collection and provide the rational for a
posteriori classification of MG severity based on a large
population of patients.

Other ranking of the test might be intuitive, for example, how
to define or compare difficulty in standing up. It may involve
tedious motion due to muscle weakness, arthritis, or obesity.
Currently, the duration of cheek deformation is not counted,
but our methodology may eventually provide a precise

measurement. Based on the new data set that our method
provides, one should investigate further if the MG-CE
classification, as well as all other categorical measures in MG,
should be revisited to consider the new metrics that our
algorithm can provide. In particular, the dynamic component
of muscle weakness, which is a hallmark of MG and an
important factor in quality of life, is not captured well by
existing clinical outcome measures and not at all in routine
clinical practice [46].

Our study exposed limitations in aspects of neuromuscular
examination. The ability to deform the cheek does not say much
about the ability to hold pressure and for how long. The cheek
deformation exercise did prove to be the most difficult for
achieving proper digitalization. The scoring of this exercise in
the original medical protocol appeared particularly limited. We
have refined mouth deformation monitoring under laboratory
conditions with our Inteleclinic system to better apply computer
learning techniques. Moreover, the counting exercises can be
used to assess respiration function, but the number achieved
does not fully equate to the severity of respiratory insufficiency.

Another challenge for our evaluation is that patients can
compensate for some level of weakness and reduce the apparent
severity assessed by the examination. For example, the ability
to precisely compute the trajectory of the patient’s hip movement
during the sit-to-stand exercise may identify if there is
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compensation by one leg supporting the movement more than
the other. This situation could be particularly difficult for a
human examiner to identify. Overall, our algorithms should
give unbiased results and remove any potential subjectivity
from the medical examination.

The accuracy of every computer algorithm must be constantly
interrogated. Every metric should, in principle, come with an
error estimate, which is not frequently the case in the current
solutions, including that of the human examiner. One key
component to ensure such quality of results is to control the
condition of the acquisition of video and sound during the
telemedicine session. With voice analysis, we would need to
ensure proper calibration of the microphone at the patient’s
home, as well as check during the sound registration that the
patient speaks with a loudness within acceptable bounds. The
later can be done automatically in order to provide guidance
during the examination. Similarly, the AI and computer vision
aspects of the data acquisition require the patient’s distance
from the camera and the light condition to always be consistent
with the exercise requested. This is technically feasible because
the telehealth system can compute in real time the dimension
in pixels of any ROI and the quality of segmentation in order
to correct any obvious mistake in the data acquisition. For
example, the AI model of Figure 1B that tracks the sit-to-stand

exercise fails if the patient’s head leaves the video frame. This
kind of problem can be immediately reported to the examiner
during the test. Another example is that the single-breath
counting test may poorly define the initial state, speed, and
loudness of speech, as counting greatly varies between patients
and has an impact on breath performance evaluation.

Conclusion
Systematic digitalization and control of quality of the MG-CE
are advantageous and would allow trained medical assistants
to perform standardized examinations, allowing the physician
to concentrate on patient questions and education instead of
managing the logistics of the test. We also assessed our
hardware-software “Inteleclinic” solution for telehealth
consultation, which appears to be able to enhance data quality
(described in a provisional patent; number 63305420; Garbey
M and Joerger G, 2020). Our methods and technology would
be particularly applicable to clinical trials, which are limited in
requiring a large number of examiners who all perform
assessments in slightly different manners. A trial could substitute
present operations with a central telemedicine facility. We
envision that our telehealth approach can be applied to other
neuromuscular diseases beyond MG and will provide objective,
reproducible, and quantitative health care assessments that go
beyond the present capabilities.
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