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Abstract

Background: Phonematic and semantic verbal fluency tasks (VFTs) are widely used to capture cognitive deficits in people
with neurodegenerative diseases. Counting the total number of words produced within a given time frame constitutes the most
commonly used analysis for VFTs. The analysis of semantic and phonematic word clusters can provide additional information
about frontal and temporal cognitive functions. Traditionally, clusters in the semantic VFT are identified using fixed word lists,
which need to be created manually, lack standardization, and are language specific. Furthermore, it is not possible to identify
semantic clusters in the phonematic VFT using this technique.

Objective: The objective of this study was to develop a method for the automated analysis of semantically related word clusters
for semantic and phonematic VFTs. Furthermore, we aimed to explore the cognitive domains captured by this analysis for people
with Parkinson disease (PD).

Methods: People with PD performed tablet-based semantic (51/85, 60%) and phonematic (69/85, 81%) VFTs. For both tasks,
semantic word clusters were determined using a semantic relatedness model based on a neural network trained on the Wikipedia
(Wikimedia Foundation) text corpus. The cluster characteristics derived from this model were compared with those derived from
traditional evaluation methods of VFTs and a set of neuropsychological parameters.

Results: For the semantic VFT, the cluster characteristics obtained through automated analyses showed good correlations with
the cluster characteristics obtained through the traditional method. Cluster characteristics from automated analyses of phonematic
and semantic VFTs correlated with the overall cognitive function reported by the Montreal Cognitive Assessment, executive
function reported by the Frontal Assessment Battery and the Trail Making Test, and language function reported by the Boston
Naming Test.

Conclusions: Our study demonstrated the feasibility of standardized automated cluster analyses of VFTs using semantic
relatedness models. These models do not require manually creating and updating categorized word lists and, therefore, can be
easily and objectively implemented in different languages, potentially allowing comparison of results across different languages.
Furthermore, this method provides information about semantic clusters in phonematic VFTs, which cannot be obtained from
traditional methods. Hence, this method could provide easily accessible digital biomarkers for executive and language functions
in people with PD.
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Introduction

Cognitive Deficits in People With Parkinson Disease
Parkinson disease (PD) is the fastest growing neurological
disease and the second most common neurodegenerative disease
[1]. Cognitive deficits are a frequent problem in people with
PD. Approximately 10% to 20% of people with PD show a mild
cognitive impairment [2], and approximately 46% of people
with PD develop PD dementia (PDD) within 10 years after
diagnosis [3]. PDD results in higher health-related costs and a
reduced quality of life and, therefore, is of high importance for
affected people and health care systems [2]. In addition, PDD
constitutes 1 of the 4 milestones that occur, on average, 4 years
prior to death and usher the terminal phase of the disease [4].

Cognitive decline in people with PD is characterized by deficits
in attention, executive functions, visuospatial functions,
memory, and language function [5]. Cognitive functions in
people with PD are normally measured using paper-based
neuropsychological tests [5,6]. These tests are time-consuming
and require experienced raters.

Clusters in the Verbal Fluency Task Transcript
Verbal fluency tasks (VFTs), by contrast, require less time and
can report both executive and language functions [5,7]. There
are 2 types of VFTs. In the semantic VFT, participants have to
produce as many words as possible from 1 specific semantic
category within 1 minute. The category “animal” is used most
often. In the phonematic VFT, participants have to produce as
many words as possible starting with a specific letter within 1
minute. Counting the total number of words produced by the
person constitutes the most common analysis for both types of
VFTs.

People generally do not produce these words in an evenly spaced
temporal sequence but in clusters that often share semantic or
phonematic similarities [8-15]. Traditionally, these clusters have
been determined manually using 2 methods described by Troyer
et al [9]. Words produced in the semantic VFT tend to form
clusters of semantically related words. For example, a participant
could start with a cluster of pets (dog and cat) and switch to a
cluster of animals from Africa (elephant, giraffe, and lion). In
the traditional analysis, the identification of these clusters and
switches between clusters is based on predefined lists of, for
example, animals (eg, a list of African animals and a list of
pets). Words produced in the phonematic VFT have traditionally
been analyzed using a set of phonematic rules [9]. One of the
rules, for example, is to group words starting with the same 2
letters (eg, simple, simulate, and silly).

After the identification of word clusters, characteristics such as
the mean cluster size and number of switches between clusters
are calculated. Several studies suggested that the size of clusters
is associated with language functions [10,14,16], whereas the

number of switches is more strongly associated with executive
functions [10,17]. Other authors, however, obtained conflicting
results [12,17,18], and some studies found the cluster size and
number of clusters to be highly correlated, which means that
they might not represent independent parameters at all [7,17,19].

Analysis of word clusters in the VFT has been limited by several
factors. First, the lists used to analyze the semantic VFT must
be created manually, which entails subjectiveness. Second, they
can exclusively be used for only 1 language. Third, simple lists
may not capture all the individual associations that occur during
testing. Fourth, the relatedness of consecutive words can only
be classified dichotomously, that is, the word either belongs to
the same cluster or not. Thus, it is not possible to quantify the
semantic or phonematic “distance” of consecutive words.

In recent years, several approaches have been developed to
overcome these disadvantages and allow for an automated, more
objective, and quantitative analysis. In general, these approaches
identify semantic clusters based on the semantic relatedness of
words using mathematical models trained on a large text corpus
[20-31].

In some approaches, semantic relatedness is directly estimated
from structured knowledge sources such as ontologies or
encyclopedias. For example, databases storing hierarchical
relations between words have been used to estimate semantic
relatedness [20]. Thus, an ontology where cat and dog are both
elements of the parent group carnivore leads to a higher
semantic relatedness between these animals than between cat
and cow. Other models estimate semantic relatedness based on
the link structure between web-based encyclopedia articles [32].
These models make explicit use of knowledge created by
humans, but they require complex and highly structured training
sets.

A more widely used approach for estimating semantic
relatedness is the latent space analysis, which is based on the
co-occurrence of words in training texts [21-23]. Thereby, 2
words are assumed to be semantically related if they co-occur
with similar words in the training texts.

Finally, recent approaches also consider the position of words
in relation to each other [24-29]; Word2Vec, for instance, uses
a sliding window to estimate semantic relatedness by analyzing
surrounding words [33]. In this approach, a neural network is
trained to predict a word given its surrounding words
(continuous bag-of-words method) or to predict the surrounding
words given a centered word (skip-gram method). On the basis
of this training, semantic relatedness can be estimated from the
similarity of the learned context in which these words occur.

Most previous studies analyzed VFTs performed by people with
mild cognitive impairment, Alzheimer disease [20,25,28,30],
or psychiatric diseases [22,23,27,29]. For people with PD, there
is only very limited evidence from 1 study [17]. In this study,
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Farzanfar et al [17] showed that applying a semantic relatedness
model to semantic VFTs performed by people with PD is
feasible. Here, executive function correlated with the number
of cluster switches but not with the cluster size. Whether a
semantic relatedness model can also be applied to phonematic
VFTs performed by people with PD has not been explored yet.

Aim of This Study
The aim of this study was to evaluate the feasibility of an
automatic cluster analysis based on semantic relatedness in
people with PD using voice recordings of semantic and
phonematic VFTs. In addition, we aimed to validate the potential
of the resulting cluster parameters as digital biomarkers for
executive and language functions in people with PD. Finally,
we provide our previously trained models for semantic
relatedness in different languages to facilitate further research
by others [34,35].

Clinical Implications
Our study provides a tool for the automatic identification of
semantically related word clusters in VFTs. VFTs are a widely
used assessment for capturing cognitive functions in clinical
practice and research. Although counting the total number of
words produced within 1 minute constitutes the commonly used
analysis for VFTs, further analysis of word clusters can provide
additional information about executive and language functions.
However, traditional methods of cluster identification lack
standardization, require considerable manual work, and are
language specific, thus limiting their applicability.

We show that cluster identification is possible using a model
of semantic relatedness that overcomes these limitations. We
prove that this automated approach provides valid digital
biomarkers for executive and language functions.

By publishing our source code together with a readily trained
model, we will allow other researchers to easily use this
approach in their own studies. Thus, this study will allow further
trials to capture more information about executive and language
impairments without requiring additional time-consuming
assessments. Furthermore, this will lead to more reliable and
better comparable measurements of executive and language
functions as cognitive outcomes in clinical trials. This approach
is not limited to people with PD and can also be applied to
people with other diseases with impaired executive or language
function.

Methods

Recruitment
People with PD were recruited from 3 inpatient and outpatient
movement disorder clinics in east Saxony, Germany, between
May 2021 and August 2022. Participants with a clinically
probable diagnosis of PD according to the current clinical
diagnostic criteria [36], sufficient German language skills, and
a Montreal Cognitive Assessment (MoCA) score >15 were
included in the study. The severity of motor symptoms was
assessed using the Movement Disorder Society-Sponsored
Revision of the Unified Parkinson’s Disease Rating Scale

(MDS-UPDRS) subscale III [37]. Levodopa equivalent doses
were calculated using the recommended conversion factors [38].

Ethics Approval
This study was approved by the institutional review board of
Technische Universität Dresden, Germany (IRB00001473 and
BO-EK-149032021). Written informed consent was obtained
from all the participants before inclusion in the study.

Phonematic and Semantic VFTs
Phonematic and semantic VFTs were performed without
supervision using a self-developed app on an iPad 8 (Apple Inc)
running iOS version 14. The semantic VFT was added later to
the app, thus leading to fewer recordings for this task. For both
VFTs, words with the same word stem, word repetitions, and
proper names were not allowed. Instructions for the VFTs
outlining these rules were presented to the participants before
the test on the tablet. The phonematic VFT was performed first,
and the semantic VFT was performed second. After reading the
general instructions, the participant was requested to continue
to the next page. At this time, the letter “S” (for the phonematic
VFT) or the category “animals” (for the semantic VFT) was
shown, and the voice was recorded for 60 seconds using the
tablet’s internal microphone. Speech was detected and
transcribed automatically using the Apple Speech Framework
(Apple Inc) in iOS 14, which allows local speech processing
on the device itself. The transcripts were checked manually by
an investigator, and speech recognition errors were corrected.
The transcripts were also checked for words that violated any
of the aforementioned rules. Transcripts with >25% of violations
were excluded from the analysis. In addition, recordings with
no words spoken within the first 10 seconds were removed from
the analysis because it was deemed unclear whether the person
had understood the task.

Speech Recognition Error Rate Calculation
The error rate of the automatically transcribed VFT recordings
was measured as normalized Levenshtein distance. Therefore,
we counted the numbers of insertions, deletions, and
substitutions of words that would be required to change the
automatically transcribed word list to the correct word list. This
was done using the Python package pylev (version 1.4) [39].
Levenshtein distance was normalized by dividing it by the
number of words in the correct word list.

List-Based Clustering of the Semantic VFT
Traditional cluster analysis of the semantic VFT is based on
fixed thematic lists of animals. These are based on shared
features, such as geographical regions (eg, Africa), habitats (eg,
water, farm, and pets), or species (eg, birds). To create these
categorical lists, we translated the categories and animal lists
used in the study by Troyer [11]. All animal words that were
not covered by this translation were assigned to existing
categories by the judgment of an investigator (TH), and
additional categories were created as needed. Animal words
were allowed to be part of multiple lists (eg, parrot is part of
the lists “pet” and “bird”). The resulting categories and
corresponding animal word lists can be found in Multimedia
Appendix 1. Clusters were formed of consecutive words that
occurred on at least 1 common list. The size of a cluster was
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calculated as the number of words within the cluster minus 1.
The mean cluster size was obtained by also including clusters
of single words. The number of switches was defined as the
number of clusters, including clusters of single words, minus
1. To maintain consistency with the protocol of Troyer et al [9],
rule violations were not excluded in the calculation of these
cluster characteristics. The total word count comprised the
number of words after removing rule violations.

Rule-Based Clustering of the Phonematic VFT
Traditional cluster analysis of the phonematic VFT is based on
fixed phonematic rules. Usually, four rules are used to identify
words belonging to a cluster: (1) words starting with the same
2 letters (eg, summer and Sunday); (2) rhyming words (eg, sand
and stand); (3) words differing only in 1 vowel sound (eg, sat
and seat); and (4) homonyms, if indicated by the test person
(eg, some and sum) [9]. Clusters were formed of consecutive
words that fulfilled at least 1 common phonematic rule. The
size of a cluster was calculated as the number of words within
the cluster minus 1. The mean cluster size was obtained by also
including clusters of single words. The number of switches was
defined as the number of clusters, including clusters of single
words, minus 1. To maintain consistency with the protocol of
Troyer et al [9], rule violations were not excluded in the
calculation of these cluster characteristics. The total word count
comprised the number of words after removing rule violations.

Semantic Relatedness Clustering
In addition to the traditional clustering methods, we
implemented a semantic relatedness model based on a
Word2Vec approach. In brief, this model is based on a neural
network that depicts the semantic context of words in texts. To
achieve this, the neural network is trained on a large text corpus
in which the words surrounding each given word are analyzed.
As a result, the semantic context of each word can be
represented as a high-dimensional vector. The semantic
relatedness (“distance”) of 2 words can be expressed as the
cosine between 2 of these vectors.

The Word2Vec model was created and trained using the Python
package gensim version 4.0.1 [40] with Python 3.9.5 [41]. We
used the freely available German Wikipedia (Wikimedia
Foundation) corpus for model training [42]. To obtain optimal
training results, 3 hyperparameters needed to be set: the
dimensionality of the semantic relatedness space, window size

for the surrounding words, and training algorithm. In addition,
a fixed threshold for semantic relatedness needed to be set to
define the word clusters. To find the optimal hyperparameter
values, we performed a grid search using the following values:
(1) dimensions: 200, 500, and 1000; (2) window size: 4 and 10;
and (3) algorithm: continuous bag-of-words and skip-gram. To
find the best semantic relatedness threshold, this parameter was
varied between 0 and 1 with a step size of 0.01. We prevented
overfitting by not training the hyperparameters directly on the
word sequences obtained from the participants of this study.
Instead, random pairs of animals were drawn from the animal
category lists described earlier. We determined the set of
hyperparameters that best detected whether both animals in a
given pair shared a similar category list. For the comparison
with the animal category lists, a semantic relatedness threshold
of 0.40 performed the best in the approach described earlier and
was used for the semantic VFT. For the phonematic VFT, the
semantic relatedness threshold was set to a lower value (0.30)
to allow for reasonably sensitive cluster identification. The
hyperparameters identified using this approach for both VFTs
are summarized in Table 1. Clusters were identified as follows:
the words listed by a person were analyzed as a sequence of
word pairs (word 1 and word 2, word 2 and word 3, ...). A
cluster was defined as a sequence of word pairs in which each
sequential word pair had a semantic relatedness greater than the
thresholds stated earlier. The size of a cluster was calculated as
the number of words within the cluster minus 1. The mean
cluster size was obtained by also including clusters of single
words. The number of switches was defined as the number of
clusters, including clusters of single words, minus 1. To maintain
consistency with the protocol of Troyer et al [9], rule violations
were not excluded in the calculation of these cluster
characteristics. The mean sequential semantic relatedness was
determined by calculating the mean of the semantic relatedness
of the sequence of all word pairs. The exact implementation of
our semantic relatedness method and both traditional methods,
including formulas, hyperparameters, and source code, can be
obtained from our GitHub page [35]. Furthermore, the provided
source code can be easily used to train models in other languages
or based on other text corpora. In addition to the German model,
we provide models pretrained on the English, Spanish, and
French Wikipedia corpora using the same hyperparameters as
those stated earlier [34,35].

Table 1. Hyperparameters used for training the semantic relatedness model and identifying semantically related clusters.

Phonematic VFTSemantic VFTaParameters

500500Dimensions of semantic relatedness space

1010Word2vec window size

Skip-gramSkip-gramWord2vec algorithm

0.300.40Semantic relatedness threshold

aVFT: verbal fluency task.

The listed parameters are the result of hyperparameter
optimization, which is described in detail in this section.
Different semantic relatedness thresholds were used for the

semantic and phonematic VFTs. All other hyperparameters used
for model training were identical between both VFTs.
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Paper-Based Neuropsychological Tests
The overall cognitive function of all the participants in this
study was assessed using the MoCA [43]. In addition, the
Frontal Assessment Battery (FAB) and Trail Making Test
(TMT) B were used as measures of executive function [44,45].
The Boston Naming Test (BNT) [44] and
Mehrfachwahl-Wortschatz-Intelligenztest B (MWT) [46] were
performed to measure language function and crystallized
intelligence. In the MWT, the participant has to distinguish
existing words from fictive words in several word lists. The
German versions of all the aforementioned tests were used.

Statistical Analyses
The correlation of the MDS-UPDRS III item “Dysarthria” with
the speech recognition error rate was calculated using Spearman
rank correlation. All other correlations were calculated as
Pearson correlations. For the comparison of the
neuropsychological test results, a Mann-Whitney U test was
performed because the neuropsychological test results were not
normally distributed. Statistical tests were performed using
Python 3.10.8 [41] with the scipy 1.9.3 package [47]. The
network graph was created using the networkx 2.8.8 Python
package [48]. For clarity, the following data are not shown in
the network graph: correlations between 2 neuropsychological
test results, neuropsychological test results with no correlation
with the clustering characteristics, and Pearson correlation
coefficients between 2 cluster characteristics.

Results

Patient Characteristics and Speech Recognition
In total, 137 recordings were obtained from 85 people with PD,
specifically 80 recordings (94% of participants) for the
phonematic VFT and 57 (67% of participants) for the semantic
VFT. Of the 137 recordings, 6 (4.4%) recordings (phonematic:
n=5, 6%; semantic: n=1, 2%) were excluded because the rules
of the test were violated, 1 (1%) phonematic recording was
removed because not a single word was spoken within the first
10 seconds of the task, and 5 (6%) phonematic and 5 (9%)
semantic recordings were excluded because the participants
misunderstood the task. This resulted in 69 (out of 80, 86%)
phonematic VFT and 51 (out of 80, 89%) semantic VFT
transcripts, which were used for traditional and semantical
relatedness analyses (Figure 1).

Clinical characteristics of the patients are listed in Table 2. The
recordings were transcribed using automatic speech recognition
and checked manually for errors. The total error rate, calculated
as normalized Levenshtein distance for both VFTs, was 61.8%.
In detail, the semantic VFT showed a somewhat lower error
rate (52%) than the phonematic VFT (69%), but this difference
was not statistically significant (P=.15; Figure S1A in
Multimedia Appendix 2). Furthermore, the error rate correlated
significantly with the extent of dysarthria as reported by the
corresponding MDS-UPDRS III item (ρ=0.26, P=.005; Figure
S1B in Multimedia Appendix 2).

Figure 1. Block diagram of the study design. VFT: verbal fluency task.

JMIR Neurotech 2023 | vol. 2 | e46021 | p. 5https://neuro.jmir.org/2023/1/e46021
(page number not for citation purposes)

Hähnel et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Clinical characteristics of people with Parkinson disease included in the phonematic and semantic analyses.

Semantic VFT (n=51)Phonematic VFTa (n=69)Parameter

60.4 (12.3)61.2 (13.1)Age (years), mean (SD)

Sex, n (%)

16 (31)27 (39)Female

35 (69)42 (61)Male

Hoehn and Yahr ONb, n (%)

44 (86)52 (75)Mild (0-2)

6 (12)14 (20)Moderate (2.5-3)

1 (2)3 (4)Severe (4-5)

5.9 (4.0)7.4 (5.1)Disease duration (years), mean (SD)

Subtype, n (%)

11 (22)13 (19)Tremor dominant

19 (37)28 (41)Akinetic rigid

21 (41)28 (41)Mixed

670 (349)692 (356)LEDDc, mean (SD)

19 (10)21 (12)MDS-UPDRSd III, mean (SD)

26.7 (3.0)26.5 (2.6)MoCAe score, mean (SD)

DBSf, n (%)

4 (8)7 (10)Yes

47 (92)62 (90)No

aVFT: verbal fluency task.
bPeople with Parkinson disease can be examined in an ON or OFF state. ON refers to the typical functional state when patients are receiving medication
and have a good response.
cLEDD: levodopa equivalent daily dose.
dMDS-UPDRS: Movement Disorder Society‐Sponsored Revision of the Unified Parkinson's Disease Rating Scale.
eMoCA: Montreal Cognitive Assessment.
fDBS: deep brain stimulation.

Traditional Clusters and Semantically Related Clusters
Cluster characteristics were analyzed for both phonematic and
semantic VFTs using (1) traditional clustering methods and (2)
the novel semantic relatedness method.

For the phonematic VFT, the traditional cluster analysis is based
on phonematic rules, as described in the Methods section. In
our data, most of the phonematic word pairs (297 word pairs)
were identified as clusters because the words shared the same
first 2 letters. Only a few clusters were identified by applying
the remaining phonematic rules: 6 word pairs were identified
as clusters because the words rhymed, 1 word pair was identified
as a cluster because the words differed only in 1 vowel, and no
homonyms were found. An example of rule-based phonematic
clusters is shown in Figure 2A.

In contrast to these phonematic rules, the semantic relatedness
method identifies clusters based on a model that can quantify
the relatedness of word pairs (Figure 3). The semantic
relatedness model was trained on the German Wikipedia corpus.
On the basis of this large training data set, this method can

identify entirely different clusters from those identified through
the rule-based system, for example, the sequence salad, celery,
and salami (German: salat, sellerie, and salami) or Zambia and
Senegal (German: Sambia and Senegal), in which words did
not share phonematic similarities (Figure 2C). Compared with
the traditional rule-based clustering method, in the semantic
relatedness method, the clusters had a smaller size, and switches
between clusters occurred slightly more often (Table 3).
Nonetheless, the number of switches obtained through both
methods correlated strongly (r=0.77; P<.001), whereas the mean
cluster size did not correlate between the clustering methods
(P=.13; Figure 4), potentially because these clusters were
construed differently.

For the semantic VFT, the traditional clustering method is based
on lists of animals with different themes (eg, farm animals or
birds). Words are recognized as a cluster if they are found on
at least 1 common list. An example of such list-based clusters
is shown in Figure 2B. The clusters in the semantic VFT
identified through the list-based method were in general
comparable with those identified through the semantic
relatedness approach (Figure 2D). This is consistent with the
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fact that the clusters were generated in a more similar way for
the semantic VFT than for the phonematic VFT. However, some
additional clusters were detected through the semantic
relatedness method. For instance, the cluster bunny and
hedgehog may be based on a familiar German fairy tale, and
the cluster fox and goose may be based on a common German
nursery rhyme.

As for the phonematic VFT, switches between clusters occurred
slightly more often with the semantic relatedness method than

with the traditional list-based clustering method, and the clusters
identified through the semantic relatedness method were slightly
smaller than those identified through the traditional list-based
clustering method (Table 3). The numbers of switches obtained
using the 2 methods correlated significantly (r=0.59; P<.001),
as did the cluster sizes (r=0.32; P=.02; Figure 4). The strength
of the correlation observed in our work is comparable with that
observed in a recent study that analyzed traditional and semantic
clusters obtained from the semantic VFT performed by people
with PD [17].

Figure 2. Phonematic and semantic clustering examples. Cluster examples for the traditional rule-based (A) and list-based (B) technique and the
semantic relatedness technique (C and D). Words belonging to the same cluster are displayed in the same color (in blue or orange). For the list-based
clustering (B), the common lists for clusters with >1 word is displayed next to each word pair. VFT: verbal fluency task.
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Figure 3. Identification of clusters by calculating the pairwise semantic relatedness. The figure depicts the pairwise semantic relatedness of all sequential
word pairs from the phonematic verbal fluency task (VFT) shown in Figure 2C. Words with a pairwise semantic relatedness above the threshold form
clusters.

Table 3. Characteristics of the traditional (rule and list based) and semantic relatedness clusters.

Semantic VFTPhonematic VFTa

Semantic relatednessList basedSemantic relatednessRule based

19.6 (5.7)19.6 (5.7)12.3 (4.6)12.3 (4.6)Total word count, mean (SD)

0.7 (0.6)0.9 (0.6)0.2 (0.1)0.4 (0.4)Mean cluster size, mean (SD)

12.1 (4.4)10.3 (3.5)10.7 (4.0)9.5 (4.1)Switches, mean (SD)

36.8 (5.3)N/A18.9 (4.4)N/AbMean sequential semantic relatedness (%), mean (SD)

aVFT: verbal fluency task.
bN/A: not applicable.
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Figure 4. Correlation of traditional rule- and list-based and semantic relatedness cluster characteristics. Correlations of the semantic-related cluster
characteristics (y-axis) with the traditional rule- and list-based cluster characteristics (x-axis) for the phonematic verbal fluency task (VFT; top row)
and the semantic VFT (bottom row). Pearson correlation coefficients and corresponding P values are shown.

Next, we investigated the effect of sex, age, and disease duration
on clustering. Performing sex-specific subgroup analysis
revealed no differences between male and female patients except
for a slightly higher number of switches in female patients (10.9
vs 8.7; Tables S1 and S2 in Multimedia Appendix 2) in the
semantic relatedness analysis of the phonematic VFT. In general,
younger patients produced more total words (21.4 vs 17.5) than
older patients in the semantic VFT. There were no differences
in other cluster characteristics or the phonematic VFT (Tables
S3 and S4 in Multimedia Appendix 2). Longer disease duration
was associated with slightly more switches between semantically
related clusters for the phonematic VFT (11.6 vs 9.6), whereas
no difference was observed in other cluster characteristics or
the phonematic VFT (Tables S5 and S6 in Multimedia Appendix
2).

Comparing the phonematic and semantic VFTs, we obtained
higher total word counts (19.6 vs 12.3; P<.001) and larger
clusters for the semantic VFT, which is consistent with previous
research [49]. The semantic relatedness approach showed a
much higher mean sequential relatedness between sequential
words for the semantic VFT than for the phonematic VFT
(36.8% vs 18.9%; P<.001; Table 3).

When we compared the cluster characteristics of the phonematic
VFT and semantic VFT for each patient, we observed strong
correlations independent of the method used for clustering
(Figure S2 in Multimedia Appendix 2). Specifically, we found
positive correlations between the total word count and the
number of switches. A higher number of switches was associated
with a lower mean cluster size, except for the semantic
relatedness clusters of the phonematic VFT. Moreover, a higher
mean sequential relatedness was associated with larger clusters
in the semantic relatedness method, consistent with recent
publications on this matter [17,19].

In summary, our semantic relatedness method produced
meaningful results consistent with previous work by others.
Therefore, we trained the semantic relatedness model on the
English, French, and Spanish Wikipedia word corpora (see the
Methods section) [34,35]. Examples of semantic relatedness
clusters in these languages are presented in Figure S3 to S8 in
Multimedia Appendix 2.

Correlations With Neuropsychological Tests of
Executive and Language Functions
To investigate which cognitive domains are captured by the
above-described cluster characteristics, we compared the
obtained cluster characteristics with the results of paper-based
cognitive tests. In general, the VFT can be seen as a measure
of executive and language functions; specifically, the number
of switches is considered a measure of executive function, and
the cluster size is considered a measure of language function
[9,10]. To assess the executive domains in more detail, we used
the FAB and TMT B. A lower TMT B score indicates a better
result. To assess language function in a standardized fashion,
we performed the MWT and BNT. Overall cognition was
measured using the MoCA. Correlations between clustering
characteristics and neuropsychological tests are shown in Table
4 for the phonematic VFT and in Table 5 for the semantic VFT.

The most important readout of the VFT is the total word count.
It correlated with the overall cognitive performance as measured
by the MoCA for both the phonematic VFT (r=0.38; P=.002)
and semantic VFT (r=0.45; P=.001). The MoCA also correlated
significantly with cluster characteristics for both types of VFT
obtained through the semantic relatedness method. Specifically,
a higher MoCA score was associated with a higher mean
sequential relatedness in the semantic VFT (r=0.28; P=.04), a
higher mean cluster size (r=0.28; P=.02) in the phonematic
VFT, and a higher number of switches (r=0.25; P=.04) in the
phonematic VFT (Figure 5; Tables 4 and 5). Interestingly, no
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significant correlations with the MoCA were found for the
cluster characteristics obtained through traditional clustering
methods (Tables 4 and 5).

With respect to executive functions, the FAB score correlated
significantly with the total word count (r=0.38; P=.005) and
number of switches in the phonematic VFT obtained through
the traditional rule-based clustering method (r=0.28; P=.04)
and semantic relatedness method (r=0.28; P=.04). Larger
clusters obtained from the semantic relatedness method were
associated with a higher FAB for the phonematic VFT (r=0.27;
P=.05). Regarding the semantic VFT, a higher number of
switches obtained through the traditional method was associated
with a higher FAB score (r=0.34; P=.04). Taken together, the
FAB score thus correlated more strongly with the results of the
phonematic VFT than with the results of the semantic VFT.
This is consistent with previous findings by other studies
[50,51]. Better TMT B results were associated with smaller
clusters (r=0.63; P=.006) and a higher number of switches
(r=−0.47; P=.05) for the semantic VFT as obtained through the

semantic relatedness clustering method. The different
correlations of FAB and TMT B demonstrate that executive
function is not a homogeneous concept and support using
different assessment methods. Collectively, these findings
demonstrate that the semantic relatedness method can reproduce
the association of VFT cluster characteristics with measures of
executive function.

With respect to language function, interestingly, we observed
no correlations of BNT and MWT with the clustering
characteristics of the phonematic VFT. As for the semantic
VFT, we found a lower number of switches to be associated
with a higher MWT score (r=−0.54; P=.02) in the traditional
clustering method. BNT scores correlated with the mean
sequential relatedness of the semantic VFT in the semantic
relatedness method (r=0.54, P=.02). These findings are
consistent with the idea that clustering in VFTs is associated
with language function [9,10] and demonstrate that the semantic
relatedness method can reproduce associations of VFT cluster
characteristics with language function.

Table 4. Correlations of the phonematic VFTa cluster characteristics with neuropsychological test results.

Language functionExecutive functionOverall cognition

MWTfBNTeTMT BdFABcMoCAb

Total VFT word count

0.320.10−0.030.380.38 gr

.12.63.89.005.002P value

Mean cluster size (rule based)

0.120.250.000.050.16r

.58.23.99.74.20P value

Switches (rule based)

0.300.06−0.060.280.21r

.15.78.77.04.09P value

Mean cluster size (semantic relatedness)

−0.040.07−0.180.270.28r

.86.72.40.047.02P value

Switches (semantic relatedness)

0.350.150.030.280.25r

.09.47.88.04.04P value

Mean sequential relatedness (semantic relatedness)

−0.12−0.08−0.150.140.00r

.58.71.47.32.97P value

aVFT: verbal fluency task.
bMoCA: Montreal Cognitive Assessment.
cFAB: Frontal Assessment Battery.
dTMT B: Trail Making Test B.
eBNT: Boston Naming Test.
fMWT: Mehrfachwahl-Wortschatz-Intelligenztest.
gSignificant values are in italics.
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Table 5. Correlations of the semantic VFTa cluster characteristics with neuropsychological test results.

Language functionExecutive functionOverall cognition

MWTfBNTeTMT BdFABcMoCAb

Total VFT word count

0.060.37−0.010.240.45 gr

.80.13.96.16.001P value

Mean cluster size (list based)

0.340.370.20−0.160.22r

.17.13.42.34.12P value

Switches (list based)

−0.54−0.12−0.270.340.15r

.02.63.28.04.30P value

Mean cluster size (semantic relatedness)

0.220.300.630.100.19r

.39.23.006.57.18P value

Switches (semantic relatedness)

−0.230.01−0.470.160.20r

.35.97.050.34.16P value

Mean sequential relatedness (semantic relatedness)

0.250.540.450.070.28r

.32.02.06.69.045P value

aVFT: verbal fluency task.
bMoCA: Montreal Cognitive Assessment.
cFAB: Frontal Assessment Battery.
dTMT B: Trail Making Test B.
eBNT: Boston Naming Test.
fMWT: Mehrfachwahl-Wortschatz-Intelligenztest.
gSignificant values are in italics.
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Figure 5. Network graph of Pearson correlations between clustering characteristics and neuropsychological test results. Significant (P<.05) correlations
for the (A) phonematic and (B) semantic verbal fluency tasks (VFTs) are shown as a network graph. The thickness of the connections and the distance
between parameters indicate the magnitude of the correlation (thicker lines and shorter distances indicate stronger correlations). The Pearson correlation
coefficients are shown for correlations between clustering characteristics and neuropsychological test results. BNT: Boston Naming Test; FAB: Frontal
Assessment Battery; MoCA: Montreal Cognitive Assessment; MWT: Mehrfachwahl-Wortschatz-Intelligenztest; TMT: Trail Making Test.

Discussion

Principal Findings
In this study, we present an automated approach to identify
semantically related clusters in VFT transcripts. Speech
recordings of semantic and phonematic VFTs were generated
by people with PD without supervision using a tablet computer.
The obtained cluster characteristics correlated with overall
cognitive, executive, and language functions. Moreover, the
cluster characteristics provided additional information compared
with the total word count alone.

Automatic Speech Recognition
The approach presented here allows for the automated execution
and analysis of semantic and phonematic VFTs. By using a
standard tablet computer and its integrated microphone, the test
can be performed anywhere without the need for an experienced
rater, making it a promising digital biomarker for the
smartphone-based or tablet-based home monitoring of cognitive
functioning.

However, the occurrence of a high percentage of speech
recognition errors in automatic transcription for people with
PD still limits the feasibility of completely automating this
process for participants with dysarthria, consistent with previous
results [52]. Advances in speech recognition technologies may
help overcome this restriction in the future. The speech
recognition error rate may already be lower for other languages
and more advanced speech recognition algorithms [52].

Advantages of the Semantic Relatedness Method
In contrast to traditional list-based and rule-based approaches,
we used a mathematical model based on the semantic relatedness
of words in a large text corpus to identify clusters and calculate
the semantic relatedness between words. This demonstrated
that the semantic relatedness model is different from and has
advantages over the traditional approaches. First, this model

allows for an exact and quantitative measurement of the
semantic relatedness between 2 words. This is different from
traditional methods, which only allow a dichotomous distinction,
that is, whether words form a cluster or not.

Second, the estimation of semantic relatedness solely relies on
the presence of words in the text corpus that was used for
training the model. Thus, the detected clusters do not rely on
the subjective decisions of the raters who manually created the
word lists. For instance, we consider the clustering of words
that occur together in fairy tales or nursery rhymes appropriate.
In addition, we demonstrated that the semantic relatedness model
can capture more complex relationships between words that go
beyond simple lists of characteristics such as geographical
regions or simple phonematic rules.

Within our German cohort, we found only a minimal number
of rhymes and vowel-only differences and no homonyms for
the phonematic VFT. This suggests language-specific
differences in rule-based clusters, which limit their usability in
an international research context. This limitation does not apply
to the semantic relatedness model used in this study. In our
view, this method might yield results that can be easily
generalized to different languages. The strong correlation of the
cluster characteristics of the phonematic VFT as determined by
the semantic relatedness model with MoCA and FAB scores
further substantiates the validity of this approach (Figure 5;
Table 4). In addition, the semantic relatedness method allows
for a comparison between the cluster characteristics of the
semantic VFT and the cluster characteristics of the phonematic
VFT.

Advantages of the Automated Analysis
Using a semantic relatedness model as described above allows
for the automation of cluster analysis in VFTs, which results in
further advantages. Traditional list-based clustering requires a
significant amount of manual work to create the animal lists
and update them with new animals listed by the patients. If
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patients are to be tested again, a different category must be used
for the modified test, and the 2 sets of lists might yield differing
results. With the semantic relatedness approach, a modified
VFT using a different category (eg, fruits instead of animals)
can be analyzed using the same method without the need for
extensive testing of the new word lists.

The traditional rule-based approach relies on manual work. The
detection of homonyms depends on the meaning of the words,
and the detection of rhymes depends on the pronunciation and
not the spelling of the words. Both features would require more
complex approaches, that is, databases identifying the meaning
of words and algorithms incorporating the pronunciation of
words. Such an automated phonetic analysis has been described,
but it resulted in large differences between automated and
manual cluster identification [53]. This manual work is not
required when using a semantic relatedness model as described
here.

As described earlier, the semantic relatedness model shows
advantages when applied to different languages. Traditional
list-based clustering requires the animal lists to be translated
and adapted to the local and cultural circumstances. By contrast,
the semantic relatedness model can be easily adapted using a
freely available text corpus, such as Wikipedia in a different
language. No specific adaptations or list translations need to be
performed manually because all language-specific adaptations
are already integrated into the text corpus used for training the
model.

To further facilitate the use of the semantic relatedness method
for VFT analysis, we publish with this manuscript pretrained
models for the English, German, French, and Spanish languages,
which are based on the corresponding language-specific
Wikipedia corpora [34]. In addition, we provide a software to
train the model, which will allow other researchers to apply the
model to different corpora and new languages [35].

Despite these advantages, our approach also has several
limitations. Most of the texts used for training the model are
written text and not spoken language, some of which are written
in a scientific style. Thus, a corpus of more common texts such
as books or interviews may be more appropriate. Although the
Wikipedia corpus is available in many languages, not all
versions are as extensive as the German and English versions,
which could potentially result in less accurate models. In this
case, the corpus could be supplemented with books, newspaper
articles, or other types of texts.

Correlations of Cluster Characteristics With
Neuropsychological Parameters
We used the traditional clustering methods to identify
hyperparameters for the automated semantic relatedness method
that provided a good correlation with the traditional method for
the semantic VFT. For the phonematic VFT, the correlation
between the automated semantic relatedness method and the
traditional manual method was weaker. This can be explained
by the different constructs used for phonematic rules and
semantic relatedness.

We observed a correlation between executive functions and
cluster characteristics, specifically the number of switches in

the semantic and phonematic VFTs, which is consistent with
previous data [13,17] and the concept that switching in VFTs
reflects executive functioning [9,10]. We were able to replicate
these findings for both semantic and phonematic VFTs in the
semantic relatedness clustering method. Although semantic
relatedness reflects a different construct compared with
traditional rule-based clustering, the number of switches between
semantically related clusters in the phonematic VFT also showed
significant correlations with executive function as reported by
the FAB. Regarding the language function, our results do not
support the idea of cluster sizes as a marker of language function
[9,10]. Similarly conflicting results were also reported by other
researchers, and these showed either no correlations of clustering
characteristics with language function or correlations of the
number of switches with language function [17,18]. The
heterogeneity of these results may be caused by the
subjectiveness of the animal lists required for traditional
clustering and by the correlation of the mean cluster size with
the number of switches, as observed in our data and described
elsewhere [7,17,19]. By applying the semantic relatedness
method, we were able to observe that a higher mean sequential
relatedness is associated with a higher BNT score. This shows
that the cluster characteristics obtained through the semantic
relatedness method yield additional information about language
function that cannot be inferred from the total word count or
from the traditional clustering method.

Because the phonematic and semantic VFTs were conducted
in the same order in all patients, we cannot rule out a negative
bias toward the second task caused by fatigue. We assume that
the impact of not randomizing the order of the VFTs is limited
because the VFT is a very short assessment taking only 1 minute
to complete.

Overall, our semantic relatedness clustering method when
applied to the semantic VFT yielded results comparable with
those published in a recent study [17], highlighting a robust
correlation with executive function in people with PD. Our
study is the first to investigate semantically related clusters for
the phonematic VFT in people with PD. In this study, we
showed for the first time that the semantic relatedness method
can also be applied to the phonematic VFT in people with PD
and that the resulting clustering characteristics are a robust
marker of executive function.

Conclusions
In summary, our work demonstrates the feasibility of a
standardized cluster analysis of semantic and phonematic VFT
transcripts using a semantic relatedness model. This model
overcomes numerous disadvantages of traditional clustering
methods, allows for the automation of cluster identification,
and shows strong correlations with executive functions. The
presented automated approach enables a more objective
identification of semantic clusters in different languages: going
forward, it could help overcome the heterogeneity of previously
published studies in this field. Longitudinal trials are required
to determine whether cluster characteristics are associated with
differences in cognitive decline or disease progression. In the
future, this automated semantic relatedness method could
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provide easily accessible digital biomarkers for executive function in PD.
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