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Abstract

Background: Recording time in invasive neuroscientific research is limited and must be used as efficiently as possible. Time
is often lost due to a long setup time and errors by the researcher, driven by the number of manually performed steps. Currently,
recording solutions that automate experimental overhead are either custom-made by researchers or provided as a submodule in
comprehensive neuroscientific toolboxes, and there are no platforms focused explicitly on recording.

Objective: Minimizing the number of manual actions may reduce error rates and experimental overhead. However, automation
should avoid reducing the flexibility of the system. Therefore, we developed a software package named T-REX (Standalone
Recorder of Experiments) that specifically simplifies the recording of experiments while focusing on retaining flexibility.

Methods: The proposed solution is a standalone webpage that the researcher can provide without an active internet connection.
It is built using Bootstrap5 for the frontend and the Python package Flask for the backend. Only Python 3.7+ and a few dependencies
are required to start the different experiments. Data synchronization is implemented using Lab Streaming Layer, an open-source
networked synchronization ecosystem, enabling all major programming languages and toolboxes to be used for developing and
executing the experiments. Additionally, T-REX runs on Windows, Linux, and macOS.

Results: The system reduces experimental overhead during recordings to a minimum. Multiple experiments are centralized in
a simple local web interface that reduces an experiment’s setup, start, and stop to a single button press. In principle, any type of
experiment, regardless of the scientific field (eg, behavioral or cognitive sciences, and electrophysiology), can be executed with
the platform. T-REX includes an easy-to-use interface that can be adjusted to specific recording modalities, amplifiers, and
participants. Because of the automated setup, easy recording, and easy-to-use interface, participants may even start and stop
experiments by themselves, thus potentially providing data without the researcher’s presence.

Conclusions: We developed a new recording platform that is operating system independent, user friendly, and robust. We
provide researchers with a solution that can greatly increase the time spent on recording instead of setting up (with its possible
errors).

(JMIR Neurotech 2023;2:e47881) doi: 10.2196/47881
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NeuroTech Dialogue

We propose a software package called T-REX (Standalone
Recorder of Experiments) that is specifically designed for
recording experiments. T-REX automates multiple manual
actions, reducing the experimental overhead and error rate
during recordings. With our system, researchers can centralize
all their experiments into a simple local web interface, and set
up, start, and stop experiments with a single button press. The
user friendly interface can be used with different recording
modalities, amplifiers, and participants, making it highly
flexible. The software is executable on mainstream operating
systems (Windows, Linux, and macOS) and does not require
the use of a specific programming language for creating the
experiments. It includes functionality to automatically record
experimental data using a protocol frequently used in the
community called Lab Streaming Layer. With T-REX, we
simplify and streamline the recording of experiments for
researchers while providing maximum flexibility in using
different recording modalities, programming languages,
operating systems, and amplifiers.

Introduction

Recording high-quality electrophysiological human brain
activity is notoriously difficult. The best quality signal has both
high spatial and temporal resolution and is recorded with
invasive electrodes [1,2]. However, since implanting electrodes
in humans for research purposes is a lengthy and challenging
process with many safety and ethical concerns, scientists tend
to use the clinical treatment of patients who receive implants
for clinical purposes [3,4] as a research vehicle. Some examples
are patients with medication-resistant epilepsy undergoing
presurgical monitoring for resection surgery [5] or patients
qualified for deep brain stimulation [6].

Because recordings should not interfere with clinical treatment,
the time to record data for neuroscientific experiments in these
patient groups is severely limited. For implanted epilepsy
patients, the recording windows are usually a few days to 2
weeks. In contrast, for patients with deep brain stimulation, the
recording windows are during surgery using microelectrode
recordings, and between surgery and when the stimulator is
turned on. During these recording windows, patients need time
to recover and have sufficient general well-being to participate.
Moreover, time spent on clinical treatment and other assessments
that require recording time can further reduce the already limited
recording time.

Therefore, the brief remaining time window should be used as
efficiently as possible. In practice, this means that the time spent
on recording should be maximized, while the time spent on
setting up and solving errors should be minimized. Both the
set-up time and error rate can be significantly reduced by
automating as many manual actions as possible (eg, connecting
to recording devices; starting experiments; selecting data
streams; and starting, stopping, and synchronizing the
recording). However, as experiments or recording setups change
over time, it is often not worthwhile for research groups to invest
in developing a more sophisticated system. It takes human

resources, technical knowledge, and substantial time investment
to move beyond custom-made systems, which are often only
used internally and unavailable to the public. Aside from
custom-made setups, there exist multiple measurement
platforms, including BCI2000 [7], OpenVIBE [8], FieldTrip
[9], NFBlab [10], and MEDUSA [11]. These systems can record
data from many different amplifiers and include modules to
design, analyze, and provide feedback during or after the
experiments. While all these platforms also include good
recording capabilities, they are more broadly focused on
experimental design and analysis.

Additionally, these solutions limit the experiments that can be
executed by the researcher in some way, either by targeting a
specific type of experimental design or by imposing some
hardware or software tool sets, such as programming language,
input/output devices, or operating systems (OSs). Furthermore,
not all platforms are open-source, which is not in the spirit of
open science and impedes collective quality control and
replicability. For example, FieldTrip requires the researcher to
use the proprietary platform MATLAB, and BCI2000 and
OpenVIBE impose the use of their tools and application
programming interfaces. Additionally, the researcher must install
a complete software package on the system, even when only
the recording functionality is needed. Ashmaig et al [12]
developed and described a system exclusively focused on
continuous data recording for neurosurgical patients. The system
provides a good use case for naturalistic long-term recordings
but has an extensive list of hardware requirements and limits
the researcher to Linux. Furthermore, not all research groups
have the opportunity to perform long-term recordings.

While all these platforms provide good solutions for their use
case and cover a significant part of the neural recording space,
we observed that none of these platforms are specifically tailored
to the setup and recording of experiments. Here, we describe
the T-REX (Standalone Recorder of Experiments) platform that
is specifically targeted to improve the recording of experiments.
By automating the setup, start, and stop of experimental
recordings, T-REX reduces the error rate and time spent between
recordings. T-REX minimizes restrictions on hardware and
software, is available on all major OSs, and is publicly available
as an open-source project. This work presents T-REX’s system
design, functionality, usage, and potential implications for the
field.

Methods

Requirements
We determined 3 criteria that the system should meet to make
T-REX applicable to as many labs as possible. First, T-REX
should be as independent as possible of tools, paradigms, OSs,
and programming languages. Each lab has its preferred tool set,
and ensuring independence means that researchers do not need
to port their existing experiments to fit T-REX. Its only
requirement is for the experiments to use Lab Streaming Layer
(LSL) to stream data [13]. The backend of T-REX uses LSL to
synchronize data across sources (see the section Details of LSL).
Second, T-REX should be user friendly to both the researcher
and the participant. Increasing simplicity will reduce error rates
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and the time spent on setting up, which can be achieved by
automating multiple manual actions. Lastly, the system should
be robust. This means that an experiment should only run when
all requirements to run are met, and in case of technical
problems, the experiment should retain the data up to that point
and return to the Home screen.

System Outline
In brief, T-REX acts as the middleman handling the
experimental overhead for the researcher (Figure 1). When using
T-REX, the researcher can select an experiment by pressing a
button on the main menu screen (Figure 2). T-REX will then
check the availability of all required data streams and connect

to the streams. Examples of data streams include a hand-tracking
device sending coordinates of a person’s hands and an amplifier
recording the participant’s neural activity. T-REX will then start
the experiment user interface (UI) that instructs the participant
on what task to perform. Upon successful start of the experiment
UI, T-REX starts recording all data streams and saves them to
a folder specified by the researcher. All data are saved by LSL
into a single .xdf file. After the experiment is completed, the
UI prompts the participant on how the experiment went and
returns to the Home screen. During the full experiment loop,
the actions that the researcher needs to perform are to start the
required device data streams and select the experiment in the
Home screen.

Figure 1. A schematic overview of the experiment loop of T-REX (Standalone Recorder of Experiments). (A) Data from the participants (eg, EEG,
movement, and audio) are recorded by a variety of device inputs. Each input device should create a Lab Streaming Layer StreamOutlet to make the
data available to record. (B) T-REX then provides a user interface for experiment selection. The backend finds the required data streams and records
them. The rounded box shows the different software components (web interface, controller, and user configuration). (C) Example outputs of the
experiment. These components interact with the participant (experiment user interface and stimuli), or the recorded data are saved. EEG:
electroencephalography.
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Figure 2. Representation of the main 4 windows of the web interface. (A) The Home window contains all the experiments accessible to the researcher,
represented on a grid configuration. (B) The Experiment Feedback window allows obtaining feedback from the participants about their experience with
the experiment. It is achieved through the green (“All good”) and red (“Not so good”) buttons. Participants can only continue after pressing one of these
buttons. (C) The Admin Login window allows access to the administration panel by entering the password. (D) The Admin Configuration window
allows the administrator to create new participants and modify their access to experiments.

Materials, Software, and Technologies
T-REX has multiple components, including a local web
interface, a recording backend, and a controller interface
connecting these 2 components. The web interface (Figure
2A-D) is built using Bootstrap5 [14] for the frontend and the
Python package Flask [15] for the backend. The recording
backend uses LSL and handles data stream synchronization and
recording itself (information is provided in the section Details
of LSL). Lastly, the controller interface (information is provided
in the section Controller) is implemented in Python 3.7+ and a
few dependencies found in requirements.txt. T-REX is
compatible with Windows, Linux, and macOS.

Details of LSL
T-REX uses LSL to synchronize the data streams from different
devices, such as a variety of electroencephalography (EEG)
amplifiers, audio streams, movement trackers, and cameras.
The service handles “networking, time-synchronization, (near)
real-time access, and optionally the centralized collection and
recording of data” [13]. It is lightweight and has multilanguage
and multiplatform support, including Unity and Android. LSL
allows the researcher to send data via a data stream to a local
network server, which can be recorded.

Basic usage involves defining a StreamOutlet that makes a time
series data stream available on the network. The data are pushed
per sample or per chunk into the outlet. By creating an outlet,
the stream is made available to the local network of computers.
The most basic usage (in Python) is represented in the following
code block:

This code creates a StreamOutlet object with a name
(“my_marker_stream”), type (“markers”), channel count (1),
irregular sample rate (defined as 0.0), data type (“str”), and
source ID (“my_unique_id”). Lastly, a sample containing
“Experiment_start” is pushed to the outlet.

Inversely, to receive data, one can instantiate a StreamInlet and
use inlet.pull_sample(). For a comprehensive overview, see the
official documentation [13]. For T-REX to be able to record all
data, the devices and the experiments themselves must all create
a StreamOutlet (like the example above). If no StreamOutlet is
created, T-REX will not be able to find and record the device
and start the experiment. By using LSL, T-REX is able to
connect to many popular experiment platforms, such as
Psychopy [16], OpenSesame [17], and Presentation [18]. In
case a stream is listed in the requirements provided by the config
in an experiment but is not available, T-REX will throw an error
and return to the Home screen. Thus, no experiment can start
while missing a data stream.

Trigger
In some recording setups, a trigger marks the start and end of
an experiment. In these setups, participants’ clinical data are
recorded continuously and stored on a server. During an
experiment, the data cannot be streamed directly and need to
be retrieved afterward by the responsible data steward. The data
steward can locate the requested data files by identifying the
trigger pattern sent by the experimenter. Depending on the
manufacturer, a trigger can be delivered via the amplifier or
with a separate device. If it can be delivered internally, the
experimenter can directly send triggers from within the
experiment, and the trigger functionality of T-REX does not
need to be used. T-REX provides some basic functionality to
send a trigger code if an external device is required. In short,
T-REX searches for a USB device with a name set in the main
configuration file. It connects to this device and sets up an LSL
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stream. Then, if an experiment is started and the trigger flag in
the main configuration file is set to True, the trigger class sends
a user-defined code. When the experiment is finished, the trigger
will be sent again, flagging the start and end of the complete
experiment. The data steward can then retrieve the correct data
with these trigger codes. At the same time as sending a trigger,
the code also sends a marker to LSL, allowing for
synchronization across data streams.

Software Components
The software consists of 2 main components: the web interface
that handles the UI and the controller that sets up, starts, and
stops all experiments (Figure 1B).

Web Interface
The web interface includes 4 windows: Home, Experiment
Feedback, Admin Login, and Admin Configuration (Figure 2).

The Home window (Figure 2A) displays all the experiments in
a grid. Experiment cards are shown on that grid with a title,
description, and start button. When the button is pressed, the
controller executes a command that starts the selected
experiment. The command is defined by the researcher and
specified on the configuration of the experiment (more details
are provided in the section User Configuration). During the
experiment, the web interface is on standby awaiting the
completion of the experiment.

After completion, the participant is redirected to the Experiment
Feedback window, where the question “How did the experiment
go?” is prompted (Figure 2). The participant or researcher is
required to select a feedback option to continue. This allows

the researcher to save a brief experiment evaluation to assess
data quality in later analysis. In potential future applications,
the participants might perform the experiments by themselves.
Then, this feedback is useful to flag the researcher to be aware
of potential poor data quality. The feedback is stored under the
file name feedback.txt in the same folder as the most recent .xdf
file (that contains the data recorded from the experiment).

The Admin Configuration provides the researcher with a closed
environment where the participant identifier can be selected
and a selection of all available experiments is available. To
access the Admin Configuration, the researcher must first log
in using the password that is configured in the main
configuration file (Figure 2C; details are provided in the section
User Configuration). When logged in, the researcher can see
the configuration of the active experimental session, composed
of an alphanumeric participant identifier and their access to
experiments. A list of all the experiments included in the
platform is visible from this window, but only those with
checked marks are visible to the participant. The changes in this
window are only applied after pressing the “Save” button at the
end of the page.

The web UI has been tested with Firefox (version 105.0.1),
Chrome (version 106), Safari (version 16), and Edge (version
106), although it should be compatible with higher versions and
other mainstream browsers.

Controller
The controller handles everything related to running an
experiment and has 3 main parts: setup, start, and stop (Figure
3). The related code can be found in the ./libs directory.

Figure 3. Backend flow of running an experiment. When an experiment is started by pressing the start button on the card, the controller is called,
loading the main configuration file and extracting the information received from the user interface (UI) about which experiment to run. Then, an
experiment instance is created, loading the experiment-specific information and completing the setup in 3 steps. First, it checks for all devices and their
Lab Streaming Layer streams. Second, it initializes a recorder instance and adds all streams to the list of streams it should record. Lastly, if a trigger is
required for the selected experiment, it will set up a trigger class that searches and connects to the trigger. Once the subprocess call is returned, experiment
sends the final trigger and stops the recorder. The data are saved in the ./output/ folder, and the researcher or participant is redirected to the experiment
assessment screen (Figure 2B).

Setup
When an experiment is started by pressing the start button on
the card, the controller class in Controller.py (Figure 3) is called,
and it loads the main configuration file and extracts the
information received from the UI about which experiment to
run. With this information, an experiment instance is created,
and its loading function is called.

Experiment loads the experiment-specific information and
completes the setup in 3 steps. First, it checks for all devices

and their LSL streams as defined by the researcher in the
experiment configuration under device_inputs.

Subsequently, experiment initializes a recorder instance and
adds all streams to the list of streams it should record. For a
movement experiment [19-23], the streams recorded could be
the neural amplifier and experimental triggers. Additionally, a
movement tracker [24-26] or a force sensor [27] could be added.
For speech perception [28-30] or auditory perception [31,32],
the audio stream, experiment triggers, and neural data need to
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be recorded. For speech production [33-36], the streams could
be neural data, microphone, and triggers. In the Results section,
we provide some example experiments.

The last step is to check if a trigger is required for the selected
experiment. If so, it will set up a trigger class that searches and
connects to the trigger.

All devices must be connected and available to LSL before the
experiment instance is called. As all requested devices are
essential for successful recording, T-REX will raise an error
and return to the UI if not all input devices are connected
successfully.

Start
A user-defined command is called using Python’s subprocess
library to start the experiment UI. The command should be
callable from the command line interface and can be set in the
experiment-specific configuration. Because the experiment UI
likely contains a stream that sends out experiment-related
markers, experiment will start a loop on a user-defined timeout
to search for the marker stream. Once found, usually almost
instantly, the recorder will start recording all streams.
Implementing the system this way does not restrict the research
aside from using LSL. However, owing to the timeout, the
experiment may start before the recording starts. This can only
happen if the time between the setup of the experiment
StreamOutlet and sending the first marker is shorter than the
time that the recorder can find the stream and start the recording.
Usually, finding the StreamOutlet and starting the recording is
in the order of milliseconds. However, to entirely prevent the
possibility of this happening, we recommend including a waiting
screen in the experiment UI (eg, “Press button to start”) or
ensuring sufficient time (longer than the timeout set in the
experiment configuration) between the setup of a StreamOutlet
and the start of the experiment. Once connected to the
experiment StreamOutlet, the experiment UI should start, and
the experiment instance will wait until the called command is
terminated and returned, which usually happens when the
experiment UI window is closed.

Stop
Once the subprocess call is returned, experiment sends the final
trigger and stops the recorder. The data are saved in the ./output/
folder, defined in the main configuration file (information is
provided in the section User Configuration). An example of the
created directory tree is provided in Multimedia Appendix 1.

Device Inputs
Each experiment can have multiple input devices, such as an
amplifier measuring the neural data, a hand-tracking device,
and a microphone. Any device can be included if it generates
a StreamOutlet. Each device should send the data from the
device to LSL, allowing it to be accessed by the other system
components and to be recorded. The name, type, or source_id
supplied to the StreamOutlet will be the values that T-REX will
search for during experiment setup (information is provided in
the section Controller). In practice, this means that either the
name, type, or source_id needs to be supplied under
device_inputs in the experiment configuration file (information

is provided in the section Experiment Configuration). Since
devices can be used for multiple experiments, we included a
separate destination for all device input files
(./exp_module/inputs), although input devices can be stored
anywhere as long as they generate a StreamOutlet.

User Configuration
There are 2 types of configuration files that the researcher can
set: main configuration and experiment-specific configuration.
All configuration files are formatted in Yet Another Markup
Language (YAML).

Main Configuration
The file config.yaml in the root folder contains the system-wide
configuration. This configuration file contains information on
general settings. Multimedia Appendix 2 provides a description
of the different available options, and Multimedia Appendix 3
provides an example of the main configuration file. The main
option under path is the path that all relative paths will be
anchored to and should be set to the root folder. Most parameters
are preset, but out and trigger configurations may vary between
different recording setups and might need to be redefined.

Experiment Configuration
Each experiment included in T-REX requires a separate folder
in ./exp_module/experiments/ and must include at least 2 files:
config.yaml and the file to start the experiment. A full
description of all the fields and different options in config.yaml
can be found in Multimedia Appendix 4. The name and
description define the text shown in the UI; command sets the
command line interface command made by the controller class
to start the experiment; and exp_outlet sets the name, type, or
source_id that the experiment class will search for. For example,
if the experiment UI is a Python script that will create a
StreamOutlet named markers, the command to execute would
be python .\exp_module\experiments\your_experiment_file.py
and exp_outlet=’markers’.

Results

Overview
We have included 3 different example experiments to provide
a practical view of how to use T-REX. The examples can also
serve as a quick start for researchers to create new experiments
or adapt the ones included. A step-by-step explanation of adding
a new experiment is described in the section Adding New
Experiments to the Platform.

Case 1: Simple Experiment in Python
This experiment is a simple text-based instruction for a grasping
task (Figure 4A). The participant is prompted by text in a Python
Tkinter [37] window to continuously open and close either the
left or right hand, as used previously [38]. The experiment
requires neural data as the input device and generates a
StreamOutlet to send markers that inform about the start and
end of the experiment and of the trials. The neural data are
acquired from a stream with name=Micromed, type=EEG, and
source_id=micm01. These values are all set by the researcher.
As T-REX will search for all 3 options (name, type, and
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source_id), only 1 must be provided. Therefore, the option under
device\_inputs in grasping\config.yaml is set to eeg (case
insensitive). Next, the marker StreamOutlet that will be
generated by the experiment has source_id=emuidw22. When
the experiment class runs the experiment command (command
field in grasping\config.yaml), it will search for these streams.
Therefore, the exp_outlet field is set to ’emuidw22’. Finally,
since the grasping experiment is Python-based, the command
should use Python to call the script with the command: python
.\exp_module\experiments\grasping\grasping.py. The
configuration file used has been presented in Multimedia
Appendix 5.

When these options are set, the experiment is ready to go and
can be started by pressing the start button on the Home window.
The Tkinter window opens and waits for the spacebar to be
pressed. Once pressed, the experiment starts and is locked as
the top viewed window until completion. When the experiment
is finished and closed (ie, the command call ends and returns

to the experiment class), the experiment instance stops the
recording and saves the data. In-depth details on how
experiments are started and stopped are described in the section
Controller.

Figure 5 shows a random selection of 15 channels of neural
data recorded with T-REX during the grasping experiment. Two
streams were used in this experiment. First a marker
StreamOutlet that sends all experiment-related markers, such
as the start and end of the experiments and the start and end of
each trial, with the accompanying label (move or rest). Second,
an EEG StreamOutlet that streams the data from our Micromed
Amplifier to LSL. With T-REX, these streams were
automatically identified and recorded. The start and end of the
colored columns (identifying move and rest trials) were
determined by the recorded markers sent through the marker
StreamOutlet. The synchronization by LSL ensures that the
EEG and marker stream timestamps are the same.

Figure 4. User interfaces for the 3 use case experiments included. (A) Grasping: simple text-based experiment built using the Python package Tkinter.
(B) Grasping web experiment: reimplementation of the grasping experiment as a single page application (SPA) to allow its execution on any device
with access to a web browser. (C) 3D hand-tracking experiment: the hand-tracking is performed using the LeapMotion controller, and the experiment
is implemented in Python using the package Tkinter.

Figure 5. Neural data were recorded with the grasping experiment using T-REX (Standalone Recorder of Experiments). Two streams were recorded
during this experiment: an EEG stream and a marker stream. The data from the EEG stream are shown by the black lines, indicating the voltage over
time in a selection of 15 neural electrodes. The marker stream sends the start and end of the experiment and the individual trials. These markers were
used to determine the colored areas (blue and orange) shown. EEG: electroencephalography.
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Case 2: Simple Experiment in a Web UI
We included the same grasping experiment as in Case 1 but
implemented it in a web interface (Figure 4B). It uses a single
page application (SPA) locally and thus can be created on any
device with access to a web browser, like a laptop, tablet, and
smartphone. The grasping web experiment also illustrates
options other than a Tkinter window for experimenting. No
internet connection is required, relieving some security concerns
that could render execution on the web unsafe.

We constructed the experiment using HTML, CSS (Bootstrap5
for responsiveness and other visual aspects), and JavaScript for
behavior. The device input is the same as in the Tkinter
implementation of the experiment and the StreamOutlet
containing the markers; thus, the device_inputs and exp_outlet
are the same. The difference is in the command executed to start
t h e  e x p e r i m e n t .  I n  t h i s  c a s e ,  s t a r t
.\exp_module\experiments\graspingWeb\index.html is used.
The configuration file used has been presented in Multimedia
Appendix 6.

Once the experiment is started on the Home window, the
experiment instance opens another tab on the browser displaying
the “grasping_web” experiment. The experiment starts when
the participant presses the green “Start” button. When the
experiment is finished, the participant or researcher is prompted
to press a red button to close the experiment. The GraspingWeb

command call is finished at the button press and returns to the
experiment instance, stopping the recording and saving the data.

Case 3: Multiple Devices
Lastly, we included a 3D hand-tracking experiment, where the
goal is to hold a cursor (a black circle) on a target (a red circle).
The cursor can be moved in 3 dimensions, where the third
dimension controls the size of the circle (Figure 4C). In this
case, the hand tracking is performed by the LeapMotion
controller [39], but any other device can be used. We have
provided a .exe file that reads the data from the tracker and
sends it to an LSL StreamOutlet with name=LeapLSL,
type=Coordinates, and source_id=LEAPLSL01. In addition to
the hand-tracking information, we also need neural activity, for
which we use the same StreamOutlet as described in Case 2.
Lastly, the experiment is implemented in a Python Tkinter
window and generates a marker stream similar to the stream
described in the previous use case with Source_id=BUBBLE01.
Thus, to set up the configuration for this experiment, we set the
c o m m a n d  t o  p y t h o n
.\exp_module\experiments\Bubbles\bubbles.py, exp_outlet to
BUBBLE01, and device_inputs to LEAPLSL01 (the tracking
information stream) and eeg (the neural data stream). To run
the experiment, the researcher should start the device stream
before the experiment is started in the Home screen (ie, run the
.exe first). The configuration file used has been provided in
Multimedia Appendix 7. An example of data recorded with
T-REX for this experiment can be appreciated in Figure 6.

Figure 6. The combined data recorded from 3 different streams: an EEG stream, a marker stream, and a LeapMotion controller. The EEG channels
are 5 channels randomly selected from 87 available channels. X, Y, and Z are the 3D coordinates of the palm of the hand, provided by a LeapMotion
controller. The marker stream provides the shown trials (numbers on top with vertical dashed lines). To start and record this experiment, the LeapLSL
stream has to be started, along with the EEG stream. Then, only the experiment needs to be started in T-REX (Standalone Recorder of Experiments).
T-REX records all 3 streams (synchronized by Lab Streaming Layer), ultimately allowing to combine the 3 streams into this image. EEG:
electroencephalography.
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Mix and Match
We have presented only 3 examples showing different
possibilities. Different devices can be included by adding a
StreamOutlet name, type, or source_id to the list of
device_outputs. The only requirement to add a device is that
the data from the device can be sent to a LabStreamingLayer
StreamOutlet. This code is either supplied by the manufacturer
or written by the researcher. If this requirement is met, any
medical device or technology can be included, as T-REX does
not impose any further restrictions on technologies or types of
experiments, including, but not limited to, speech production,
audio or speech perception, movement, decision-making, and
simple or naturalistic tasks [40,41]. For example, new
experiments can also be built in Unity [42] or PyGame [43] to
provide better graphical experiences.

Adding New Experiments to the Platform
The following steps describe how to add a new experiment from
scratch to T-REX:

1. Create the experiment folder inside the directory
./exp_module/experiments/. An example of the directory
tree for different example experiments can be found in
Multimedia Appendix 8.

2. Create the experiment configuration file (config.yaml)
inside the new folder. Information in Multimedia Appendix
9 can be used as the base example for creating this file, and
the section Experiment Configuration contains a detailed
description of each parameter.

3. Adjust the fields to the specific experiment.

After completing these initial steps, the experiment should be
visible from the Admin Configuration panel. The researcher can
set the experiment as “visible” from the admin panel by selecting
its corresponding check mark. If configured as “visible,” it
should appear on the Home window, and it can be executed by
clicking on its respective button.

It is worth mentioning that when porting an already configured
version of T-REX to a different OS, some parameters might
need to be revised. For example, regarding the parameter
command, when used on Windows to start a Python experiment,
the definition is as follows:

However, when used on Unix or Unix-like systems, the
definition changes to the following:

The difference comes because “/” is the path separator on Unix
and Unix-like systems, and Microsoft uses “\”.

There might be other scenarios where the parameter command
might differ between OSs; thus, we recommend revising each
experiment configuration file when porting the platform to a
different OS.

Practical Experience
At the time of writing, we entirely switched to recording with
T-REX for our experiments at different recording sites. So far,
we have recorded multiple experiments, involving speech,
motor, and decision-making tasks. Furthermore, at one of the
recording sites, we recorded using the trigger functionality
included in T-REX. We see no indications of different data
quality in our neural decoding endeavors. We can decode speech
[44,45] and movement trajectories [46] with performance equal
to that using our previous setup.

Discussion

We presented T-REX, an independent, user friendly, and robust
system that minimizes the setup time and error rate. T-REX
provides a simple UI and reduces the experimental setup to the
press of a button. The software merges the LSL recording
backend with a simple UI, automating experimental overhead
for the researcher. T-REX reduces the setup time and error rate,
resulting in more time spent recording neural data.

The simplicity of T-REX reduces the number of actions that
the researcher must perform to only 2: starting the required
devices and starting the experiment. The fewer manual actions
the researcher needs to perform, the lower the chance that an
error is made. It improves reliability and increases total data
volume and time spent on recording. The LSL software package
fully handles synchronization and recording. We decided on
LSL as it is lightweight, is easy to use, has submillisecond
timekeeping, and has a proven track record [47]. The flexibility
of T-REX makes the system applicable in fields other than the
neuroscientific context described here.

T-REX provides benefits for both the researcher and participant.
A streamlined process may have multiple benefits from the
perspective of the participant. It leaves more time to interact
with the participant, making it more comforting and engaging.
T-REX may be particularly beneficial for participants who are
anxious or nervous about participating. Furthermore, a
streamlined process conveys more professionalism and may
improve participation satisfaction, ultimately increasing the
willingness to participate in future research. Moreover, if the
start and recording of experiments are simplified enough,
participants may be able to run experiments themselves. The
introduction of engaging and fun experiments that enable
participants to run them as they like provides the participants
with an opportunity to alleviate boredom and do something
meaningful by contributing to scientific research. Together,
both the researcher (more data) and the participant (more
engagement) are benefitted. While T-REX has been developed
with independent recording in mind, it is currently not being
tested for that purpose.

In comparison with other available software platforms, T-REX
is the only solution specifically focused on recording
experiments, allowing it to remain lightweight. Platforms like
BCI2000 [7], OpenViBE [8], and MEDUSA [11] offer
comprehensive functionalities spanning the 3 stages of a BCI
system: signal acquisition, signal processing, and feedback
presentation. However, they require complete software
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installation even if only the recording module is needed. T-REX
enhances the researcher experience by offering flexibility in the
choice of programming language and technology for creating
the experiments, unlike BCI2000 and OpenViBE, which
mandate the use of C++; MEDUSA, which requires the use of
Python; and NFBlab [10], which requires the use of its graphical
UI. Regarding compatibility, T-REX holds a distinct advantage,
supporting all major OSs, including Windows, Linux, and
macOS. This is in contrast with BCI2000’s limited functionality
outside Windows and MEDUSA’s exclusive Windows
availability, as well as the system presented by Ashmaig et al
[12], which is Linux-bound. Each of these platforms has its
strengths and excels in its intended function. T-REX provides
a tailored solution for a specific part of neuroscientific research
that allows it to remain simple and lightweight.

T-REX aims for simplicity, and setting up experiments in
T-REX requires basic knowledge of command line interface
usage. Moreover, experiments and devices must use LSL to
make data available. Although LSL is available for all
mainstream OSs and programming languages, experiments
already used by researchers may require adjustments to the
experiment code structure for inclusion in T-REX. Therefore,
technical knowledge and usage of LSL may limit the
applicability for some labs. Furthermore, T-REX is available
for all mainstream OSs but may not apply to all different
versions. Specifically, the command line interface version of
LabRecorder, including the script that records and stores the

multiple data streams, had to be built for different chipsets (M1
and M2) for macOS. These are currently included, but other
architectures likely require a different build of LabRecorder.
As T-REX matures, we expect more versions to become
applicable.

T-REX is in ongoing development, and we have identified
several potential future updates targeting an improved user
experience. Device streams currently need to be started
manually, and this may be performed automatically at the start
of an experiment. This is also a requirement to enable
participants to start recordings themselves, which is a main
future improvement. Aside from ensuring that there are no
manual actions except starting the experiments, allowing T-REX
for independent use may require improved internal logging and
error handling. Combined, these updates would reduce even
more actions for both the researcher and participant, and increase
the robustness of T-REX.

In conclusion, T-REX offers a flexible solution to record
neuroscientific experiments. It streamlines setup and recording,
and reduces error rates that increase the time spent on
recordings. We envision T-REX to help standardize and simplify
recording experiments and eventually allow recordings by
participants independently. This may improve the overall
satisfaction of participation and increase the amount of data
collected. The open-source nature of T-REX is in the spirit of
open science and increases its value through an increase in
community knowledge.
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Multimedia Appendix 1
The directory tree illustrates the content of the ./output/ folder when saving the experimental data gathered with one experiment.
The output.xdf file is created upon experiment completion. It contains the recorded data from the preconfigured Lab Streaming
Layer streams. The feedback.txt file contains the feedback the participant inputted on the Experiment Feedback window, and it
is saved in the same folder as the most recent .xdf file.
[PNG File , 36 KB-Multimedia Appendix 1]

JMIR Neurotech 2023 | vol. 2 | e47881 | p. 10https://neuro.jmir.org/2023/1/e47881
(page number not for citation purposes)

Amigó-Vega et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=neuro_v2i1e47881_app1.png&filename=b4eb02ecb7eccc6dc8b8673d4a9abd0d.png
https://jmir.org/api/download?alt_name=neuro_v2i1e47881_app1.png&filename=b4eb02ecb7eccc6dc8b8673d4a9abd0d.png
http://www.w3.org/Style/XSL
http://www.renderx.com/


Multimedia Appendix 2
The system-wide configuration file that must be placed inside the root folder of the project, which allows the researcher to
configure the execution of T-REX.
[PNG File , 154 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Example of the main configuration file. Note that all paths are relative to the main parameter.
[PNG File , 63 KB-Multimedia Appendix 3]

Multimedia Appendix 4
The different options for the experiment configuration file. Each experiment must include this file. The parameter command
might need to be modified when porting the platform to a different operating system (from Windows to Linux or macOS, for
example). It is up to the researcher to perform the redefinition.
[PNG File , 211 KB-Multimedia Appendix 4]

Multimedia Appendix 5
Experiment configuration file used for the grasping experiment. This experiment presents simple instructions to the participant
indicating continuous opening and closing of either the left or right hand. The visual interface was built using the Python Tkinter
library.
[PNG File , 79 KB-Multimedia Appendix 5]

Multimedia Appendix 6
Experiment configuration file used for the grasping web experiment. This experiment presents simple instructions to the participant
indicating continuous opening and closing of either the left or right hand. The visual interface was built using HTML, CSS
(Bootstrap5 for responsiveness and other visual aspects), and JavaScript for behavior.
[PNG File , 89 KB-Multimedia Appendix 6]

Multimedia Appendix 7
Experiment configuration file used for the 3D hand-tracking experiment. The goal of the experiment is to hold the cursor on the
target. The cursor can be moved in 3 dimensions, where the third dimension controls the size of the circle. In this case, the hand
tracking is done by the LeapMotion controller.
[PNG File , 72 KB-Multimedia Appendix 7]

Multimedia Appendix 8
The directory tree illustrates a system with 3 different folders, each for a different experiment (∼/EXPERIMENT_1/,
∼/EXPERIMENT_2/, and ∼/EXPERIMENT_3/). Each experiment contains its own configuration file (config.yaml). The researcher
can add any additional files to each folder.
[PNG File , 54 KB-Multimedia Appendix 8]

Multimedia Appendix 9
Template that can be used for creating an experiment configuration file.
[PNG File , 138 KB-Multimedia Appendix 9]
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