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Abstract

Background: The COVID-19 pandemic transformed neurological care by both requiring digital health modalities to reach
patients and profoundly lowering barriers to digital health adoption. This combination of factors has given rise to a distinctive,
emerging care model in neurology characterized by new technologies, care arrangements, and uncertainties. As the pandemic
transitions to an endemic, there is a need to characterize the current and future states of this unique period in neurology.

Objective: We sought to describe the current state of the pandemic- and postpandemic-related changes in neurological care and
offer a view of the possible future directions of the field.

Methods: We reviewed several themes across the “new digital normal” in neurology, including trends in technology adoption,
barriers to technology access, newly available telehealth services, unresolved questions, and an outlook on the future of digital
neurology.

Results: In this new era of neurological care, we emphasize that synchronous audio-video telehealth remains the predominant
form of digital interaction between neurologists and patients, mainly due to pandemic-related regulatory changes and the preexisting,
steady adoption of video platforms in the prepandemic era. We also identify a persistent digital divide, with audio-only telehealth
remaining a necessity for preserving care access. Asynchronous telehealth methods and services, including care coordination,
interprofessional consultations, remote patient monitoring, and teletreatment are becoming increasingly important for neurological
care. Finally, we identify several unanswered questions regarding the future of this “new normal,” including the lasting effects
of emergency regulatory changes, the value proposition of telehealth, the future of telehealth reimbursement in neurology, as
well as privacy considerations and trade-offs in asynchronous neurological care models.

Conclusions: The COVID-19 pandemic has ushered in an era of digital adoption and innovation in neurological care, characterized
by novel care models, services, and technologies, as well as numerous unresolved questions regarding the future.

(JMIR Neurotech 2024;3:e46736)   doi:10.2196/46736
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Introduction

The COVID-19 public health emergency significantly
accelerated the adoption of digital technology in neurological
care [1] and established synchronous and asynchronous
telehealth as widely accepted care modalities across multiple
subspecialties of neurology [2-7]. While historic, this
acceleration also built upon the momentum generated by 2
decades of growing digital technology and service adoption in
neurology. This momentum included the advent of telestroke
[8], the establishment of video telehealth care programs in rural
areas of the United States [9], and the growing use of
smartphones and wearable devices in neurological care
paradigms and research [10]. Furthermore, broad telehealth
trends that led up to the COVID-19 pandemic, such as the shift
of telehealth from acute to chronic neurological conditions,
migration of care toward mobile device platforms, and
increasing focus on patient convenience and value [11], also
likely facilitated the shift to digital and web-based neurological
care in 2020.

Approximately 3 years after the start of the COVID-19 pandemic
in the United States, the field of neurology has transitioned to
a new digital environment, encompassing new and emerging
care models and services, novel technologies, as well as new
and persistent challenges and open questions. While this new
digital landscape is wide-ranging, complex, and often subject
to rapid changes, a comprehensive appraisal of the current state
of care can nonetheless be helpful in establishing policy
priorities and identifying opportunities to improve access to
digital technologies for patients with neurological conditions.
In this review, we sought to describe the digital state of
neurology care in the COVID-19 and post–COVID-19 eras,
placing emphasis on dominant forms of digital neurological
care, emerging technology trends and technology-enabled digital
neurology services, barriers to access to digital care, telehealth
in education, as well as ongoing challenges and uncertainties
facing the future.

Themes

Video Telehealth Is the New Dominant Digital Care
Modality

Comparisons Between Pre–COVID-19 and Late
Pandemic Use
The COVID-19 era saw synchronous audio-video (or simply
“video”) telehealth fundamentally shift away from a novelty
technology garnering little interest among most practicing
neurologists to an acceptable alternative to in-person face-to-face
encounters and other traditional neurological care modalities
for patients and providers [12]. In late 2021, the use of video
telehealth in multiple medical specialties remained
approximately 38 times higher in the United States than before
the onset of the pandemic and comprised 13% of neurology
outpatient visit claims nationwide [13]. On the health system
level, the use may be even higher, with certain rural health
systems recently noting that nearly 35% of ambulatory
neurology visits were conducted through telehealth. For many

neurologists nationwide, synchronous video telehealth remains
the preferred mode of telehealth delivery, followed by
audio-only telehealth [14]. Compared to the relatively infrequent
use of video telehealth in neurology before 2020, these findings
all underline the important place video telehealth now occupies
in modern neurological care.

Factors Driving the Rise and Predominance of Video
Insurance payment incentives were important in driving video
telehealth’s initial rise to prominence in neurology during the
pandemic, especially in the United States. In declaring the
COVID-19 public health emergency, the Centers for Medicare
and Medicaid Services (CMS), the nation’s largest insurance
payor, suspended multiple geographic restrictions for video
telehealth insurance reimbursement that had previously limited
patients from being evaluated over video telehealth in their
homes and outside of designated rural areas, effectively limiting
uptake and contributing to the “novelty” status of video
telehealth before the pandemic [15]. The lifting of such
restrictions early on in the pandemic and their continuing
suspension in later stages of the pandemic have incentivized
patients, providers, practices, and health care systems to widely
use video telehealth.

Additional factors that have contributed to the continued
dominance of video telehealth in neurology include high and
steadily increasing rates of smartphone ownership across the
world [16] and the liberal allowance of several platforms for
telehealth, particularly in the United States. More specifically,
enforcement discretion of HIPAA (Health Insurance Portability
Accountability Act) regulations by the US Department of Health
and Human Services during the public health emergency allowed
non–HIPAA-compliant technology platforms to be widely used
for video telehealth purposes [17].

Patients and neurologists have reported positive experiences
with video telehealth, which have likely preserved telehealth’s
dominance as a digital offering in our current era. Video
telehealth is perceived as convenient [18,19] and rated as highly
satisfactory among patients [2,20]. Similarly, notwithstanding
some reports suggesting that providers have had greater
challenges than patients with video telehealth encounters [2],
neurologists have generally found satisfaction, positive
experience [21,22], and effectiveness [23] with video telehealth
visits.

Elements of the Neurological Examination
Although the feasibility and accuracy of a detailed, video-based
neurological examination have been the subject of debate among
the neurological community, the pandemic era mandated the
need for remote neurological examinations and accelerated the
adoption of additional examination methodologies for
performing the digital neurological examination beyond video
technology. These phenomena build upon previous work
demonstrating that video-based neurological examinations can
accurately be used to administer standardized disease-specific
examinations, such as the Unified Parkinson Disease Rating
Scale (UPDRS) for Parkinson disease [24], the Unified
Huntington Disease Rating Scale [25], or the Montreal Cognitive
Assessment in individuals with movement disorders [26].
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Additional examples include digital versions of the Expanded
Disability Severity Scale in multiple sclerosis [27], the Multiple
Sclerosis Performance Test [28], or the Myasthenia Gravis
TeleScore [29].

While recent work has suggested not only that many elements
of the neurological examination could be completed over video
telehealth, additional studies have suggested that patients
themselves may be assessed through functional evaluation (eg,
performing exercises or shifting from sitting to standing
position), serve as their own examiners, as well as use household
items such as flashlights, toothpicks, or weights to aid
neurological assessments [30,31]. More importantly, most
elements that are most useful for neurological decision-making
can be performed over a video connection [23].

Despite this, several elements of the neurological examination
remain challenging to routinely perform over video telehealth,
such as fundoscopy, vestibular testing, visual field examination,
and muscle tone. Among these elements, televestibular and
fundoscopy assessment technologies currently exist but typically
require additional hardware beyond video-enabled smartphones,
thereby creating persistent barriers to use for most patients and
providers. Although these shortcomings do exist, they
nonetheless represent fertile ground for future technological
innovations to address the objective of completing entirely
digital neurological examinations. Indeed, neurologist surveys
suggest that devices to perform gait, sensory, fundoscopic,
oculomotor, and strength assessments are highly desirable to
complement the video examination [32].

Perceptions of the adequacy of the digital neurological
examination may also vary according to subspecialty. In a recent
survey of academic neurologists, neuromuscular specialists
expressed dissatisfaction with performing the neurological
examination over video, mainly due to an inability to assess
reflexes and tone. By contrast, movement disorder specialists
expressed concern over inadequate internet bandwidth for
bradykinesia assessments as well as unwieldy camera angles
that precluded in-depth evaluation of gait [33].

While these perceptions express some sense of dissatisfaction,
they nonetheless reflect that different neurological subspecialties
tend to emphasize different components of the neurological
examination (and, by extension, the remote neurological
examination) more than others. Accordingly, numerous
subspecialty-oriented teleneurology examination guides have
been developed since the onset of the COVID-19 pandemic,

which are now available through multiple web sources, including
professional society web pages [34].

These guides emphasize examination elements that differ
according to subspecialty. For instance, neuromuscular
examination guides suggest using validated scales such as the
Myasthenia Gravis Activities of Daily Living or the Revised
Amyotrophic Lateral Sclerosis Functional Rating scales,
assessing upper extremity tone by holding the patient’s arms
out and shaking them to assess for rigidity, determining motor
strength by observing limb movement against gravity, and
evaluating plantar responses by asking the patient to stimulate
the plantar surface of their feet with a pen [35]. By contrast,
guides for neurovestibular or neuro-ophthalmic disorders tend
to emphasize the oculomotor examination and vestibular or
visual field testing [36].

Evidence Supporting Teleneurology
In the decade leading up to the COVID-19 pandemic, a
multitude of studies had already investigated the quality impacts
of specific teleneurology care, including user satisfaction and
diagnostic accuracy, as well as impacts on clinical outcomes,
costs, and care access across multiple neurological conditions
encompassing dementia, multiple sclerosis, movement disorders,
headache disorders, inpatient neurology, traumatic brain injury,
neuromuscular disorders, and epilepsy (Table 1). Randomized
controlled and inferiority trial evidence generally suggests that
teleneurology is associated with positive impacts on clinical
outcomes, diagnostic accuracy, and physician or patient
satisfaction. Studies carried out in the post–COVID-19 era have
demonstrated similar findings with respect to satisfaction [37].
Improvements in cost-savings and care access were noted in
mainly small or nonrandomized studies, although there were
notably absent studies suggesting the latter in dementia,
headache, multiple sclerosis, and neuromuscular disorders
(Table 1) [38].

At the time of writing, nearly 50 US institution–sponsored
telehealth trials in prevalent neurological disorders, including
Parkinson disease, stroke, multiple sclerosis, epilepsy,
Alzheimer dementia, and headache disorders, are either active
or currently recruiting participants. Although a small minority
of these initiatives are not yet recruiting, these studies include
both observational and interventional trials to evaluate a range
of outcomes, including but not limited to feasibility, comparative
effectiveness, cost-effectiveness, and safety measures
(Multimedia Appendix 1).
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Table 1. Summary of available data across multiple quality measures of teleneurology by specialty. The table represents extant evidence on telehealth
in neurology as of early 2020. Reproduced with permission from Wolters Kluwer from Hatcher-Martin et al [38].

Cost savings (patient
and health system use)

Improved out-
comes

Diagnostic accura-
cy

Improved access to
care

Patient and physician
satisfaction

+++++b++aConcussion or traumatic brain injury

++++—c++Dementia

+++—++Epilepsy

+++++—++Headache

++++++++Movement disorders

+++++—++Multiple sclerosis

++——++Neuromuscular

++++—Inpatient general neurology

a+: small case series, indirect measurement.
b++: randomized controlled trial or inferiority trial, direct measure.
cNo studies.

Factors Limiting Digital Neurology Uptake

Persistent, Widespread Disparities and Barriers
Several digital and socioeconomic inequalities in the US health
care system clearly preceded the COVID-19 crisis that persisted
throughout the early and late phases of the pandemic and
profoundly impacted the adoption of digital care modalities
during the public health emergency. Indeed, telehealth was less
readily adopted among low-income, minority,
non–English-speaking, and governmentally insured neurological
populations during the early and middle stages of the pandemic
[4,39,40], and access to audio-video telehealth has continued
to demonstrate limited uptake among Black and governmentally
insured populations in later pandemic stages [41].

Defined as “the gap existing between individuals who have
access to modern information and communication technology
and those who lack access” [42], the “digital divide” has been
cited as a primary driving factor for asymmetrical digital
neurology service adoption in the COVID-19 era. This
perception has also persisted among providers. More than 2
years after the beginning of the COVID-19 pandemic, this
“digital divide” continues to serve as the largest barrier to
offering telehealth services among US providers [14]. Possible
causes driving these asymmetries may include digital literacy,
a lack of non–English-language interfaces, the prohibitive
economics of steady digital access, limited access to broadband
internet, inadequate cellular data plan coverages, and potentially
cultural factors.

It remains important to note that many of the disparities that
have been observed in the uptake of telehealth in neurology are
not unique to digitally enabled care platforms. Rather, they tend
to closely mirror existing sociodemographic disparities in access
to neurological care that have been long observed in
“nontelehealth” neurological care. Indeed, socioecological
factors have been identified by numerous stakeholders as driving
the vast majority of health disparities in neurological care [43].
Analyses of specific neurological conditions also reflect
sociodemographic disparities in care. For example, Black and

Hispanic patients are less likely to see outpatient neurologists
across a range of neurological disorders, including headache
disorders, Parkinson disease, stroke, and epilepsy [44].
Similarly, Black patients have lower odds of receiving
thrombolytic therapy for acute ischemic stroke nationwide than
White patients. Rural patients have similarly decreased odds
compared to urban patients, as do patients living in ZIP codes
with median incomes under US $64,000 in comparison to those
living in wealthier ZIP codes [45]. A number of additional
analyses have emphasized racial or sex-based disparities in
multiple neurological disorders and treatments, including deep
brain stimulation and general treatment for Parkinson disease,
temporal lobe resection for medication-refractory epilepsy,
evaluation and management of neuro-oncologic conditions, and
treatment of acute stroke [46-51].

The Critical Importance of Audio-Only Telehealth
In light of the digital divide and asymmetric digital neurology
adoption, audio-only services remain centrally important to the
new digital normal in neurology. Synchronous, audio-only
telehealth has played an important role as an alternative to
synchronous audio-visual telehealth since the outset of the
COVID-19 pandemic in 2020. This role has persisted through
multiple phases of the pandemic, particularly for populations
lacking regular access to broadband internet and cellular data
connectivity, including older people, disabled people, or socially
disadvantaged groups among both nonneurological [52,53] and
neurological populations [39,40,54].

Although single-center evidence suggests that usage of telephone
services may have steadily decreased in academic centers in
later stages of the pandemic [55], a primary driving force toward
use of audio-only telehealth services throughout the pandemic
was CMS’decision in March 2020 to temporarily add American
Medical Association (AMA) Current Procedural Terminology
(CPT) telephone-only evaluation and management billing codes
to a list of billable telehealth services for the duration of the
public health emergency [15].

Several factors underscore the important role of audio-only
telehealth currently plays and will likely continue to play in
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care delivery during the pandemic era and beyond. At the time
of writing, the US government has upheld the declaration of
the COVID-19 public health emergency, thereby guaranteeing
that telephone services will continue to be treated as billable
telehealth services through the calendar year 2023. Furthermore,
audio-only services continue to provide a crucial access point
to health care. Indeed, a significant proportion of providers
continue to use audio-only telehealth, with many reporting this
to be second only to synchronous audio-video telehealth [14].
Recognizing the importance of audio-only telehealth,
professional societies such as the American Academy of
Neurology have called on CMS and the US Congress to make
reimbursement rates for audio-only services permanent after
the cessation of the federally declared COVID-19 public health
emergency.

The Increasing Importance of Asynchronous
Telehealth

Asynchronous Teleneurology
Synchronous telehealth currently occupies a central position in
the universe of today’s available complement of digital
neurology services. By comparison, asynchronous telehealth,
in which geographically disparate participants are separated by
time as well as location, remains poorly used. However, it is
important to the growing importance of asynchronous telehealth
as part of the “new digital normal” in neurology. At the most
basic level, this form of telehealth includes well-established
modes of digital communication, such as email and SMS text
message, but can range to more complex technological
implementations. From a functional perspective, asynchronous
telehealth in neurology can be organized into 4 general
categories: remote diagnostic services (telemonitoring), remote
delivery of neurological treatments (teletreatment) [56],
electronic interprofessional consultations, and care coordination.

The pandemic era has seen a number of new billable clinical
activities emerge in the United States that have facilitated the
rising importance of asynchronous care services in neurology.
These services include remote patient (also termed
“physiologic”) and therapeutic monitoring, digital check-ins,
digital evaluation and management, principal care management
(PCM), and interprofessional consultations. In addition to these
billable services, these activities also substantiate a growing
trend in digital neurology in which centralized, inconvenient,
and synchronous care models are progressively shifting toward
distributed, asynchronous models that prioritize patient
convenience and access [10]. The onset of the COVID-19
pandemic in early 2020 accelerated this shift by expanding the
adoption of asynchronous services as well as synchronous ones
[57,58].

Telemonitoring
Neurological telemonitoring now encompasses a wide range of
clinical services. A commonly encountered form of
telemonitoring includes smartphone apps or electronic health
record (EHR) questionnaires that receive patient-centered
symptoms, validated clinical scales, or medication compliance
information that is then transmitted electronically to a care team
with the purpose of establishing a diagnosis or monitoring

responses to treatment [59]. Examples of such apps abound in
neurology, which comprises many chronic, polyphasic disorders
such as migraine [60-62], multiple sclerosis [63,64], epilepsy
[65], and Parkinson disease [66], among others.

Telemonitoring also includes “store and forward” services, in
which a patient transmits clinical image information such as
digital image, recorded audio, or video to a treating provider
team for asynchronous review. A particularly useful application
of store-and-forward in neurology is the diagnosis of paroxysmal
neurological events, such as seizure-like episodes [67], as well
as a close review of dynamic neurological examination findings
in Parkinson disease [68-70].

Remote patient monitoring (RPM), an already well-established
form of telemonitoring in nonneurological conditions such as
congestive heart failure, chronic obstructive pulmonary disease,
and diabetes, occupies an increasingly important position in the
care delivery to patients with neurological disorders. Similar to
nonneurological applications, neurological RPM uses
sensor-containing patient wearable devices, occasionally paired
with mobile app platforms, to record and transmit continuous
or near-continuous physiological information to care providers
for review and medical decision-making over a secure internet
connection [71]. In neurology specifically, the growing
importance of telemonitoring capitalizes on the growing
understanding that episodic patient assessments often provide
incomplete and sometimes inaccurate assessments of patients’
clinical and functional status [10].

However, neurological RPM notably differs in data acquisition
and transformation techniques from its nonneurological
counterpart. Because most neurological disorders rely on a
combination of qualitative radiographic or clinical examination
findings to establish a diagnosis or inform management rather
than laboratory or vital sign information, neurological RPM
generally uses raw data from limb accelerometer and gyroscope
sensors to extrapolate meaningful “digital biomarkers” such as
gait, arm swing, step count, falls, examination findings, or
abnormal movements. This is in contrast to nonneurological
RPM, where sensors directly measure clinically relevant
biomarkers such as blood pressure, blood glucose, or oxygen
saturation, for example [72,73].

Notable areas of RPM application to neurology include disorders
with prominent motor and gait features such as multiple sclerosis
[74] and movement disorders [75-78]. In addition to
demonstrating feasibility and acceptability, RPM has potentially
identified novel digital biomarkers. One notable example is the
daily step count, which is associated with functional status
decline in patients with multiple sclerosis [74] and incident
dementia [79]. While these RPM approaches are not yet
established as standard-of-care, they are being used increasingly
in clinical and research applications with an understanding that
further work is required to better grasp the implications of
collecting and transmitting this information [56].

Important to note are the few instances of fully integrated, scaled
neurology RPM programs in health care systems in the United
States as well as the relatively underused nature of these services
by neurologists. Nationwide analyses of US Medicare claims
data suggest that neurologists comprise a very small proportion
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of RPM-billing providers [80,81]. Interestingly, analysis of
nationwide commercial claims data shows that only 14% of the
nearly 17,000 RPM encounters billed by physicians to
commercial payers for neurological disorders between 2019
and 2021 were billed by neurologists, compared to 57% that
were billed by family medicine, pulmonary, and internal
medicine providers combined. Moreover, nearly 90% of these
encounters were billed for sleep-wake disorders, with
approximately 2% billed for common neurological conditions
such as cerebrovascular disorders, movement disorders, epilepsy,
migraine disorders, and polyneuropathies combined (B Kummer
et al, unpublished data, 2023). These data suggest that despite
its promise, RPM is underused by neurologists for neurological
conditions, particularly those that constitute relatively
straightforward clinical use cases, such as blood pressure
monitoring after stroke, or step counting in multiple sclerosis,
movement disorders, or neuropathies.

While billing activity reflects a limited dimension of RPM use,
the reasons for these findings could be that few Food and Drug
Administration–approved devices (a requirement for billing
new RPM codes issued after 2019) for monitoring physiologic
signals in neurological conditions currently exist. Alternatively,
high variability in the quality and availability of commercial
wearables and sensors may explain RPM underuse by
neurologists. Finally, the lack of integration of many RPM
solutions into EHR systems is likely a contributing factor that
has been identified as an important barrier to the adoption of
RPM services into real-world clinical settings across a spectrum
of medical specialties [82].

Teletreatment
Neurological teletreatment is now widely available for the
management of headache, epilepsy, and movement disorders.
A notable category of teletreatment options comprises stimulator
devices that deliver focused electricity to selected nervous
system regions [83], including vagal nerve stimulators,
responsive neurostimulators, and deep brain stimulators, which
have all found application in epileptic [84] and movement
disorders [85]. In migraine and other headache disorders,
analogous devices include peripheral stimulator devices
targeting the supraorbital, occipital, or sphenopalatine ganglion
[86]. Many of these devices can be remotely programmed by a
provider as well as collect and relay neurophysiologic data back
to care teams for treatment decisions. Furthermore, device
programming parameters can potentially be integrated into EHR
systems to provide a snapshot of the patient’s clinical status.

Some authors consider technology, per se, to constitute treatment
[87] and therefore represent an additional subcategory of
teletreatment. Under this conceptual framework, mobile health
apps that are capable of various monitoring and diary functions
may be thought of as treatment in and of themselves. One
notable application of “technology as treatment” includes
headache disorders, where symptom diaries may provide insight
into disease processes and inform treatment or guide
complementary and integrative therapies that modulate stress
levels and pain perception [59].

Care Coordination
In response to the rising prevalence of chronic conditions and
their significant associated costs in the United States, CMS has
developed billable care management and coordination services
in the second decade of the 21st century that make extensive
use of asynchronous telehealth interactions and represent another
increasingly important example of asynchronous teleneurology
in the COVID-19 era. These services are best exemplified by
chronic care management (CCM; introduced in 2015), which
supports care management of multiple chronic conditions, and
PCM (introduced in 2022) for the management of a single
complex condition. These services incentivize an integrated,
team-based approach to chronic condition management by
bundling care coordination, care planning, and condition-focused
goal setting into an overarching care management activity that
is primarily furnished through non–face-to-face encounters.
Both PCM and CCM allow care teams to interact with patients
asynchronously, using the technology platform of their choice.
Furthermore, CCM specifically includes care monitoring in the
definition of billable service, thereby allowing the use of RPM
and remote therapeutic monitoring.

In addition to CCM and PCM, coordination of care can be
performed through asynchronous patient portal communications
between patients and providers. These communications
dramatically increased with the onset of the COVID-19
pandemic [88], potentially as a result of increased video
telehealth adoption and the absence of office-based follow-up
arrangements. In addition to care coordination, the potential for
completing true evaluation and management of new medical
problems over patient portals led to the introduction of new
digital evaluation and management services (or “e-visits”) in
2020 as billable codes (CPT codes 99421-99423 and Healthcare
Common Procedure Coding System codes G2061-G2063).
While several US health care institutions in the United States
have successfully implemented billing for e-visits and increased
the volume of these services [89], some of these
implementations were accompanied by decreases in the use of
portal messaging and suggested that few portal messages were
truly billable as e-visits, arguing that these services have not
lessened the cognitive overload imposed by significant increases
in patient portal messaging [90,91].

Interprofessional Consultations
Although much of neurological telehealth refers to
patient-provider interactions, consultations between providers
remain an important area of digital care in neurology. Telephone
calls between providers and synchronous video teleneurology
consultations have existed for decades, with telestroke
constituting perhaps the most widely known example of the
latter [8]. Despite this, a growing number of interprofessional
neurology consultations are now performed asynchronously
and have been successfully implemented in headache and
neuro-ophthalmic conditions, leveraging electronic forms of
communication such as email, clinical notes, or direct verbal
communication over the telephone to requesting providers
[92-95]. Although discussion of recommendations with the
requesting provider may be a synchronous interaction, the bulk
of the service is provided asynchronously.
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Aside from the application of interprofessional consultations
to specific neurological conditions, some notable use cases for
this emerging service include improving access to neurological
expertise in the setting of worldwide neurologist shortages
[93,96], limiting personal exposures to hospitalized patients
with diseases carrying significant infectious risk such as
COVID-19, or improving the ability to evaluate and manage
common neurological problems among nonneurologists [95].
To incentivize this activity, in a manner similar to CCM and
PCM, CMS has delineated billable interprofessional consultation
services, for which a discrete number of acceptable billing codes
have been developed [97].

The Future of Digital Neurology
The future of digital neurology can be organized into 3 broad
areas: new information processing methods, new data types,
and the provision of care through new modes of interaction.
New processing methods are likely to include artificial
intelligence (AI) processes that automate the detection of
clinically meaningful information (assistive AI), analyze
automatically collected information (augmentative AI), or
analyze and draw independent conclusions from providers
(autonomous AI) [98]. While assistive and augmentative AI is
already in use within individual disease states, including stroke
[99], Parkinson disease [68-70], or epilepsy [100,101],
augmentative AI remains the least widely represented approach.

However, AI processes will probably not evolve to replace
providers or medical decision-making but rather automate simple
processes to allow providers greater bandwidth to tackle an
increasingly complex array of neurological disorders [102].

In addition to the growing role of AI, multilayer synthesis, or
“phenotyping,” of complex data streams is likely to become
more common as the use of physiological, structured EHR,
textual, and other data streams grows in neurological disorders
[103]. This phenotyping may be used to serve multiple
objectives, including the automation of standardized clinical
assessments in key disorders such as the National Institutes of
Health Stroke Scale or the UPDRS, the characterization of
clinically meaningful disorder manifestations or outcomes, or
the identification of novel disease subpopulations.

The future of digital neurology will also likely entail the
exchange of novel data types, including videos of neurological
events, examinations, and phenomenology, with or without AI
assistance, as well as social network activity and geo-localization
data to quantify patient “digital life space.” Treatment
information, such as responses to individual therapies, adverse
events, medication compliance, and symptom diaries, is likely
to become increasingly common within the ongoing digitization
of neurology. Additionally, as sensors become increasingly
sophisticated and compact, RPM in neurological disorders will
likely evolve to incorporate additional sensor streams such as
magnetometry, skin galvanic responses, and other novel
biomarkers into routine clinical care [103].

Finally, private companies and health system strategies’ shift
toward convenience- and patient-oriented care journeys is likely
to impact the manner in which patients with neurological
conditions and providers interact. Semi- or fully automated

chatbots, which are already widely available in the retail and
banking industries, may eventually provide around-the-clock
access for simple questions that do not require high-level clinical
decision-making. Recent private-sector initiatives featuring
on-demand, search-engine–based and technology-forward health
care for large populations of patients [104-106] suggest that
such “digital front doors” may become the primary method of
locating neurological expertise and obtaining resources for
patients with neurological disorders, rather than relying on
referrals from providers and other traditional pathways.

Unanswered Questions: a Look Toward the Future

The Telehealth Value Proposition
The value of telehealth and whether telehealth adequately attains
desired health outcomes relative to the cost of care delivery
[107,108], remains a largely open question across medical
specialties. Although video telehealth is associated with
significant patient and provider benefits, it has been shown to
generally increase costs, with the exception of cases of
eliminating long-distance travel [109]. More recently, a study
investigating the value of telehealth in young adults with cancer
overwhelmingly found that telehealth resulted in cost savings
[110].

In contrast to the limited investigations of value in
nonneurological conditions, modern telehealth for neurological
care faces an uncertain future with respect to the question of
value. Although the question chiefly concerns synchronous
audio-video telehealth, which is arguably the most common
digital neurology interaction today, the telehealth value question
remains relevant to all forms of digital neurological care [14].
Outside of synchronous telestroke care, which has long been
one of the clearest examples of telehealth value in neurology
before the COVID-19 pandemic era [111,112], there remains
a dearth of information regarding whether synchronous
telehealth provides an acceptable value of care in
noncerebrovascular neurological conditions. Large-scale,
multicenter studies should address this specific question for
synchronous audio-video as well as asynchronous forms of
telehealth as applied to neurological disorders [108].

Governmental or Public Health Emergency Restrictions:
the Future of Telehealth Reimbursement
By facilitating the adoption of various digital neurology
modalities among providers and patients, the suspension of
multiple telehealth reimbursement restrictions due to the
COVID-19 public health emergency by the US federal
government figures among the principal driving forces in
catalyzing the widespread use of digital neurology services
during the pandemic era [1]. At the time of writing, the public
health emergency officially ended on May 11, 2023 [113], after
which many suspended restrictions, such as CMS reimbursement
for video telehealth visits irrespective of geographic locations,
were extended into the end of 2024 [114]. However, many
exemptions, including temporary reimbursement of specific
telehealth services as category 3 codes and flexibilities involving
controlled substance prescription over telehealth, among others,
were extended only until the end of 2023. The rapidly changing
flexibility landscape as well as the multiplicity of time frames
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create a complex matrix of different regulations that is often
overwhelming and confusing to providers [115].

As opposed to federal-level restrictions, medical licensure and
scope of practice continue to be regulated by individual US
states, which restricts providers from delivering telehealth care
to patients not located in states where the provider is licensed.
To maximize patient access to telehealth care early in the
COVID-19 pandemic, several US states loosened licensure
requirements in order to allow out-of-state providers to easily
obtain temporary licenses. However, since the end of the federal
public health emergency, many states have rescinded these
temporary flexibilities, with unclear impacts on telehealth use.
It remains similarly unclear whether the Interstate Licensure
Compact, an agreement signed by 37 US states and territories
to simplify the licensure process for providers who wish to
practice in multiple states [116], will positively impact the use
of telehealth broadly speaking.

While the US Congress has introduced a bill to make several
pandemic suspensions permanent [117], many specifics
concerning the postpandemic regulatory landscape beyond
2024—and impacts on the long-term feasibility, viability, and
adoption of digital modalities such as synchronous and
asynchronous telehealth—remain unclear. As such, the rapidly
approaching end of this extended period represents a significant
source of uncertainty for the new digital normal.

Privacy Considerations of New Digital Interactions
Although privacy and security of personal health information
for the purposes of medical care is strictly regulated by HIPAA
in the United States, another important aspect of the new digital
normal in neurology is the proliferation of digital technologies
and services that collect and transmit personal health information
but are not considered to be the provision of medical care or
constitute a health care relationship under US federal law [118].
While this implies that they are not regulated under the purview
of HIPAA, many of these technologies are nonetheless
commonly used by providers and patients for the diagnosis and
management of neurological conditions. Concerningly, mobile
apps have been shown to disclose unauthorized personal health
information outside of their end-user licensing agreements
[119,120].

Patients using all forms of unregulated digital neurology services
are therefore faced with a fundamental trade-off between
collecting clinically meaningful information and infringing upon
personal privacy. Sharing personal health information, even if
knowingly, can potentially have undesired consequences. One
particular venue in which this is evident is the growing
phenomenon of employee wellness programs that collect
physical activity and geospatial position information through
wearable devices. These could disclose an employee’s actions
during work unbeknownst to the wearer and potentially result
in disciplinary action.

Open questions remain as to which venue is appropriate for
regulating these issues. At the time of writing, in the United
States, CMS and billing stakeholders such as the AMA have
not taken any official stance against limiting the sharing of
personal information on asynchronous teleneurology platforms,

with most controls existing at the level of specific company
data use policies and end user licensing agreements at the level
of user acceptance.

The Future of Digital Neurology
During the COVID-19 public health emergency, digital
neurology modalities clearly ensured safe access to neurological
care for patients, resulting in significantly increased adoption
and awareness of these tools among patients and providers.
Asymmetric adoption of digital tools across different populations
also cooccurred during the rapid rise in adoption, exposing the
significant, persistent challenge facing the US health care
system: access to specialty care [121]. Despite this, digital care
modalities continue to demonstrate beneficial effects on care
access and value [110,122-124] and carry even greater potential
for the future of the health care system.

The “new digital normal”—within and outside of
neurology—will realize this potential by reaching 3 critical
milestones. The first is to shift the current digital operating
framework, which places a significant focus on the range of
available digital care solutions and their technical differences
(eg, audio-only or audio-video and asynchronous or
synchronous), to a structure emphasizing a tailored approach
to digital care that combines “doses” of different technical
solutions to individualized patient use cases.

The second will be to incorporate the rapidly growing array of
AI technologies as complementary solutions in the current
armamentarium of technical options targeting care access
bottlenecks. By accelerating diagnosis recognition, automating
clinical processes, and reducing provider cognitive overload,
AI can effectively accelerate access to neurological expertise
throughout the health care system. As such, this emerging set
of technological innovations will likely prove itself to be a
crucial complement to currently available digital tools.

The third milestone is creating a sustainable reimbursement
framework that incentivizes providers to use digital tools. Efforts
targeting this milestone are already underway at the time of
writing and include the development of coding structures
targeting clinical activities centered on specific technical
solutions as well as classifying machine-performed clinical
work [98,125].

Conclusions

Contrasting with the temporary nature of the public health crisis
itself, the COVID-19 pandemic has profoundly and indelibly
altered the practice of neurology and medicine as a whole,
ushering in an era of digital technology adoption and innovation
characterized by novel care digital care models, services, and
technologies. Despite the significant uncertainty and numerous
unresolved questions facing this new digital normal in
neurology, reverting to “prepandemic” technical solutions and
care arrangements is failing to capitalize on one of the greatest
opportunities to move medicine forward in the history of our
species. It is crucial to consider the unprecedented scale and
depth of digital health innovation that has occurred during this
time [121] and the primordial importance of continued
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innovation in order to bring neurology and all specialties of medicine into the next phase of this “new digital normal.”
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Abstract

Background: Acquired brain injury (ABI) is a prominent cause of disability globally, with virtual reality (VR) emerging as a
promising aid in neurorehabilitation. Nonetheless, the diversity among VR interventions can result in inconsistent outcomes and
pose challenges in determining efficacy. Recent reviews offer best practice recommendations for designing and implementing
therapeutic VR interventions to evaluate the acceptance of fully immersive VR interventions.

Objective: This study aims to evaluate the usability and feasibility of a co-designed VR-based neurorehabilitation support tool
by conducting multiple proof-of-concept trials in a sample of patients with ABI within a hospital setting.

Methods: A single session deploying custom immersive serious games to train cognitive functions using a new-generation
head-mounted display was conducted among a sample of inpatients with ABI. Structured questionnaires were administered at
the end of the session to evaluate the usability of the system and the intervention, participants’ familiarity with the technology,
and any adverse effects related to cybersickness. Additionally, the training duration while wearing the headset and the demographic
characteristics of the participants were considered.

Results: A total of 20 patients with ABI participated in a 1-hour proof-of-concept trial. The mean usability score was 37 (SD
2.6) out of 40, the technology familiarity level was 9.2 (SD 2.9) out of 12, and the Simulator Sickness Questionnaire total score
was 1.3 (SD 2). On average, participants wore the headset for approximately 25.6 (SD 4.7) minutes during the intervention. There
were no substantial differences in usability and technology familiarity levels based on patients’ etiology or age, with no notable
symptoms of cybersickness reported. Significantly strong correlations were noted between cybersickness symptoms and various
usability categories, including exposure, motivation, interactivity, task specificity, and immersion aspects. Further, there was a
significant association between the intervention time and the number of tasks performed (P<.001). Furthermore, patients who
derived enjoyment from VR sessions expressed a heightened interest in incorporating VR into their daily neurorehabilitation
practice (P<.001). Moreover, oculomotor issues were found to be highly sensitive to the onset of disorientation sickness symptoms
(P<.001).
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Conclusions: Through a collaborative approach, this study showcases the usability and feasibility of a VR-based support tool
for cognitive rehabilitation among inpatients with ABI. Key components of such interventions encompass a multidisciplinary
array of immersive experiences integrating neurorehabilitation principles and serious games techniques.

(JMIR Neurotech 2024;3:e50538)   doi:10.2196/50538
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acquired brain injury; virtual reality; head-mounted display; neurorehabilitation; usability; feasibility; co-design; multidisciplinary
experiences; immersive serious games

Introduction

Background
Acquired brain injury (ABI) is any postnatal brain damage that
is not hereditary, congenital, or degenerative [1], and
encapsulates 2 main categories, namely, traumatic brain injury
(TBI) and non-TBI [2]. TBI is an external traumatic event in
which injury to the brain is sustained. It is the most frequent
etiology of ABI and is primarily caused by falls and road
injuries. In 2016, there were 27.08 million new cases of TBI
and 55.5 million prevalent cases worldwide [3]. The incidence
of TBI is likely to continue rising, driven by factors such as
population growth, aging demographics, and increased motor
vehicle usage. By contrast, non-TBI arises from internal disease
processes, such as brain tumors, causing damage to brain tissue.
The primary cause of non-TBI is stroke, with ischemic stroke
accounting for 62.4% of all new strokes globally, followed by
hemorrhagic stroke at 37.6% [4]. In recent years, there has been
a significant increase in stroke rates among young individuals,
a trend expected to persist, especially in low-income countries.
ABI not only results in health deterioration and disability for
affected individuals and their families but also imposes a
substantial burden on health care systems and economies due
to lost productivity and high health care costs [2].

Individuals with ABI exhibit adverse outcomes across multiple
functional domains, encompassing sensorimotor, cognitive, and
behavioral areas, which impede the performance of basic
activities of daily living [1]. Regarding cognitive function,
deficits commonly manifest in attention, memory, and executive
functions [4]. The majority of patients with TBI experience
challenges with sustained, selective, or divided attention, along
with diminished information processing speed. Memory issues
often involve a heightened rate of forgetting, as well as slower,
disorganized, and incoherent learning compared with individuals
without TBI. Additionally, patients with TBI commonly exhibit
executive function alterations, including difficulties in planning,
limited mental flexibility, reduced inhibitory ability, and
challenges in verbally recalling phonetic categories [5,6].
Cognitive impairment following a stroke varies based on factors
such as the nature of the stroke, the specific brain regions
affected, and the stage of recovery. Individuals may exhibit
hemispatial neglect as well as various types of visuoperceptive
and visuospatial impairments. Additionally, deficits in verbal
memory and language-related issues are common, including
aphasia, which can affect writing and reading abilities [6,7].

Although some impairments may show improvement over time,
recovery rates vary as a result of differences in the baseline
characteristics of individuals [6]. Furthermore, despite the

distinct disease processes and medical issues associated with
TBI and non-TBI, patients often receive treatment and
rehabilitation in the same hospital facilities. To achieve optimal
clinical outcomes for all patients with ABI, health care
professionals need to deliver personalized and targeted
treatments, necessitating a comprehensive understanding of the
pathology across different categories of ABI [2].

Neurorehabilitation is a meticulously supervised process
designed to assist individuals with ABIs in reclaiming their
functional abilities and enhancing their quality of life.
Fundamental components of neurorehabilitation encompass a
spectrum of expert and multidisciplinary assessments, the
implementation of realistic and goal-oriented tasks, and the
evaluation of clinically appropriate outcome measures.
Importantly, this evaluation also takes into account the
perspectives of both the patient and their family [8].
Neurorehabilitation services serve as a bridge between isolation
and exclusion, often representing the initial stride toward
attaining fundamental rights. Health, indeed, is a fundamental
right, and neurorehabilitation stands as a potent service that
fosters personal empowerment, enhances independence, and
notably facilitates the return to work and active participation
within the community [1,8,9].

Virtual reality (VR) is emerging as a swiftly advancing
technology, garnering recent popularity as a promising support
tool for neurorehabilitation among individuals with ABI [10-13].
Using VR in rehabilitation represents a versatile, captivating,
and multifaceted approach capable of addressing patients’
sensorimotor and cognitive capacities, thereby eliciting positive
responses. It enhances treatment compliance while augmenting
levels of functioning and overall quality of life [14]. VR
provides a platform to simulate real-life scenarios and
ecologically valid activities within a safe and controlled
environment [15].

As the term “virtual reality” can encompass various
computer-based rehabilitation system types across studies and
may influence the feasibility and efficacy of interventions,
maintaining consistent terminology is crucial [12,16]. In 1999,
Brooks [17] defined a VR experience as “any in which the user
is effectively immersed in a responsive virtual world. This
implies user dynamic control of viewpoint.” Thus, for a system
to be considered VR based, it must fulfill 3 conditions: it should
be immersive, interactive, and true to reality.

Modern high-end VR systems can provide users with an
immersive experience, wherein they feel surrounded by a
computer-generated world that responds naturally and
convincingly, while also minimizing side effects such as
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cybersickness [18]. The utilization of new-generation
head-mounted displays (HMDs) enables stereoscopic perception
and perspective changes based on the user’s viewpoint.
Additionally, incorporating haptic controllers and precise
tracking of 6 degrees of freedom allow the system to accurately
recognize users’ motion (both position and orientation) in
3-dimensional space. Furthermore, contemporary computing
techniques and advanced rendering methods facilitate the
development of highly detailed graphics and real-time responses
[19]. Consequently, users can engage in a realistic virtual
environment, interacting with intuitive gestures that mimic their
real-world movements. This immersive experience often leads
to a profound sense of presence and may even induce a
phenomenon referred to as “virtual embodiment” [11,20].

Despite the increasing interest in the utilization of VR
technology, there remains a considerable degree of heterogeneity
among health applications. The majority of studies using VR
for rehabilitation have focused on addressing motor impairments
following a stroke, rather than exploring other rehabilitation
objectives or types of brain injuries [10,12]. Furthermore, it is
noteworthy that the most commonly used output devices are
flat screens and older-generation headsets [16]. Since the
introduction of the first high-end fully immersive VR-based
system commercially available in 2016 (ie, Oculus Rift [21];
Oculus VR), only a handful of studies have provided robust
evidence regarding the feasibility and efficacy of new-generation
immersive devices in rehabilitation [22-24]. Most reviews have
indicated that the limited evidence stems not from negative or
inconclusive outcomes, but from a deficiency in methodological
designs that yield high-quality evidence levels [16,25]. As a
result, determining whether the benefits of VR-based
interventions are clinically significant remains challenging [26].
Therefore, VR-based interventions are still in the early stages
of full implementation within real hospital settings. Establishing
a standard operating procedure would prove beneficial for
enhancing reproducibility, facilitating comparison, and
promoting the generalization of findings across studies.

Recent recommendations regarding the utilization of VR-based
interventions for clinical applications emphasize the significance
of implementing a phased approach design for new programs,
which includes conducting pilot studies to assess usability
[27,28]. The customization of tasks to cater to the specific needs
of individuals, along with the integration of serious gaming
techniques [29], represents key advantages of VR in promoting
effective neurorehabilitation [30-32]. Serious games techniques
encompass various strategies such as adjusting the intensity and
complexity of tasks, integrating multisensory feedback, using
avatar representations, reinforcing actions with sound effects,
and rewards. These techniques aim to foster a high level of
engagement and sustain individual focus and motivation during
rehabilitation sessions [33]. Moreover, they contribute to
enhancing neuroplasticity through repetitive training, as
highlighted by research studies [18,34,35].

The most recent studies on VR interventions for cognitive
rehabilitation following ABI have focused on conducting
detailed design and prototype evaluations of self-developed
systems [36,37]. These studies underscore the significance of
integrating expertise from cross-disciplinary perspectives, which

has resulted in high levels of user satisfaction and low levels of
simulator sickness. Additionally, the authors conducted
second-phase trials to effectively evaluate the feasibility and
preliminary efficacy of the VR-based intervention. Their primary
findings suggest improvements in outcome measures of
cognitive functions when the intervention is tailored to address
the specific cognitive function, incorporating serious games
techniques, using a patient-centered design approach, and
administering sessions lasting approximately 30 minutes each
[38-41].

Objectives
This study aims to address the aforementioned recommendations
by prioritizing the early engagement of both patients and
clinicians in the development process. The approach involved
the co-design of a new VR-based cognitive rehabilitation support
tool, which underwent iterative system testing to elicit
requirements and establish its utility, safety, and viability before
progressing to large-scale studies. The co-design process
included active participation from end users and a range of
health professionals, including physical medicine and
rehabilitation physicians, neuropsychologists, occupational
therapists, physiotherapists, as well as researchers and
technologists. The objective was to ensure the usability and
feasibility of a fully immersive VR-based cognitive
rehabilitation support tool among individuals with ABI through
a multiple proof-of-concept study. This insight was crucial for
formalizing the specific requirements for integrating VR into
the daily practice of real hospital settings. The findings from
this study may serve as a road map for developing new VR tools
in this field and lay the groundwork for future high-quality
studies. These studies are essential to ascertain the real efficacy
and cost-effectiveness of VR-based interventions in clinical
practice.

Methods

Overview
The methodology of this study comprised 2 main parts. First,
the design and development of a VR-based cognitive
rehabilitation support tool, which followed a thorough and
iterative approach involving a multidisciplinary team from the
Institut Guttmann, a specialized neurorehabilitation health care
center. Second, patients with ABI were recruited to participate
in a single session using the VR-based system within the real
hospital setting, aimed at assessing the usability and feasibility
of the proposed intervention.

Study Design
In the first part, the need for acquiring a VR-based support tool
was identified through interviews conducted with clinical
professionals involved in the neurorehabilitation process (for
detailed information, refer to Table S1 in Multimedia Appendix
1). Subsequently, a multidisciplinary team brainstormed new
ideas for VR-based interventions and suggested the development
of a novel cognitive rehabilitation support tool. The acquisition
of a modern VR headset was planned, and strategic placement
was arranged within the hospital configuration to facilitate its
use. Researchers, neuropsychologists, and technologists
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commenced work on a phased co-design and prototyping of VR
tasks targeting specific cognitive functions. These prototypes
underwent testing in close consultation with the
multidisciplinary team and patients with ABI. Feedback was
collected, and corresponding changes were implemented for
each task iteratively until maximum safety and desired
functionality were ensured.

The second part involved conducting a multiple proof-of-concept
study to evaluate the usability and feasibility of the
self-developed VR-based cognitive rehabilitation support tool
in patients with ABI (Figure 1). Participants were recruited from
the Institut Guttmann.

Figure 1. Study design methodology description, divided into 2 main parts: the co-design and prototyping phase and the usability and feasibility phase.
ABI: acquired brain injury; VR: virtual reality.

Ethical Approval
Ethical approval for this trial was obtained from the Ethical
Research Committee (CEIm) of the Fundació Unió Catalana
d’Hospitals (reference number CEI 22/34), and the study was
conducted in compliance with the principles outlined in the
Declaration of Helsinki. Written informed consent forms were
completed by all participants.

Participants
Various profiles participated in the co-design and prototyping
phase (refer to Table S2 in Multimedia Appendix 1). The initial
cross-disciplinary team comprised 9 research members from
the Institut Guttmann, including 3 neuropsychologists, 2
physiotherapists, 2 technologists, and 2 researchers in the field
of technological innovation applied to health. Together, they
developed the initial approach for the VR-based tool.

After the initial prototypes were developed and tested by the
research team, additional clinical professionals, including
physiotherapists, occupational therapists, and
neuropsychologists, were invited to test advanced prototypes.
They were asked to provide feedback as they familiarized
themselves with manipulating the tool.

The most advanced prototypes, which met acceptable safety
levels based on clinical criteria, were tested by 9 patients of
varying ages and sexes, spanning from childhood to youth to
advanced age, and with different etiologies including TBI,
stroke, or brain tumor. These patients were undergoing
functional training at the rehabilitation gym of the Institut
Guttmann. They were required to understand basic instructions,
possess sufficient mobility to manipulate a controller with at

least one hand, not have epilepsy or vertigo, and be capable of
wearing glasses if needed. Positive feedback was appreciated,
and valuable comments and observations were collected to
inform the final acquisition of the VR-based cognitive
rehabilitation tool.

For the usability and feasibility assessment, all individuals
admitted to the Institut Guttmann between June and August
2022 were considered for participation in the multiple
proof-of-concept study if they met the following criteria:

• Presence of an ABI (moderate to severe TBI, stroke, or
brain tumor).

• Age equal to or greater than 16 years.
• Presence of cognitive impairment assessed using a

neuropsychological test battery.
• Well-oriented in the 3 different spheres (person, space, and

time) and understands basic instructions.
• Had enough mobility to manipulate a controller with at

least one hand and press any button.
• Received cognitive rehabilitation training through a

not-immersive computer-generated tool named Guttmann
NeuroPersonalTrainer [42].

The exclusion criteria were as follows:

• Presents linguistic (aphasia) or visuoperceptive alterations
that could affect the administration and validity of the
results obtained in the neuropsychological assessment
battery or VR session performance.

• Psychiatric or neurological history before ABI.
• Have epilepsy or disorders associated with motion sickness.
• Patients with skull shape abnormalities who cannot

comfortably hold the VR headset.
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During the recruitment period, a total of 20 inpatients (9 female)
met the inclusion criteria and were enrolled in the study. Among
them, 7 patients had a TBI, 12 had a stroke, and 1 presented
with a brain tumor.

VR System

Device and Development Tools
The VR system must possess the capability to capture user
actions through motor interfaces. These actions will be

interpreted as requests to modify the virtual environment and
sensory reactions will be transferred to the sensory interfaces.
Furthermore, specific hardware capabilities, including the type
of display screen, resolution, image refresh rate, and field of
view, along with software attributes such as ergonomic
interactions and navigation, are crucial for mitigating
VR-induced symptoms and effects [43,44]. The minimal
technical specifications for such a system are listed in Table 1.

Table 1. VRa device minimal technical requirements specification.

RequirementObject

OLEDb or LCDcDisplay screen

>960 × 1080 pixels per eyeScreen resolution

≥75 HzRefresh rate

≥110° diagonalField of view

Integrated and adjustableAudio

6-DoFd tracking, accelerometer, gyroscope, proximity, and hapticSensors

Adjustable eye comfort setting (IPDe); head strapErgonomics

Up to 2 m × 2 mTracked area

Minimum of 2 with buttons and 6 DoFControllers

aVR: virtual reality.
bOLED: organic light emitting diode.
cLCD: liquid crystal display.
dDoF: degrees of freedom.
eIPD: interpupillary distance.

The HTC VIVE Pro Eye (HTC Corporation) [45], a
new-generation high-end HMD and handheld controller, was
selected and integrated into the hospital configuration. This
device is currently commercially available in most countries
and is compatible with industry-standard interfaces such as
SteamVR (Valve Corporation) [46] and OpenVR (Valve
Corporation) [47]. With the Unity3D (Unity Technologies)
game engine [48], our team successfully created immersive,
interactive, and true-to-reality virtual environments. These
environments can be executed on any VR station that meets the
aforementioned minimal technical requirements.

From Prototyping to Immersive Serious Games
A co-design approach was undertaken involving health
professionals, researchers, and technologists. The
multidisciplinary team engaged in discussions regarding the
configuration of the VR session, addressing aspects such as
duration, the number of tasks, task characteristics, and
measurable data. Recognizing that individuals with ABI may
have disabilities across multiple areas of functionality, the team
emphasized the importance of developing a set of unitary tasks.
This approach would allow for targeting different cognitive
abilities and obtaining relevant outcomes separately, thereby
ensuring comprehensive training for the patient.

Unitary tasks should be designed to be achievable, with clear
objectives, and customized based on each patient’s specific
needs to accommodate any physical or cognitive limitations

they may have (eg, muscle rigidity or hypersensitivity).
Participants could use 1 or 2 handheld controllers, and
interactions were simplified by programming multiple buttons
to perform the same action.

Tasks could be completed in either sitting or standing positions;
however, to minimize the risk of falling, as reported in a
previous study [49], all participants underwent the VR session
while seated. Accelerations or decelerations were avoided and
substituted with uniform linear motion or teleporting methods
to ensure a safe and comfortable experience for the participants.
This approach reduces motion sickness by requiring users to
actively control their viewpoints and be responsible for initiating
movement [18]. Virtual scenes were designed to be as realistic
as possible, corresponding to the stimulus type (eg, a sports
center for football stimuli), and the stimuli appeared within the
user’s field of view. All exercises followed a dual-task approach,
incorporating both cognitive and motor cues (eg, reaching
visuospatial stimuli), to provide a comprehensive rehabilitation
experience.

The final prototypes were attained through continuous testing
and evaluations involving end users and clinical professionals.
Key topics and features that underwent extensive discussion
and redesign were game mechanics, interactivity, sound effects,
graphic design, and variable thresholds to delineate difficulty
levels. Seven immersive experiences were developed, addressing
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3 different cognitive functions: attention (n=4), memory (n=1),
and executive functions (n=2).

Prototyping these experiences as serious games facilitated the
incorporation of appropriate feedback, including visual (V),
auditory (A), and haptic (H) cueing. This approach enabled the
provision of instructions, rewarding or annoying stimuli to guide
users in expected motion realization, and the ability to display
or perceive real-time performance results [50]. The emission
of slight vibrations when interacting with a virtual object can
induce the sense of having touched it. Additionally, task
difficulty was adjusted to fit the patient’s therapeutic window,
allowing the professional to select 1 of 3 possible difficulty
levels. Each task automatically modified certain dependent
variables based on the chosen difficulty level.

Attentional serious games consist of 4 visuospatial tasks (Figure
2). Each task involves a different presentation-interaction
approach: (1) stimuli moving at different constant speeds from
right to left in a straight line and then reversing direction at
different heights. The user, who is stationary, must shoot them;
(2) stimuli moving toward the user in a parabolic arch trajectory
from different positions. The user must intercept them; (3)
stationary stimuli distributed at various points within the user’s
field of view. The user must shoot them; and (4) stationary
stimuli appearing near the user’s left or right side while they
are virtually moving forward at a constant low speed. This
creates the perception that the user is moving toward the stimuli
and can reach them with their hands.

Figure 2. The 4 attentional immersive serious games: (A) Moon, (B) Goalkeeper, (C) Circus-I, and (D) Butterflies.

One memory task was developed to train short-term and working
memory within an immersive 3D naturalistic environment
(Figure 3). Users could focus on the exercise they had to carry
out without any external distractions. The task comprises 3
phases: an encoding phase, an interference phase (which can
be configured as maximum or minimum interference), and a
decoding phase.

The executive function tasks aim to train high-level cognitive
abilities, such as planning, problem-solving, and
decision-making. For this research, 2 tasks were developed
wherein the participant is immersed in performing a repetitive

task that varies in the principal instruction that must be carried
out (Figure 4). The first task follows the design of a sequence
imitation task, while the second exercise was designed to control
automatic responses using attention and reasoning through an
inhibitory control task.

During VR sessions, in-game measures were collected, including
time stamps, hits/failure scores, reaction times, user-system
interactions, gaze/position tracking data, and stimuli data. At
this stage, an easy-to-use system with a quick set up for sessions
involving a set of VR experiences addressing cognitive functions
was achieved.
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Figure 3. A memory immersive serious game (Totem) and its phases: (A) encoding, (B) min-interference, (C) max-interference, and (D) decoding.

Figure 4. The 2 executive functions immersive serious games: (A) Conveyor-belt and (B) Circus-II.

Intervention
Immersive serious games were deployed on the HTC VIVE Pro
Eye device, which was equipped with 2 room tracking units
(infrared cameras) and 2 controllers. Once the doctor identified
a potential participant, he/she or a tutor was invited to participate
in the study. Enrolled patients substituted 1 hour of their
cognitive treatment with traditional cognitive rehabilitation
therapy with 1 hour of intervention using the VR-based system
tool. All sessions were conducted between June and August
2022.

During the initial 15 minutes, the participant completed the
informed consent forms and was seated in a chair or positioned
in their wheelchair in a designated area within the VR system’s
tracking zone. To ensure safety, clear space within the room
was maintained, keeping the participant at a distance from any
objects or individuals to prevent collisions. Subsequently, the
VR headset and controllers were placed on the participant. The
treatment provider configured the VR session via a host

computer by selecting the difficulty level for each cognitive
category (hard, medium, or easy) and specifying the hands
involved (see photos of the set up in Multimedia Appendix 2).

The session consisted of completing various tasks, with each
task lasting 4-6 minutes. The total intervention time wearing
the headset was approximately 30 minutes unless the patient
requested to conclude earlier. The intervention time was
calculated as the sum of the duration of each task carried out,
excluding the time elapsed between tasks when the treatment
provider ensured that the task objectives were understood and
instructed the patient on how to interact with the environment.
The number of total tasks performed was also counted. When
there were 15 minutes remaining until the end of the VR session,
the HMD was removed, and questionnaires were administered
to participants to assess their overall user experience.

Outcome Measures
To assess the usability and feasibility of the VR-based support
tool for cognitive rehabilitation in patients with ABI, 3
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structured questionnaires were used (Table S1 in Multimedia
Appendix 3). Additionally, information regarding the optimal
dose of treatment and patients’ age, based on the duration of
time spent performing VR tasks, along with demographic data,
was collected.

The first questionnaire comprised a 5-point Likert scale, ranging
from “5=fully agree” to “1=fully disagree,” assessing system
usability and acceptance based on the participant’s perception.
The responses were related to the sense of presence, dimensions
matching, the ability to see and differentiate objects,
interactivity, task specificity, task difficulty, motivation,
enjoyment, and errors. Following this, 3 questions were posed
regarding the frequency (on a 5-point Likert scale, ranging from
“5=all the time” to “1=never”) of using various new technologies
to gauge the familiarity level. Finally, the Simulator Sickness
Questionnaire (SSQ) [51] was used to evaluate side effects by
measuring users’ level of sickness symptoms such as nausea
(N), oculomotor problems (O), and disorientation (D). Each of
the 16 items in the SSQ is rated on a 4-point scale: 0 (none), 1
(slight), 2 (moderate), and 3 (severe). Participants were
instructed to indicate the severity of each symptom they
experienced during or after the VR exposure by selecting the
appropriate rating for each item.

For the Usability Questionnaire (UQ) and the Technology
Familiarity Questionnaire (TFQ), the value for the “worst”
condition answer will count as 0, and the value for the “best”
condition answer will count as 4. As the UQ has 10 questions,
the maximum total score can be 40. A higher usability score
indicates that the system is more useful and feasible for
implementation in a hospital setting for patients with ABI during
neurorehabilitation. The maximum total score for the 3-question
TFQ can be 12, indicating a greater acceptance of new
technologies.

By contrast, the total score for the SSQ can range from 0 to 48,
with significant symptoms indicated by scores between 10 and
15, concern for scores between 15 and 20, and scores over 20
indicating a problem with the simulator. Their usage permitted
detailed analysis of the distribution of nausea, oculomotor, and
disorientation symptoms elicited by the experimental
manipulation. If any score falls within a concerning range, it
should be studied separately because this scale was originally
designed for military flight simulators and may appear overly
strict when applied to nonaviators [52]. However, this
questionnaire is one of the most widely used ones for assessing
cybersickness in immersive VR rehabilitation [53]. Thus, its
use allowed for comparison with previous research.

Structured questionnaires containing numbered questions,
accompanied by keywords pertaining to usability, technical
familiarity, and side effects, along with the complete question
sentences, are available in Table S1 in Multimedia Appendix
3.

Statistical Analysis
We aimed to recruit enough inpatients with ABI to identify all
usability problems in the design [54] and the early stage of this
self-developed VR tool and to gather sufficient data to estimate
the SD of measured outcomes for planning a subsequent larger

trial [55]. Recent studies, which involved new-generation
headsets, customized VR-based rehabilitation tools, focused on
patient needs, tested the system in samples ranging from 11 to
35 patients with ABI, and found that VR was accepted and
feasible for rehabilitation [37,38,56].

Descriptive analyses were conducted to establish recruitment,
acceptance, and completeness, using demographic information,
questionnaire scores, measures of intervention duration, and
the number of tasks completed. Descriptive statistics data from
participants with TBI and stroke were reported separately. As
only 1 participant had a brain tumor, their data were not included
in the etiology-group comparison. However, their data were
included in the age-group comparison established for future
eligibility criteria.

The calculations were conducted using Microsoft Excel. The R
package (R Foundation) corrplot [57] was used to graphically
represent the scores obtained in the questionnaires and compare
them according to age and etiology. Additionally, the same
package was used to explore the correlation matrix between
SSQ subscale symptoms, usability categories, technology
familiarity, in-game measures, and some demographics. P values
with a significance level <.05 and correlation coefficients (r,
ranging between –1 and +1) were provided to aid in determining
the statistical significance and the direction and intensity of
correlations.

Results

Sample Characteristics
A total of 20 inpatients with ABI participated in this usability
and feasibility study. The sample mean age was 38.3 (SD 14.1)
years, with a mean time since injury (TSI) of 4.7 (SD 1.5)
months. The total scores obtained for each of the 3
questionnaires administered (ie, UQ, TFQ, and SSQ) were 37
(SD 2.6), 9.2 (SD 2.9), and 1.3 (SD 2), respectively. Finally,
the total mean duration of each intervention across all
participants was approximately 25.6 (SD 4.7) minutes, while
the number of tasks completed was 5.1 (SD 1).

Among the 7 patients with TBI, 4 reported a severe level of
impairment according to the Glasgow Coma Scale (between 3
and 8) [58]. Among the 12 patients with stroke, 7 had ischemic
strokes and 4 had hemorrhagic strokes. There were 2 cases of
minor stroke according to the National Institute of Health Stroke
Score (NIHSS; ranging from 0 to 42: 0, no deficit; minor
impairment, 1-4; moderate, 5-15; moderate to severe, 16-20;
and severe impairment 21-42) [59]. Seven patients had moderate
stroke severity, and 2 presented with moderate to severe stroke.
The patient who had a brain tumor underwent surgery for
resection of a pituitary macroadenoma.

Patients underwent a battery of neuropsychological tests before
being incorporated into the study; 8 of them had alterations in
the cognitive function of attention, 8 presented with memory
impairment, and 18 had difficulty performing executive
functions. Five patients had completed advanced studies (>12
years of schooling), while 8 had an intermediate level of
education (between 8 and 12 years of schooling) and 6
completed primary education (<8 years of schooling).
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Moreover, one patient presented with hemispatial neglect, 6
had left-side hemiplegia, and 4 had visual-field defects,
including homonymous hemianopia, diplopia, or limited gaze.

The individual demographics and some clinical data are reported
in Table 2. For more details and complete information, please
refer to Table S1 in Multimedia Appendix 4.

Table 2. Individual demographic and clinical data.

GCScNIHSSbTSIaEtiologySexAge (years)Patient code

Missing—e8.7TBIdFemale162020342-1

3—3.4TBIMale382020342-2

3—3.9TBIMale632020342-4

—185.5Ischemic strokeMale482020342-5

—124.6Hemorrhagic strokeFemale192020342-6

Missing—4.2TBIMale402020342-7

—25.0Hemorrhagic strokeMale412020342-8

4—5.3TBIMale202020342-9

3—5.0TBIFemale192020342-10

—203.5Ischemic strokeFemale392020342-11

—23.9Hemorrhagic strokeFemale322020342-12

——3.1Brain tumorMale382020342-13

—73.3Ischemic strokeMale252020342-14

—126.5Ischemic strokeMale582020342-15

—125.5Ischemic strokeFemale512020342-16

—Missing4.3Hemorrhagic strokeFemale292020342-17

—143.3Ischemic strokeFemale502020342-18

Missing—5.4TBIMale342020342-19

—126.9Hemorrhagic strokeFemale582020342-20

—52.8Ischemic strokeMale472020342-21

aTSI: time since injury (months).
bNIHSS: National Institute of Health Stroke Score.
cGCS: Glasgow Coma Scale.
dTBI: traumatic brain injury.
eNot available.

Evaluation of Outcome Measures
We divided participants into separate groups based on etiology
(TBI and stroke) and age (young: 16-39 years and adult: 40-63
years). We used appropriate measures of central tendency and
variability, such as means and SDs (Table 3). According to each
etiology and age subgroup comparison, all of them achieved
more than 36 points in the UQ score, very close to the maximum
of 40 points. Participant subgroups achieved more than 8 points
out of 12 for being experienced in using new technologies such
as personal computers, smartphones, and the internet. Regarding
the manifestation of motion side effects, none of the groups
achieved a minimum of 10 points on the SSQ score, indicating
the absence of negative symptoms. A difference of 7.4 minutes
was observed when comparing the intervention duration time
between the TBI and stroke subgroups. Thus, participants with
stroke scored 1 point higher in the TFQ score and completed 1
more task than participants with TBI.

The scores obtained by the participants in the TFQ questionnaire
were compared depending on age and separated by etiology,
excluding the patient with brain tumor (Figure 5). Most
participants reported an acceptable level of the use of new
technologies, but 5 achieved scores below half the maximum.
The 2 lowest scores, 4/12, were obtained by patients with TBI.
One participant, a 38-year-old male with a Glasgow Coma Scale
score of 3, obtained the lowest score of 4/12. Another
participant, a 40-year-old male with no available severity data,
also scored 4/12. The next lowest score of 5/12 was obtained
by 2 patients with moderate to severe stroke. One was a
51-year-old woman with an NIHSS of 12, and the other was a
39-year-old woman with an NIHSS of 20. Finally, a score of
6/12 was obtained by a 58-year-old male patient diagnosed with
moderate stroke (NIHSS of 12). It is important to highlight that
age-matched participants, even older, reported an acceptable
use of new technologies.
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Table 3. Descriptive statistics of age and TSIa, results of the UQb, TFQc, SSQd, intervention duration, and number of tasks realized.

Adult (n=9), mean (SD)Young (n=11), mean (SD)Stroke (n=12), mean (SD)TBIe (n=7), mean (SD)Statistic

50.7 (7.8)28.1 (8.7)41.4 (12.8)32.9 (16.5)Age

4.8 (1.4)4.6 (1.6)4.6 (1.3)5.1 (1.7)TSI

37.6 (1.9)36.5 (3)36.8 (3.1)37.4 (1.7)UQ

8.9 (3.3)9.5 (2.8)9.4 (2.8)8.4 (3.3)TFQ

1 (1.6)1.5 (2.4)1.4 (2.3)0.9 (1.9)SSQ

25 (5.7)26.2 (3.9)28.3 (2.8)20.9 (3.8)Duration

4.8 (1)5.4 (0.9)5.4 (0.8)4.4 (1)N_tasks

aTSI: time since injury.
bUQ: Usability Questionnaire.
cTFQ: Technology Familiarity Questionnaire.
dSSQ: Simulator Sickness Questionnaire.
eTBI: traumatic brain injury.

Figure 5. Comparison plot between TFQ scores obtained by etiology and distributed by age. TBI: traumatic brain injury; TFQ: Technology Familiarity
Questionnaire.

The mean tech familiarity score for patients with stroke (9.4)
was slightly higher compared with that for patients with TBI
(8.4), but this did not affect the usability scores. Overall, all
participants achieved high usability scores, equal to or over
35/40, except for 1 patient, a 32-year-old woman diagnosed
with a minor stroke (NIHSS of 2), who scored 29/40 points for

the usability of the VR intervention (Figure 6). This could be
because the patient consistently rated all questions with a 4/5,
instead of assigning lower scores to some items. Additionally,
she appeared indifferent regarding the occurrence of errors, as
evidenced by consistently assigning a score of 3/5.

Figure 6. Comparison plot between UQ scores obtained by etiology and distributed by age. TBI: traumatic brain injury; UQ: Usability Questionnaire.

When comparing the spatial distribution of the stroke and TBI
subgroups based on age, no substantial differences were
observed regarding usability, by either age or etiology.

Similarly, in terms of simulator sickness, neither the 2 etiology
groups nor the patient with a brain tumor (SSQ score=2)
exhibited any substantial differences in the presence of
symptoms, regardless of age (Figure 7). The upper limit of the
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y-axis, as shown in Figure 7, has been truncated at 10. This
range ensures safety by indicating the absence of simulator
sickness. None of the patients obtained a score greater than this
threshold.

Another aspect under examination is the duration of the
VR-based intervention while wearing the headset. Following
the time needed for patients to understand the intervention, fit
and set up the equipment, and complete questionnaires, all

participants were allotted approximately 30 minutes to engage
in a series of immersive serious games. The subgroup of patients
with stroke appeared to tolerate longer interventions wearing
the headset compared with patients with TBI because, on
average, the stroke subgroup performed more tasks.
Additionally, Figure 8 illustrates a decreasing trend in the
duration of VR interventions with older ages for patients with
TBI.

Figure 7. Comparison plot between SSQ scores obtained by etiology and distributed by age. SSQ: Simulator Sickness Questionnaire; TBI: traumatic
brain injury.

Figure 8. Comparison plot between intervention duration time differentiation by etiology and age.

The sample size of participants with TBI was small, but several
factors may contribute to explaining these differences in time
exposure. First, 2 participants with TBI completed a set of 5
tasks more quickly than those with stroke, possibly because
they were on average 10 years younger (see Table S2 in
Multimedia Appendix 4). According to the literature, younger
age correlates with faster reaction times [60]. By contrast, an
adult participant with TBI (code 2020342-19) reported feelings
of dizziness and pixelated vision (see Table S2 in Multimedia
Appendix 3). He stopped mid-intervention to remove the VR
glasses and rest for a couple of minutes. Additionally, the oldest
patient in the entire sample was from the TBI subgroup and was
the one who requested to finish early, completing only 3 tasks.
These occurrences contributed to a shorter intervention time for
the TBI subgroup.

Based on this rationale and observing the result of the
comparison between UQ scores and TFQ scores (Figure 9), the
co-designed and developed VR-based cognitive rehabilitation
support tool appears to be feasible when applied in the hospital
setting and with patients with ABI. It demonstrates high usability
regardless of age, the origin of the lesion, and familiarity with
new technologies.

We also investigated the correlations among Simulator Sickness
subscale symptoms, usability categories, tech familiarity scores,
age, TSI, number of tasks performed, and time wearing the VR
headset (Figure 10). The intensity of the square’s color is
directly proportional to the strength of the correlations between
variables. Positive correlations are labeled with cool colors,
whereas negatives are warm. Significant correlations are
indicated with asterisks. The exact P values are presented in
Table S1 in Multimedia Appendix 5.
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Figure 9. Comparison plot between UQ and TFQ scores, separated by etiology. TBI: traumatic brain injury; TFQ: Technology Familiarity Questionnaire;
UQ: Usability Questionnaire.

Figure 10. Correlations between sample’s demographic characteristics, number of tasks completed, session duration time, technology familiarity,
usability categories, and SSQ. *P<.05, **P<.01, and ***P<.001. SSQ: Simulator Sickness Questionnaire; TFQ: Technology Familiarity Questionnaire;
TSI: time since injury.

There were significant, strong correlations between some
variables included in the analysis. The data extracted from the
session performance were closely related, and therefore, the
intervention duration positively correlated with the number of
tasks performed (r=0.72, P<.001), as expected. Regarding
usability categories, the dimensions matching (u_dim) correlated
with the sense of presence (u_pres: r=0.56, P=.01) and with the
ability to see and differentiate objects (u_see: r=0.56, P=.01).
The task goal-specificity (u_goal) correlated positively with the
ability to interact with the environment (u_inter: r=0.55, P=.01).
The motivation prompted by the intervention (u_motiv)
correlated with the dimensions matching (u_dim: r=0.57,
P=.008) and with the ease in seeing and differentiating objects
(u_see: r=0.57, P=.008). Additionally, motivation correlated
with sex, considering that 0 corresponds to the male sex and 1
to the female sex. As the sign of the correlation is negative, a

strong correlation between male sex and motivation was
observed (r=–0.46, P=.04) [61]. Furthermore, the liking of VR
interventions (u_like) and the desire to conduct more VR in
rehabilitation programs (u_more) were correlated (r=0.56,
P<.001), and both were also correlated with the motivation
experienced (u_motiv) with similar results (r=0.55, P=.01). The
presence of errors that some participants had reported correlated
negatively with the ability to understand and achieve the goal
of the task (r=–0.56, P=.009).

Finally, concerning the SSQ symptoms analyzed, a strong
correlation between disorientation (ssq_d) and oculomotor
problems (ssq_o) was observed (r=0.71, P<.001). The
disorientation sickness symptoms also correlated with the nausea
sickness symptoms (ssq_n: r=0.50, P=.02). Additionally, the
nausea symptoms and oculomotor problems negatively
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correlated with the ease in seeing and differentiating objects
(r=–0.60, P=.005 and r=–0.54, P=.01, respectively).

Discussion

Support Tool Developed
The VR-based support tool proposed in this study comprised a
high-end new-generation commercial device, namely, the HTC
VIVE Pro Eye, along with a series of custom tasks designed to
rehabilitate cognitive functions (eg, attention, memory, and
executive functions) in patients with ABI. These patients were
undergoing neurorehabilitation treatment at a health care center.

The overall satisfaction percentage achieved by the sample of
20 patients, considering the usability score and the evaluation
of side effects, was 89.8% (431/480; 37/40 usability points,
subtracting 1.3 from 48 SSQ points). The system was developed
following recent recommendations [27,28] combined with our
approach to how VR applications should be designed for clinical
trials (Textbox 1). The results obtained from this study may
contribute to filling the gap in the literature related to the lack
of studies that follow a methodological process of best practices
to integrate VR technology as a neurorehabilitation support tool
for patients with ABI in the daily practice of real hospital
settings [24,25,62].

Textbox 1. Stepwise summarized approach to achieve a virtual reality–based neurorehabilitation support tool for inpatients with acquired brain injury.

1. Identification of virtual reality (VR)–based intervention needs and barriers for patients with acquired brain injury (ABI)

• A multidisciplinary meeting involving health professionals and researchers identified the need for a VR-based neurorehabilitation support
tool for patients with ABI.

• Difficulties and barriers were identified, and possible solutions were proposed, in collaboration with technologists and VR experts.

• The first approach to VR support tool features and treatment interventions was defined.

2. Selection and placement of technological device

• A high-end new-generation immersive system was selected and placed within the hospital setting.

• Device testing with available off-the-shelf VR games was conducted with clinical professionals and end users.

3. Co-design of VR-based neurorehabilitation support tool

• Physical medicine and rehabilitation physicians, neuropsychologists, therapists, and nurses targeted the patient population and desired
intervention.

• Ideas for new VR experiences were generated, addressing different cognitive or sensorimotor functions.

• Researchers and developers created the first sketches based on technology capabilities and current knowledge.

• Immersive serious games, rehabilitative principles, game mechanics, interactions, sound and effects, graphic environment, and measurable
data, among other features were discussed.

4. Prototyping

• Developers built prototypes, which were tested and redesigned by co-designers until desired behavior and appearance, maximum safety,
easy, and a quick set up were guaranteed.

• Input and output variables with configurable thresholds were determined.

• Approaches to minimize cybersickness symptoms, simplified interactions, and multisensory feedback incorporation were used.

• Use cases were performed involving treatment providers and end users.

• A set of immersive serious games, including neurorehabilitation principles, was achieved.

5. Usability and feasibility study

• A study protocol was defined, including participant characteristics (inclusion/exclusion criteria), intervention, and outcome measures.

• Target patients were recruited.

• Multiple proof-of-concept studies were conducted.

• Demographics, clinical data, in-game measures, and structured questionnaire responses were collected.

• Statistical analyses were performed, and results were discussed.

6. Basis for future research

• Requirements of the VR support tool for patients with ABI were elicited.

• The foundation was established for future large study designs to determine the efficacy of VR interventions.
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Principal Findings
Our systematic approach to developing a VR-based
neurorehabilitation support tool for inpatients with ABI has
resulted in a set of 7 cognitive tasks specifically designed to
address the needs of this population. The sample of 20 patients,
with a mean TSI of 4.7 (SD 1.5) months, volunteered to
participate in assessing the usability and feasibility of the
proposed intervention. Participants completed an average of 5
tasks during a single VR session lasting approximately 25
minutes. The set of cognitive tasks was well-received by
participants, irrespective of etiology, age, or tech familiarity.

What was significant in this study regarding the achievement
of the VR tool and subsequent intervention was the step-by-step
approach with the participation of stakeholders throughout the
entire process, from design to prototyping, and usability and
feasibility assessment. By applying this methodology, we have
demonstrated the potential of integrating VR into clinical
practice. This supports recent literature findings that also
describe detailed customized VR rehabilitation tools and have
conducted large-quality studies obtaining promising results
[36,39-41,63,64]. All participants from the multiple
proof-of-concept study completed the session without
experiencing adverse effects or encountering major issues. By
targeting multiple areas of functionality, patients can benefit
from a more comprehensive and personalized rehabilitation
program, which can promote neuroplasticity and potentially
improve overall functional outcomes [14,30].

The results demonstrated that when patients enjoyed the tasks,
their motivation increased; eventually, they expressed a desire
to participate in more VR sessions as part of their rehabilitation
programs. This engagement was correlated with a high sense
of presence, the ability to perceive and differentiate objects
within the virtual environment, and a perception of real-world
scale [32,65]. The study also demonstrated that when
interactions are customized to fit the abilities of individual
patients, their performance in completing the required tasks
improves, resulting in greater clarity and specificity of the
intended goal [20]. However, when tasks contain errors, it
becomes more challenging for patients to understand and
achieve the objectives. For example, one patient (code
2020342-2) reported difficulty in hitting the mark when shooting
stimuli. This issue will be addressed by incorporating a laser
pointer for future studies.

When evaluating cybersickness effects, a strong correlation was
observed between patients reporting disorientation and the
presence of oculomotor problems and nausea symptoms. This
indicates that an increase in one of these symptoms tends to
coincide with an increase in the others [49]. Furthermore, when
patients reported experiencing nausea symptoms or oculomotor
problems, their ability to see and differentiate objects within
the scene decreased. Despite the correlations found, the overall
average score for the SSQ does not exceed 1.3 points, with a
maximum of 1.5 points in the subgroup of young patients (up
to 39 years old). This score is still far from the threshold of 10
points, beyond which cybersickness symptoms can cause
problems.

There is a demographic correlation between sex and motivation,
indicating that men found the VR session more motivating than
women [61]. No significant correlation was observed with the
age variable. This finding, together with the comparisons of
descriptive statistics, may support the evidence that VR is a
useful and viable tool for different age groups, ranging from 16
to 63 years old. However, it is important to interpret these
findings with caution, as the sample size is not sufficiently large,
and only 1 session has been tested, rather than a long-term
intervention with a follow-up assessment.

The commercial device selected was suitable for inpatient
rehabilitation, in accordance with previous studies [44,66,67].
The headset ensures comfort, improved visual quality, and
exposure to graphics, along with selectable handheld controllers,
a precise tracking system, and portability. Moreover, the
headband and facial interface that come into contact with the
patient can be replaced to reduce the risk of spreading infection
among patients sharing the same device. The screen, other parts
of the headset, and controllers can be disinfected using
hydroalcoholic gel. Successful integration of the device within
hospital settings, without hindering the use of other rehabilitative
tools or treatment programs, is assured. As for the economic
feasibility of acquiring the proposed system, both SteamVR
and OpenVR software components are freely available for use.
The Unity3D game engine provides various licensing options,
including a free version. The necessary hardware comprises the
following: (1) a mid-range gaming personal computer equipped
with a VR-ready graphics card, priced between €1000 (US
$1081) and €3000 (US $3244); (2) a high-end VR input/output
device such as Valve Index or Oculus, typically priced around
€1200 (US $1297); and (3) potential expenses may arise from
hiring developers or subcontractors to create the virtual
environments.

Limitations
While our study offers valuable insights into the utilization of
VR-based tools for cognitive rehabilitation in patients with ABI,
it is important to acknowledge several limitations that warrant
attention. Primarily, there exists a discrepancy in the number
of tasks targeting each cognitive domain. Despite this variance,
it is crucial to emphasize that the obtained results were adequate
for identifying and delineating crucial aspects of feasibility and
usability. Future studies assessing efficacy should encompass
a balanced array of tasks targeting each cognitive domain. This
approach will facilitate more comprehensive and intensive
interventions, addressing the spectrum of cognitive impairments
observed in patients with ABI.

In line with this, it would be compelling to broaden our
intervention to encompass other realms of rehabilitation, such
as upper and lower limb function, gait analysis, mirror therapy,
and pain management, among others.

Another limitation is the absence of a centralized server for
gathering output variables generated by each task. For future
studies aiming to obtain efficacy results, ascertain which data
trigger changes during the neurorehabilitation process, and
develop predictive models to personalize treatments, having
such a server would be invaluable.

JMIR Neurotech 2024 | vol. 3 | e50538 | p.30https://neuro.jmir.org/2024/1/e50538
(page number not for citation purposes)

Prats-Bisbe et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Furthermore, certain patients’clinical records contained missing
data regarding the severity scales, potentially affecting the
analysis of results. The complete tables, encompassing all
collected variables including individual responses to
questionnaires, are available for reference in Multimedia
Appendices 3 and 4.

Finally, although the design and refinement of the VR
experiences were conducted by a multidisciplinary team
comprising health professionals and end users, structured
questionnaires were not administered to them during this
process. However, a log detailing meetings, tests conducted,
the primary themes explored, alterations made, error corrections,
and some feedback was prepared (see Table S1 in Multimedia
Appendix 1).

Conclusions
Based on our understanding, this study holds significance as it
lays the foundation for a VR-based neurorehabilitation support
tool applicable to a wide spectrum of patients with ABI within
the practical context of a hospital setting. The process of
requirement elicitation and iterative development was
meticulously conducted in collaboration with a multidisciplinary

team, aligning closely with the latest recommendations from
the literature.

This study provides evidence demonstrating the utility and
feasibility of VR-based treatments when tailored to meet the
specific needs of a targeted patient population. It underscores
the significance of collaborative intervention design involving
physicians, physiotherapists, neuropsychologists, occupational
therapists, nurses, researchers, technologists, and incorporating
patient perspectives. The intervention ought to encompass a
diverse range of immersive experiences, drawing upon
neurorehabilitation principles and serious games techniques
while ensuring ecological validity. By adhering to this approach,
VR-based interventions hold the potential to provide valuable
support in neurorehabilitation settings.

Future studies should aim to conduct rigorous research with
larger sample sizes and robust study designs to offer more
substantial evidence regarding the clinical value and
cost-effectiveness of VR-based interventions in the
neurorehabilitation of patients with ABI. For this purpose, a
clinical efficacy study is already in progress. The ultimate
objective is to develop a standard operating procedure that
facilitates reproducibility, comparison, and generalization of
findings.
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Abstract

Background: Natural language processing (NLP), a branch of artificial intelligence that analyzes unstructured language, is
being increasingly used in health care. However, the extent to which NLP has been formally studied in neurological disorders
remains unclear.

Objective: We sought to characterize studies that applied NLP to the diagnosis, prediction, or treatment of common neurological
disorders.

Methods: This review followed the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses
Extension for Scoping Reviews) standards. The search was conducted using MEDLINE and Embase on May 11, 2022. Studies
of NLP use in migraine, Parkinson disease, Alzheimer disease, stroke and transient ischemic attack, epilepsy, or multiple sclerosis
were included. We excluded conference abstracts, review papers, as well as studies involving heterogeneous clinical populations
or indirect clinical uses of NLP. Study characteristics were extracted and analyzed using descriptive statistics. We did not aggregate
measurements of performance in our review due to the high variability in study outcomes, which is the main limitation of the
study.

Results: In total, 916 studies were identified, of which 41 (4.5%) met all eligibility criteria and were included in the final review.
Of the 41 included studies, the most frequently represented disorders were stroke and transient ischemic attack (n=20, 49%),
followed by epilepsy (n=10, 24%), Alzheimer disease (n=6, 15%), and multiple sclerosis (n=5, 12%). We found no studies of
NLP use in migraine or Parkinson disease that met our eligibility criteria. The main objective of NLP was diagnosis (n=20, 49%),
followed by disease phenotyping (n=17, 41%), prognostication (n=9, 22%), and treatment (n=4, 10%). In total, 18 (44%) studies
used only machine learning approaches, 6 (15%) used only rule-based methods, and 17 (41%) used both.

Conclusions: We found that NLP was most commonly applied for diagnosis, implying a potential role for NLP in augmenting
diagnostic accuracy in settings with limited access to neurological expertise. We also found several gaps in neurological NLP
research, with few to no studies addressing certain disorders, which may suggest additional areas of inquiry.

Trial Registration: Prospective Register of Systematic Reviews (PROSPERO) CRD42021228703;
https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=228703

(JMIR Neurotech 2024;3:e51822)   doi:10.2196/51822
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Introduction

The implementation of the electronic medical record (EMR) in
health care systems has resulted in a remarkable increase in the
amount of digital patient data [1], much of which is text-based
and stored in an unstructured, narrative format [2-4]. While
unstructured text is a rich data source, analyses of these data
often require time- and cost-intensive manual processing [3].
Natural language processing (NLP), a type of artificial
intelligence that automatically derives meaning from
unstructured language, can significantly reduce costs and
enhance the quality of health care systems by converting
unstructured text into a structured form that can be processed
by computers [2,4,5].

Approaches to NLP can use rule-based techniques, machine
learning (ML), or a combination of both [6-8]. Between the
fifth and eighth decades of the 20th century, NLP approaches
were predominantly rule-based, using a set of rules defined by
human experts [7,9] to systematically extract meaning from
unstructured text. Rule-based methods are comprehensible by
humans but difficult to generalize [7,9]. Driven by recent
advances in computing power and access to computing
resources, contemporary approaches to NLP have increasingly
incorporated ML, which possesses greater scalability [7] than
rule-based methods despite the need for greater computational
power to construct ML-based NLP models. Most recently,
complex ML methods such as deep learning (DL), which are
based on neural networks and larger datasets than conventional
ML approaches, have become popular approaches to address
NLP tasks [9,10].

The high prevalence of unstructured text in EMR systems creates
an ideal use case for NLP in health care. However, the majority
of current NLP research remains focused on nonneurological
conditions such as mental health, cancer, and pneumonia [5].
The dearth of neurological NLP research is out of proportion
to the worldwide importance of neurological conditions, both
in terms of public health burden and cost. For instance,
cerebrovascular disease occupies the second leading cause of
death worldwide [11], and in the United States, neurological
and musculoskeletal disorders generate the greatest number of
years lost to disability [12]. Finally, the estimated annual cost
of the most prevalent neurological diseases in the United States
is nearly US $800 billion [12].

Neurology is a specialty that is uniquely well suited to benefit
from NLP approaches. The data used in the diagnosis and
management of neurological conditions, such as examination
findings or clinical impressions, are often recorded as narrative,
unstructured text in clinical documentation. Aside from clinical
notes containing the patient history and neurological
examination, reports from radiology [13,14], sonography, or
electrophysiology studies are integral to neurological practice
and often are crucial for detection, prognosis, and treatment.

Further, NLP analysis of spoken language may allow the
detection of certain neurodegenerative conditions such as
Alzheimer disease in their early stages [15]. Given the unique
position of neurology with respect to NLP and the relative lack
of research on the applications of NLP in neurology, we sought
to conduct a scoping review in order to quantify and characterize
studies that directly applied NLP for clinical use in common
neurological disorders.

Methods

Literature Search Strategy and Eligibility Criteria
This review was conducted using the PRISMA-ScR (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
Extension for Scoping Reviews) guidelines (Multimedia
Appendix 1) and was registered with the Prospective Register
of Systematic Reviews (PROSPERO CRD42021228703). Our
search was conducted using Ovid Embase and MEDLINE on
May 11, 2022 (Multimedia Appendix 2 [16-22]). Based on the
most globally prevalent and costly neurological disorders [11],
studies investigating the use of NLP in Alzheimer disease
(exclusive of Alzheimer disease–related disorders), Parkinson
disease, stroke and transient ischemic attack, epilepsy, multiple
sclerosis (MS), and migraine were included.

Studies that used NLP to analyze radiographic findings without
any clinical correlation (eg, silent brain infarcts) or for purposes
other than diagnosis, detection, phenotyping, subtyping,
prognostication, risk stratification, or therapy were excluded.
We excluded studies with populations comprised of patients
with heterogeneous diseases or ambiguously defined populations
(eg, we excluded studies that used a patient cohort consisting
of patients with both Alzheimer dementia and mild cognitive
impairment) as well as studies that did not use NLP for direct
clinical applications. Examples of indirect clinical applications
include the use of NLP to identify cohorts for subsequent model
development or conduct epidemiological associations between
cohorts without direct impact on clinical practice. We
additionally excluded abstracts, conference proceedings,
reviews, and editorials.

Data Extraction
A medical librarian (SW) with expertise in scoping reviews first
conducted a literature search (Multimedia Appendix 2) based
on our eligibility criteria to generate a list of abstracts, which
were then imported into a web application (Covidence Ltd) for
initial screening by 3 authors (BRK, LJB, and IL). After the
abstract screening was completed, full-text papers for screened
abstracts were reviewed by 2 authors (BRK and IL) to determine
eligibility for inclusion. Disagreements at both stages were
resolved by discussion and consensus.

Using the final list of full-text studies, study characteristics were
manually extracted by 1 author (IL) and charted in a REDCap
(Research Electronic Data Capture; REDCap Consortium) web
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database form, which was subsequently reviewed by a second
author (BRK) for accuracy. The data charting form was initially
tested by the data extractor (IL) and revised after feedback from
all coauthors (BRK, NJ, LJB, and SW). We extracted study
publication year, population size, country of origin, journal field
(eg, medical informatics, clinical neurology, nonclinical
neuroscience, clinical medicine, or other), neurological disorder,
and target of NLP (eg, diagnosis or detection, phenotyping or
subtyping and severity, prognostication or risk stratification, or
disease management or therapy). Each study could have multiple
targets whenever applicable.

For each study, the source language to which NLP techniques
were applied was also extracted. For studies conducted in or
authored by teams from non-English–speaking countries, the
source language was extrapolated directly as described from
the study methodology. If the source language was a publicly
available research dataset or ontology (eg, MetaMap ontology
or ADReSS dataset, both of which use English), the source
language was reported as English. Source of language for NLP
(eg, clinical notes, radiographic reports, speech audio, or other)
and type of study (eg, model derivation, validation, or both)
were also noted. Validation studies were defined as studies that
specifically investigated the validation of a derived model in a
population external to the original model derivation population.
Our definition of validation studies did not include validation
on held-out test sets as part of model derivation. If the NLP
model was both derived and externally validated in the same
study, the population size included the additional population
used for validation. Simulated patients, who were used as a
training set in one study, were included in the population size.
If no population size was mentioned in the studies, the number
of text instances (eg, clinical notes and radiographic reports)
was recorded.

We additionally extracted the study’s NLP approaches (ie,
rule-based methods, ML, or both). Rule-based NLP included
any approaches that used keyword searches, pattern matching,
regular expressions, or ontological systems for word-concept
mapping, text preprocessing, or classification. ML-based NLP
comprised both conventional ML and DL approaches and both
were distinguished as dichotomous study characteristic variables
but could co-occur in the studies. A study was characterized as
including any of these methods if either ML or DL was used at
any point in model development for the study.

Under the category of conventional ML methods, linear
regression, logistic regression, support vector machines (SVMs),
naïve Bayes classifiers, decision trees, random forest classifiers,
k-nearest neighbor algorithms, gradient boosting techniques
such as extreme gradient boosting, latent Dirichlet allocation,
and shallow neural networks were included. Under the definition
of shallow neural network, we included any approaches using
Word2vec or other “-2vec” word-embedding techniques that
use a neural network to construct word contexts and extract
semantic and syntactic meaning from text [23,24]. We also
included other types of regression, such as lasso regression,
which is often used for dimensionality reduction, in the
conventional ML category.

DL techniques included convolutional neural networks, recurrent
neural networks (RNNs), long- and short-term memory
networks, multilayer perceptrons, and transformers. Studies
using long- and short-term memory networks were also
categorized as using an RNN. We also note that neural networks
of unspecified type and number of layers, which were not clearly
referred to as DL in the study, were not included in this category.

Results

Included Studies
In total, 916 studies were identified from our search strategy,
of which 271 were duplicates and were excluded. We then
screened the resulting 645 abstracts, of which 565 were excluded
due to not meeting initial eligibility criteria. Of the remaining
80 studies, 39 (49%) were excluded. The 2 most common
reasons for exclusion were the use of NLP for nonclinical
applications (n=15, 38%) and heterogeneous clinical populations
(n=12, 31%). In total, 41 (4.5%) of the 916 studies from the
original search results were ultimately included for review
(Figure 1 and Table 1).

Of the 41 included studies, NLP was applied to stroke or
transient ischemic attack in 20 (49%) studies, epilepsy in 10
(24%) studies, Alzheimer dementia in 6 (15%) studies, and MS
in 5 (12%) studies. We found no studies applying NLP to
Parkinson disease or migraine that met our eligibility criteria.
Across all neurological conditions, NLP was most commonly
applied for the purposes of detection or diagnosis (n=20, 49%),
followed by clinical disease phenotyping or subtyping (n=17,
41%), prognostication or risk stratification (n=9, 22%), and
management or therapy (n=4, 10%; Table 2).
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Figure 1. Study PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) diagram. NLP: natural language processing.
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Table 1. Included studies.
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tion
date

Paper
authors

Determining the

cause of TIAk-like
presentations
(cerebrovascular vs
noncerebrovascu-
lar)

Random forest, deci-
sion tree, CNN,
RNN (LSTM)

YesMLDetection
or diagno-
sis

StrokeNoClinical
neurolo-
gy

Clinical
notes
and radi-
ology
reports

Aus-
tralia

January
17,
2019

Bacchi
et al
[32]

Ischemic stroke
subtypes

SVM, random for-
est, logistic regres-
sion, KNN, boost-
ing, ensemble
(stacking logistic re-
gression, extra trees
classifier)

NoRule-
based,
ML

Clinical
disease
phenotyp-
ing or
severity

StrokeNoClinical
neurolo-
gy

Clinical
notes
and radi-
ology
reports

United
States

May 15,
2019

Garg et
al [33]

Incidence of
stroke, stroke sub-
types

Random forest, logis-
tic regression

NoRule-
based,
ML

Detection
or diagno-
sis, clinical
disease
phenotyp-
ing or
severity

StrokeYesMedical
infor-
matics

Clinical
notes

United
States

March
8, 2021

Zhao et
al [21]

Distinguishing be-
tween PNES and
epilepsy, hesita-
tions and repeti-
tions in descrip-
tions of epileptic
seizures versus
PNES

Random forestNoMLDetection
or diagno-
sis

EpilepsyNoClinical
neurolo-
gy

SpeechUnited
King-
dom

October
1, 2021

Pevy et
al [34]

Subtyping and
phenotyping car-
dioembolic stroke

SVM, random for-
est, decision tree, lo-
gistic regression,
KNN

NoRule-
based,
ML

Clinical
disease
phenotyp-
ing or
severity

StrokeNoClinical
neurolo-
gy

Echocar-
dio-
graphic
reports

United
States

Decem-
ber 10,
2020

Guan et
al [35]

Epilepsy pheno-
type extraction
with correlated
anatomic location

N/ANoRule-
based

Clinical
disease
phenotyp-
ing or
severity

EpilepsyNoMedical
infor-
matics

Clinical
notes

United
States

June 26,
2014

Cui et al
[36]

Prediction of poor
stroke outcome

SVM, random for-
est, decision tree,
shallow neural net-
work, lasso regres-
sion, CNN, RNN
(LSTM), MLP

YesMLPrognosis
or risk
stratifica-
tion

StrokeNoClinical
medicine

Radiolo-
gy re-
ports

South
Korea

Decem-
ber 16,
2020

Heo et
al [37]

Prediction of
stroke outcome
measurements and
extraction of pa-
tient characteristics

SVM, naïve Bayes,
random forest,
KNN, CNN, trans-
former

YesRule-
based,
ML

Prognosis
or risk
stratifica-
tion, clini-
cal disease
phenotyp-
ing or
severity

StrokeNoMedical
infor-
matics

Clinical
notes

BrazilNovem-
ber 1,
2021

Zanotto
et al
[38]

Risk factors for

SUDEPl
N/ANoRule-

based
Prognosis
or risk
stratifica-
tion

EpilepsyYesClinical
neurolo-
gy

Clinical
notes

United
States

May 21,
2019

Barbour
et al
[17]

JMIR Neurotech 2024 | vol. 3 | e51822 | p.41https://neuro.jmir.org/2024/1/e51822
(page number not for citation purposes)

Lefkovitz et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Study outcomesAlgorithms usedDeep
learn-
ing

NLP
method

Purpose of

NLPa
Condition
being
studied

External
model
valida-
tion

Journal
field

Source
text

Coun-
try

Publica-
tion
date

Paper
authors

Identification of
acute ischemic
stroke, features of
acute ischemic
stroke reports ver-
sus nonischemic
stroke reports

SVM, naïve Bayes,
decision tree, logis-
tic regression

NoMLDetection
or diagno-
sis

StrokeNoNonclin-
ical neu-
ro-
science

Radiolo-
gy re-
ports

United
States

Febru-
ary 28,
2019

Kim et
al [39]

Extraction of clini-
cal traits of pa-
tients with MS

N/ANoRule-
based

Clinical
disease
phenotyp-
ing or
severity

MSmNoMedical
infor-
matics

Clinical
notes,
letters,
and
problem
lists

United
States

October
22,
2013

Davis et
al [40]

Epilepsy psychi-
atric comorbidities

SVMNoRule-
based,
ML

Detection
or diagno-
sis

EpilepsyNoClinical
neurolo-
gy

SpeechUnited
States

January
22,
2020

Glauser
et al
[41]

Identification of
potential candi-
dates for surgical
intervention for pe-
diatric drug–resis-
tant epilepsy, per-
formance of classi-
fication algorithm
over time

SVM, naïve BayesNoMLPrognosis
or risk
stratifica-
tion, man-
agement or
therapy

EpilepsyNoMedical
infor-
matics

Clinical
notes

United
States

May 22,
2016

Cohen
et al
[42]

Localizing the
epileptogenic zone
(temporal vs extra-
temporal), postsur-
gical prognosis and
outcome

SVM, naïve Bayes,
random forest, logis-
tic regression, boost-
ing

NoRule-
based,
ML

Clinical
disease
phenotyp-
ing or
severity,
prognosis
or risk
stratifica-
tion

EpilepsyNoMedical
infor-
matics

Clinical
notes
and radi-
ology
reports

United
King-
dom

Febru-
ary 10,
2021

Alim-
Mar-
vasti et
al [43]

Detection of
Alzheimer disease
from speech, pre-

diction of MMSEn

SVM, naïve Bayes,
random forest, linear
regression, shallow
neural network,
ridge regression,
transformer

YesMLDetection
or diagno-
sis

Alzheimer
disease

NoNonclin-
ical neu-
ro-
science

SpeechCana-
da

April
27,
2021

Bal-
agopalan
et al
[44]

Detection of
Alzheimer disease
from speech

SVM, random for-
est, logistic regres-
sion, boosting, trans-
former

YesMLDetection
or diagno-
sis

Alzheimer
disease

NoNonclin-
ical neu-
ro-
science

SpeechSlove-
nia

June 14,
2021

Martinc
et al
[45]

Detection of
Alzheimer disease
from speech

Shallow neural net-
work, transformer

YesMLDetection
or diagno-
sis

Alzheimer
disease

NoClinical
neurolo-
gy

SpeechUnited
States

April 5,
2022

Liu et al
[46]

Identification of
MS phenotype,
percentages of
each phenotype

N/ANoRule-
based

Clinical
disease
phenotyp-
ing or
severity

MSNoPharma-
cy

Clinical
notes

United
States

Decem-
ber 22,
2016

Nelson
et al
[47]

Performance of
system to generate

ICHo treatment
plan

TransformerYesRule-
based,
ML

Manage-
ment or
therapy

StrokeYesNonclin-
ical neu-
ro-
science

Clinical
notes
and radi-
ology
reports

ChinaApril 8,
2022

Deng et
al [18]
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Early detection of
MS

Naïve BayesNoRule-
based,
ML

Detection
or diagno-
sis

MSNoMedical
infor-
matics

Clinical
notes

United
States

Febru-
ary 28,
2017

Chase et
al [48]

Epilepsy surgery
candidacy score

SVMNoMLPrognosis
or risk
stratifica-
tion, man-
agement or
therapy

EpilepsyNoClinical
neurolo-
gy

Clinical
notes

United
States

Novem-
ber 29,
2019

Wissel
et al
[49]

Classification of
ischemic stroke
subtypes

SVM, random for-
est, decision tree, lo-
gistic regression,
KNN, ensemble

NoRule-
based,
ML

Clinical
disease
phenotyp-
ing or
severity

StrokeNoMedical
infor-
matics

Clinical
notes

Tai-
wan

Febru-
ary 28,
2020

Sung et
al [50]

Prediction of poor
functional outcome
after acute is-
chemic stroke

Random forest, logis-
tic regression, trans-
former

YesMLPrognosis
or risk
stratifica-
tion

StrokeYesClinical
neurolo-
gy

Clinical
notes
and radi-
ology
reports

Tai-
wan

Novem-
ber 19,
2021

Sung et
al [20]

Expanded disabili-
ty status scale
score, expanded
disability status
scale subscore

Shallow neural net-
work, CNN, RNN

YesRule-
based
ML

Clinical
disease
phenotyp-
ing or
severity

MSNoMedical
infor-
matics

Clinical
notes

Cana-
da

October
20,
2020

Yang et
al [51]

Seizure freedom,
seizure frequency,
date of last seizure

TransformerYesMLClinical
disease
phenotyp-
ing or
severity

EpilepsyNoMedical
infor-
matics

Clinical
notes

United
States

Febru-
ary 22,
2022

Xie et al
[52]

Performance of

EMRp interface
that determines eli-
gibility for intra-
venous thrombolyt-
ic therapy

N/ANoRule-
based

Manage-
ment or
therapy

StrokeNoMedical
infor-
matics

Clinical
notes

Tai-
wan

Febru-
ary 8,
2018

Sung et
al [53]

Prediction of poor
functional outcome
after acute is-
chemic stroke

Logistic regression,
boosting, unspeci-
fied penalized logis-
tic regression
method, ensemble
(extra trees classifi-
er)

NoRule-
based,
ML

Prognosis
or risk
stratifica-
tion

StrokeNoMedical
infor-
matics

Clinical
notes
and radi-
ology
reports

Tai-
wan

Febru-
ary 17,
2022

Sung et
al [54]

Identification of
patients with MS,
severity of MS

Lasso regression,
stepwise regression

NoRule-
based,
ML

Detection
or diagno-
sis, clinical
disease
phenotyp-
ing or
severity

MSNoNonclin-
ical neu-
ro-
science

Clinical
notes
and radi-
ology
reports

United
States

Novem-
ber 11,
2013

Xia et al
[55]

Ischemic stroke
presence, location,
and acuity

Random forest, deci-
sion tree, logistic re-
gression, KNN,
RNN (LSTM)

YesMLDetection
or diagno-
sis, clinical
disease
phenotyp-
ing or
severity

StrokeYesNonclin-
ical neu-
ro-
science

Radiolo-
gy re-
ports

United
States

June 19,
2020

Ong et
al [22]
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Detection of
Alzheimer disease
from speech

Logistic regression,
shallow neural net-
work, CNN, RNN
(LSTM) transformer

YesMLDetection
or diagno-
sis

Alzheimer
disease

NoMedical
infor-
matics

SpeechIranMarch
9, 2021

Roshan-
zamir et
al [56]

Stroke subtypesRNNYesRule-
based,
ML

Clinical
disease
phenotyp-
ing or
severity

StrokeNoMedical
infor-
matics

Radiolo-
gy re-
ports

United
King-
dom

June 15,
2021

Ran-
nikmäe
et al
[57]

aNLP: natural language processing.
bML: machine learning.
cKNN: k-nearest neighbor.
dMLP: multilayer perceptron.
ePNES: psychogenic nonepileptic seizures.
fSVM: support vector machine.
gCNN: convolutional neural network.
hRNN: recurrent neural network.
iLSTM: long- and short-term memory network.
jN/A: Not applicable.
kTIA: transient ischemic attack.
lSUDEP: sudden unexpected death in epilepsy.
mMS: multiple sclerosis.
nMMSE: Mini-Mental Status Examination.
oICH: intracerebral hemorrhage.
pEMR: electronic medical record.

Table 2. Overall study characteristics: journal field, target of NLPa, and neurological condition.

Studies (n=41), n (%)Study characteristics

Condition

20 (49)Stroke

10 (24)Epilepsy

6 (15)Alzheimer disease

5 (12)Multiple sclerosis

Target of NLP

20 (49)Diagnosis

17 (42)Phenotyping

9 (22)Prognosis

4 (10)Therapy

Journal field

15 (37)Medical informatics

14 (34)Clinical neurology

7 (17)Nonclinical neuroscience

2 (5)Clinical medicine

3 (7)Otherb

aNLP: natural language processing.
bOther includes studies published in pharmacy, public health, and neuroradiology journals.
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Of the 41 studies, the language sources for NLP comprised
clinical notes (n=25, 61%); radiology reports (n=14, 34%);
speech (n=8, 20%); and other sources (n=2, 5%) that included
echocardiography reports, letters to referring providers, and
problem lists (Table 3). Of studies with speech as the language
source, half (4/8, 50%) analyzed transcripts only, whereas half

additionally incorporated acoustic features from the audio files
themselves. These transcripts and audio files were largely from
research datasets (eg, ADReSS and Pitt corpus). Two studies
analyzed transcripts from interviews with patients. In the study
including problem lists, it is unknown who reported the
problems.

Table 3. Overall study characteristics: NLPa methods and language sources.

Studies (n=41), n (%)Study characteristics

NLP method

23 (56)Rule-based

35 (85)Machine learning

Type of machine learning

31 (76)Conventional machine learning

16 (39)Deep learning

Source text

25 (61)Clinical notes

14 (34)Radiology reports

8 (20)Speech

2 (5)Otherb

aNLP: natural language processing.
bOther includes echocardiography reports, problem lists, and letters to referring providers.

Of the 41 studies, the most common source language for NLP
was English (n=39, 95%), Portuguese in 1 (2%) study, and
unspecified in the remaining 1 study (which was of Chinese
nationality, not multicentric). When patient population size was
recorded, the median was 1091 (IQR 188-4211). In studies that
did not specify a population size (n=4, 10%), the median number
of clinical or radiographic notes was 2172 (IQR
1155.5-22,018.0).

Papers were most commonly published in medical informatics
(n=15, 37%) journals, followed closely by clinical neurology

(n=14, 34%) journals. Seven (17%) studies were published in
nonclinical neuroscience journals; 2 (5%) in clinical medicine
journals; and 1 (2%) each in neuroradiology, public health, and
pharmacy journals. Studies were mostly conducted in the United
States (n=21, 51%), followed by Taiwan (n=4, 10%) and the
United Kingdom, Canada, and Australia (n=3, 7% each). Two
(5%) studies were conducted in China, and 1 (2%) study was
conducted in each of South Korea, Brazil, Iran, India, and
Slovenia (Figure 2).

Figure 2. Proportion of included studies (n=41), organized according to country of origin: the United States (n=21, 51%); Taiwan (n=4, 10%); the
United Kingdom, Canada, and Australia (n=3, 7% each); China (n=2, 5%); and South Korea, Brazil, Iran, India, and Slovenia (n=1, 2% each).
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Only 6 (15%) studies used strictly rule-based methods. The
majority of studies incorporated ML (n=35, 85%), either
exclusively (n=18, 44%) or in combination with rule-based
methods (n=17, 41%). Of the studies that used ML, most (n=31,
89%) used conventional ML methods, whereas 16 (46%) used
DL approaches (Table 3), and 12 (34%) used a combination of
both conventional ML and DL approaches.

As shown in Figure 3, the most frequently used conventional
ML algorithms were random forest (n=18, 58%), SVM (n=15,
48%), and logistic regression (n=15, 48%) models. Among

studies using DL approaches, transformers (n=10, 63%) were
the most commonly used algorithm, followed by convolutional
neural networks and RNNs (each n=7, 44%). The co-occurrence
of random forest and transformer algorithms was a prevalent
trend in research combining traditional ML with DL
methodologies (n=6, 15%). Studies that used DL only began to
appear in 2019 and later (Figure 4). The most often reported
performance metrics for ML models were precision or recall
(n=31, 76%), accuracy (n=22, 54%), area under the receiver
operating curve (n=20, 49%), and F1-score (n=19, 46%).

Figure 3. Relative proportions of machine learning algorithms used by the included NLP models. CNN: convolutional neural network; KNN: k-nearest
neighbor; LSTM: long- and short-term memory networks; MLP: multilayer perceptron; RNN: recurrent neural network; SVM: support vector machine.
*Other includes stepwise regression, ridge regression, an unspecified penalized regression method, latent Dirichlet allocation, and an unspecified neural
network with an unspecified number of layers.
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Figure 4. Number of studies applying natural language processing (NLP) to neurological conditions, stratified by NLP methodology and publication
year.

All 41 studies were model derivation studies, with only 7 (17%)
studies conducting additional external validation (Multimedia
Appendix 2). Furthermore, nearly all the study models were
developed retrospectively and were not applied in practice or
deployed in real-world environments, except for 3 studies. A
study by Li et al [16] developed a model for stroke detection
from imaging reports and then applied it to quantify the change
in stroke cases before and during the COVID-19 pandemic. A
second by Sung et al [53], also in the stroke category, evaluated
the deployment of a user-interface system to determine
intravenous thrombolysis eligibility built on the NLP model
devised. A third study by Wissel et al [49] created a model to
identify surgical resection candidates in adult patients with
epilepsy. The model was retrained prospectively to incorporate
new information.

Study Characteristics, Stratified by Condition
In studies focused on Alzheimer dementia, diagnosis and
detection was the only target of NLP (6/6, 100%). Disease
phenotyping and subtyping was the most common purpose of
NLP in stroke (10/20, 50%) and MS (4/5, 80%), whereas
prognostication was seen as often as diagnosis in epilepsy
studies (4/10, 40%; Figure S9 in Multimedia Appendix 2).
Studies that applied NLP for the purpose of disease treatment
or management were limited to stroke and epilepsy (Figure S9
in Multimedia Appendix 2).

Rule-based methods were used across all studies, except for
Alzheimer dementia, in which only ML approaches were used
(Figure S10 in Multimedia Appendix 2). Conventional ML
methods were used most often by Alzheimer dementia studies
(5/6, 83%), followed by stroke (16/20, 80%). Similarly, DL
methods were used predominantly by Alzheimer dementia (6/6,
100%) and stroke (8/20, 40%) studies (Figure S10 in Multimedia
Appendix 2). The transformer was the DL method used most
frequently in Alzheimer disease-related studies (5/6, 83%).

Discussion

Principal Findings
In this scoping review, 41 studies [13,16-22,25-57] that
investigated direct clinical applications of NLP to common
neurological disorders were identified. We found that the
majority of these studies focused on detection and diagnosis
and applied NLP to stroke, whereas we found no studies of NLP
that met our eligibility criteria in the clinical areas of migraine
or Parkinson disease. Methodologically, ML techniques were
used more often than rule-based methods, but a considerable
number of studies still relied on rule-based approaches in
combination with ML. While we observed that DL began to
emerge as a methodology for NLP in 2019, we found that the
transformer was the most commonly used DL algorithm overall.

At the time of writing, we believe our scoping review to be the
first to examine direct clinical NLP applications in common
neurological conditions. One prior review [58] investigated
NLP applications across the combined clinical specialties of
neurosurgery, spine surgery, and neurology, whereas another
evaluated the use of NLP in both psychiatry and clinical
neuroscience [59]. However, neither reviews analyzed studies
and NLP applications according to neurological condition. More
importantly, these reviews included many studies where NLP
was not applied for direct clinical use, instead aiming to perform
tasks such as characterizing patient cohorts [58], analyzing
information extraction, or determining causal inference between
concepts [59]. In contrast to this prior work, our review focused
on direct clinical applications of NLP.

Of note, we found no studies applying NLP to migraine or
Parkinson disease that met our eligibility criteria, thereby
highlighting a potential gap in NLP research focusing on these
disorders. This is perhaps unexpected, as the combined
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prevalence of migraine and Parkinson disease in the United
States exceeds that of both stroke and MS [12]. Two
explanations may account for this finding. One is that migraine
and Parkinson disease may rely less on radiographic imaging
studies and their reports to establish a diagnosis than stroke,
Alzheimer dementia, or MS. Given that many ML applications
in stroke have focused on neuroimaging [60], it is plausible that
stroke imaging reports could represent an important source of
data for NLP analyses. Indeed, the results of our review
demonstrate that stroke-related NLP studies made use of
radiographic reports as often as clinical notes for source text,
which could have resulted in a relatively higher number of NLP
studies within stroke than in other neurological conditions.

A second explanation may be that Alzheimer disease is a more
common cause of dementia worldwide than dementing
syndromes associated with Parkinson disease [61] and has in
turn garnered a larger proportion of research funding. National
Institutes of Health [62] research funding for Alzheimer
dementia was approximately US $3 billion in 2022, as compared
to US $259 million for Parkinson disease.

Our finding that NLP was most frequently applied to diagnostic
problems is expected, given that clinical decision support is a
common focus of artificial intelligence in medicine [63].
Historically, clinical decision support has also played an
important role in medical informatics by constituting the main
focus of archetypal systems such as MYCIN, INTERNIST-1,
and DXplain, which were first developed in the 1970s and 1980s
[64]. An alternative explanation is that the shortage of
neurologists that already exists worldwide [65] may have
potentially created a more urgent need for detection-oriented
NLP applications rather than NLP applications targeting
therapeutic management or prognostication.

Though diagnosis was the most common target of NLP overall,
we found that epilepsy-related studies focused as much on
prognostication as they did on diagnostic tasks. Given that
roughly one-third of all patients with epilepsy are drug resistant
[66], determining good surgical resection candidates as well as
predicting surgical outcomes are important objectives that have
been the focus of considerable research [67]. Consistent with
this, the epilepsy-related studies in the prognostication category
were directed toward identifying adult [49] and pediatric [42]
surgical candidates, predicting postsurgical outcomes [43], and
detecting risk factors for sudden unexpected death in epilepsy
[17].

With respect to the types of ML models we found in our review,
the relatively high proportion of conventional ML-based studies
using random forest and SVM (18/31, 58% and 15/31, 48%,
respectively) may have been related to the fact that SVM
together with random forest models generally represented the
dominant ML techniques prior to the advent of neural networks
[68] in diagnostic and clinical decision support applications
[63,69,70]. Despite its position as a potentially more basic
classification method than either SVM or random forest, logistic
regression was used as commonly as SVM in our analysis.

Furthermore, while we found that SVM and random forest
models were common in ML-based NLP approaches, the optimal
problems these models address are fundamentally different.

SVM generally works best as a binary classifier, whereas
random forest models are best used for classification tasks
involving multiple categories [71]. We found that the most
frequently used ML algorithms in stroke-related NLP studies
were random forest models. This matches the most frequent
target of NLP in stroke-related studies, which was disease
subtyping (a multiple classification problem).

Among DL algorithms, which are becoming increasingly
widespread in NLP [72], the transformer was the most
commonly used technique we identified. Unlike other word
embedding methods, a transformer processes a whole sequence
of text while preserving the context and meaning of words
[59,73]. Another significant advantage of transformers is that
they can use transfer learning, which first trains a model on a
learning task and then applies the model to a separate but closely
related task [58,74]. A prevalent example of transfer learning
in our results is Bidirectional Encoder Representations From
Transformers (BERT), a transformer model that was originally
trained using publicly available text from Wikipedia and
BookCorpus, a collection of free, unpublished novels consisting
of over 50 million sentences [75,76]. BERT can then be further
refined on a target training task and dataset before being passed
to a separate classification algorithm [28]. This is helpful in
situations where the target training set is small [28]. The high
frequency of Alzheimer disease–related NLP studies we found
using BERT is expected within this context, as these studies
often used the ADReSS speech dataset that consists of only 78
healthy controls and 78 patients with Alzheimer disease [28,45].

A particularly important finding of our review is that although
many of the NLP studies leveraged powerful and sophisticated
computational tools, most studies constitute research work rather
than reports of operationalization or evaluation in practical
settings. This is consistent with the current state of clinical NLP
outside of neurology, wherein real-world deployment of NLP
models continues to be limited [7,77,78].

One major obstacle to the implementation of NLP in clinical
practice is model generalizability [7]. Published NLP models
are usually internally validated rather than externally validated
[7,17], limiting the understanding of model accuracy beyond
the model’s original training environment [60]. We found this
to be true for the majority of studies identified in our review.
The lack of EMR standardization, including note formatting
[17,78], documentation styles, and radiographic report structures
across different medical institutions [7] and between clinicians,
may partly account for our observations. Furthermore, the
preponderance of English language as source text in NLP [79],
as demonstrated by the single study in our review using
non-English (Portuguese) text for analysis, suggests that the
generalizability of NLP within neurology is most likely limited
outside the English language.

Another major obstacle impeding the adoption of NLP tools is
the inherent lack of transparency of ML-based algorithms [60],
particularly artificial neural networks and other forms of DL
approaches [80]. These approaches have low transparency
because the computational methods they use to characterize
relationships between inputs and outputs are not readily
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intelligible to humans [7,78,80] acting as a black box that could
undermine clinicians’ trust in their performance.

The lack of well-defined regulatory guidelines and standards
overseeing the artificial intelligence space [81] has furthered
this mistrust. Compromise of personal health data, algorithmic
bias, and the question of how to attribute culpability when
diagnostic errors arise [82,83] are all ethical concerns that may
serve to explain the relative paucity of studies across all
neurological conditions that externally validated DL models.

Finally, the lack of portability of NLP applications into external
EMRs is another factor that has restricted the development of
NLP models to the research arena. External software modules
containing ML and DL models are challenging to integrate into
EMRs [1,84], as most implementations require a high level of
computing infrastructure and technical expertise that many
hospital information technology systems and personnel may
lack [84]. Recent work suggests few EMR-integrated
aggregative tools exist to display NLP findings to clinicians in
a digestible format [85]. To address these barriers, some authors
have advocated for collaborations between NLP researchers
and EMR companies [77].

Limitations and Future Work
Our scoping review has several limitations. First, we note that
the target of NLP was categorized according to author
experience and interpretation of the literature, which may have
underreported the application of the published NLP algorithms.
Second, due to the variable performance metrics and outcomes
across studies, we did not aggregate measurements of
performance in our review, and we therefore could not reliably
provide summary performance metrics for NLP models within
individual diseases, applications, or outcomes. Future work
should focus on individual outcomes within a clinical disorder

for a more exact appraisal of NLP model performance than this
review.

Third, this review only included studies based on common
neurological disorders, direct clinical applications of NLP, and
homogeneous clinical populations, which limited the number
of studies we identified. It is therefore important to note that
this review cannot be used to make definitive conclusions on
the state of NLP research across all neurological disorders.
Future efforts can be directed at characterizing the use of NLP
across less common neurological disorders as well as in
heterogeneous or ambiguously defined clinical populations. As
NLP technologies continue to advance, it will also be critically
important to evaluate studies that use newer transformers, such
as GPT3, which have better performance than BERT models
[59].

Conclusions
The abundance of unstructured text data in modern-day EMRs
as well as the emphasis in neurology on narrative history and
physical examination and heavy reliance on ancillary
information such as radiographic reports and speech, all create
an optimal use case for applying NLP for the diagnosis,
management, or prognostication of neurological disorders. To
our knowledge, this is the first attempt to systematically
characterize research efforts to investigate direct NLP
applications to common neurological conditions. Our review
reveals gaps in neurological NLP research, showing a relative
deficiency of NLP studies in subspecialties outside of stroke or
epilepsy, and underlines the need to actualize NLP models
outside of the research phase. Moreover, the current emphasis
of NLP on diagnostic tasks suggests that NLP may be
particularly useful in settings that lack access to neurological
expertise.
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Abstract

Background: Quantitative pupillometry is used in mild traumatic brain injury (mTBI) with changes in pupil reactivity noted
after blast injury, chronic mTBI, and sports-related concussion.

Objective: We evaluated the diagnostic capabilities of a smartphone-based digital pupillometer to differentiate patients with
mTBI in the emergency department from controls.

Methods: Adult patients diagnosed with acute mTBI with normal neuroimaging were evaluated in an emergency department
within 36 hours of injury (control group: healthy adults). The PupilScreen smartphone pupillometer was used to measure the
pupillary light reflex (PLR), and quantitative curve morphological parameters of the PLR were compared between mTBI and
healthy controls. To address the class imbalance in our sample, a synthetic minority oversampling technique was applied. All
possible combinations of PLR parameters produced by the smartphone pupillometer were then applied as features to 4 binary
classification machine learning algorithms: random forest, k-nearest neighbors, support vector machine, and logistic regression.
A 10-fold cross-validation technique stratified by cohort was used to produce accuracy, sensitivity, specificity, area under the
curve, and F1-score metrics for the classification of mTBI versus healthy participants.

Results: Of 12 patients with acute mTBI, 33% (4/12) were female (mean age 54.1, SD 22.2 years), and 58% (7/12) were White
with a median Glasgow Coma Scale (GCS) of 15. Of the 132 healthy patients, 67% (88/132) were female, with a mean age of
36 (SD 10.2) years and 64% (84/132) were White with a median GCS of 15. Significant differences were observed in PLR
recordings between healthy controls and patients with acute mTBI in the PLR parameters, that are (1) percent change (mean 34%,
SD 8.3% vs mean 26%, SD 7.9%; P<.001), (2) minimum pupillary diameter (mean 34.8, SD 6.1 pixels vs mean 29.7, SD 6.1
pixels; P=.004), (3) maximum pupillary diameter (mean 53.6, SD 12.4 pixels vs mean 40.9, SD 11.9 pixels; P<.001), and (4)
mean constriction velocity (mean 11.5, SD 5.0 pixels/second vs mean 6.8, SD 3.0 pixels/second; P<.001) between cohorts. After
the synthetic minority oversampling technique, both cohorts had a sample size of 132 recordings. The best-performing binary
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classification model was a random forest model using the PLR parameters of latency, percent change, maximum diameter,
minimum diameter, mean constriction velocity, and maximum constriction velocity as features. This model produced an overall
accuracy of 93.5%, sensitivity of 96.2%, specificity of 90.9%, area under the curve of 0.936, and F1-score of 93.7% for
differentiating between pupillary changes in mTBI and healthy participants. The absolute values are unable to be provided for
the performance percentages reported here due to the mechanism of 10-fold cross validation that was used to obtain them.

Conclusions: In this pilot study, quantitative smartphone pupillometry demonstrates the potential to be a useful tool in the future
diagnosis of acute mTBI.

(JMIR Neurotech 2024;3:e58398)   doi:10.2196/58398

KEYWORDS

smartphone pupillometry; pupillary light reflex; biomarkers; digital health; mild traumatic brain injury; concussion; machine
learning; artificial intelligence; AI; pupillary; pilot study; brain; brain injury; injury; diagnostic; pupillometer; neuroimaging;
diagnosis; artificial; mobile phone

Introduction

The pupillary light reflex (PLR) is a biomarker of neurological
disease demonstrated by the reaction of the pupil to a light
stimulus [1] that is commonly used in the management of
moderate to severe traumatic brain injury (TBI) [2,3]. The pupil
has both sympathetic and parasympathetic innervation that can
be affected by mild TBI (mTBI). Traditional PLR assessment
uses a manual penlight [4]; however, this method experiences
poor interrater reliability, is highly subjective, and is of little
use outside of moderate to severe TBI [4,5]. More recently,
quantitative measurement of the PLR has been used as a
biomarker for mTBI wherein the pupils are reactive but
abnormal in a manner that is not easily detectable to the human
eye [6]. Quantitative pupillometry is typically performed in the
intensive care unit or in neuro–intensive care unit settings with
United States Food and Drug Administration (FDA)–approved
equipment (NeurOptics). There has been recent interest in the
use of this same equipment for the diagnosis of concussion in
military personnel after the blast injury [7], to document
pupillary changes in those with chronic mTBI [8,9], and most
recently interest in the diagnosis of sports-related concussions
[10].

We developed a smartphone quantitative pupillometry app
(PupilScreen) that measures the PLR with greater accuracy and
higher interrater reliability than the manual penlight [11]. This
study aims to investigate the ability of the smartphone
pupillometry app to differentiate between participants with acute
mTBI (<36 hours after injury) and healthy controls.

Methods

Recruitment
We used a previously developed binocular smartphone
pupillometer (PupilScreen), which quantifies PLR curve
morphological parameters (Textbox 1) to examine differences
in pupillary reactivity between participants with acute mTBI
and healthy participants. The smartphone pupillometry app
requires a standard iPhone (Apple) camera without external
hardware and is connected to a cloud-based neural network
computer vision algorithm [11-15]. The app interface includes
an augmented reality screen overlay with eye holes that helps
to standardize the distance from the phone to the pupils for each
measurement [13]. Using this technique in previous studies, the
median error of pupil detection to the ground truth pupil
diameter in millimeters was 0.23 and the mean absolute relative
percent difference between sequential measurements was mean
5.8% (SD 3%) [12].

Patients with a clinical diagnosis of acute mTBI were enrolled
prospectively through availability sampling (as this was an
exploratory pilot study) in an emergency department after
presenting with head trauma and known mechanism of injury
less than 36 hours post injury from July 2022 to March 2023.
mTBI was defined according to the American College of
Rehabilitation Medicine (ACRM) criteria [16]. Participants
were excluded if they had any intracranial abnormalities on
neuroimaging. A separate cohort of healthy participants was
enrolled from hospital staff using availability sampling over the
same time period, which excluded those with self-reported
known neurological disease or recent history of TBI.

Textbox 1. Definitions of pupillary light reflex parameters.

Latency (seconds [s]): time from onset of light stimulus to initial pupillary constriction

Percent change (%): percent change in pupillary diameter from maximum to minimum

Minimum pupillary diameter (pixels [px]): minimum diameter after light stimulus

Maximum pupillary diameter (px): average resting diameter before light stimulus

Mean constriction velocity (px/s): the average speed at which the pupil constricts after the light stimulus until the minimum diameter is reached

Maximum constriction velocity (px/s): the maximum speed at which the pupil constricts after the light stimulus until the minimum diameter is reached

Mean dilation velocity (px/s): the average speed at which the pupil dilates after removal of the light stimulus
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Statistical Analysis
The PLR parameters were averaged for each subject between
the left and right eyes before analysis. Differences in PLR
parameters between cohorts were examined using a one-tailed
t test for independent means. A P value of <.05 was considered
statistically significant and a post hoc Bonferroni correction
was implemented to control the probability of committing a
type I error in the results. In addition, an analysis was performed
to demonstrate the classification ability of the PLR parameters
as feature inputs to machine learning models in the task of
differentiating between the healthy and mTBI cohorts. Due to
the significant class imbalance present, a synthetic minority
oversampling technique (SMOTE) [17] was used to oversample
the mTBI cohort PLR parameters to match the sample size of
the healthy cohort. All PLR parameters were analyzed using 4
separate binary classification machine learning models: random
forest, k-nearest neighbors, logistic regression, and support
vector machine [18]. A 10-fold cross-validation stratified by
cohort (which respects the independence of the training and
testing sets) was used to produce the following model
performance metrics, that are overall accuracy, sensitivity,
specificity, area under the curve (AUC), and F1-score, on the

unseen test data sets. We report the best-performing feature
combinations for each model type, based on AUC value, in
differentiating PLR curves of patients with mTBI from healthy
controls.

Ethical Considerations
This study was approved by the University of Washington
institutional review board (#8009), and an informed consent
process was followed for all participants as approved by the
institutional review board.

Results

Cohort Characteristics
A total of 12 patients diagnosed with mTBI and 132 healthy
participants were enrolled. Subject demographics are listed in
Table 1 and characteristics of their injury are listed in
Multimedia Appendix 1. Participants with acute mTBI were
studied for an average of 6.8 (range 0.5-29) hours after injury.
A total of 10 out of 12 in this sample had a loss of consciousness
(<30 minutes) and 10 out of 12 had posttraumatic amnesia.
Mechanisms of injury included motor vehicle collisions (n=2),
motorcycle collisions (n=2), falls (n=6), and assaults (n=2).

Table 1. Demographic characteristics.

mTBIa (n=12)Healthy (n=132)

54.1 (22.3)36 (10.2)Age (years), mean (SD)

Sex, n (%)

4 (33)88 (67)Female

Race or ethnicity, n (%)

7 (58)84 (64)White

1 (8)24 (18)Asian

2 (17)12 (9)Black

2 (17)8 (6)Hispanic

0 (0)4 (3)Other

15c15GCSb, median

amTBI: mild traumatic brain injury.
bGCS: Glasgow Coma Scale.
cOne subject had a GCS of 14.

Results of Statistical Analysis
Sample healthy and mTBI PLR curves produced by the
smartphone app are shown in Multimedia Appendix 2.
Significant differences were observed in PLR parameters of
minimum diameter (P=.004), percent change, maximum
diameter, and mean constriction velocity (P<.001; Table 2).

In the binary classification analysis, the SMOTE [17] produced
a sample size of 132 mTBI PLR recordings and 132 healthy

PLR recordings. The best-performing feature combinations
based on AUC value across the 4 model types are listed in Table
3. The best-performing model overall was random forest, with
the latency, percent change, minimum diameter, maximum
diameter, mean constriction velocity, and maximum constriction
velocity PLR parameters used as features. After stratified 10-fold
cross-validation, this model produced an overall accuracy of
93.5%, sensitivity of 96.2%, specificity of 90.9%, AUC of 0.936,
and F1-score of 93.7% for differentiating between PLR curves
of mTBI and healthy cohorts.
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Table 2. Smartphone pupillometry PLRa parameters in healthy and participants with mTBIb.

P valueAcute mTBI, mean (SD)Healthy, mean (SD)PLR parameters

.170.19 (0.12)0.21 (0.075)Latency (s)

<.00126 (7.9)34 (8.3)Percent change (%)

.00429.7 (6.1)34.8 (6.1)Minimum pupillary diameter (pixels)

<.00140.9 (11.9)53.6 (12.4)Maximum pupillary diameter (pixels)

<.0016.8 (3.0)11.5 (5.0)Mean constriction velocity (pixels/s)

.0638.7 (28.8)48.9 (20.5)Max constriction velocity (pixels/s)

.023.9 (2.1)5.4 (2.3)Mean dilation velocity (pixels/s)

aPLR: pupillary light reflex.
bmTBI: mild traumatic brain injury.

Table 3. Best performing binary classification modelsa.

F1-score, %AUCcSpecificity, %Sensitivity, %Accuracy, %PLRb parameter combinationModel

93.70.93690.996.293.5Latency, percent change, maximum
diameter, minimum diameter, mean
constriction velocity, and maximum
constriction velocity

RFd

91.90.91888.894.791.7Percent change, maximum diameter,
and minimum diameter

KNNe

86.70.86819186Percent change, minimum diameter,
mean constriction velocity, and mean
dilation velocity

SVMf

87.70.86477.495.586.3Maximum diameter, mean constriction
velocity, and mean dilation velocity

LRg

aThe absolute values are unable to be provided for the performance percentages reported here due to the mechanism of 10-fold cross-validation that
was used to obtain them.
bPLR: pupillary light reflex.
cAUC: area under the curve.
dRF: random forest.
eKNN: k-nearest neighbors.
fSVM: support vector machine.
gLR: logistic regression.

Discussion

Principal Findings
We present data comparing PLR parameters (Textbox 1) in a
cohort of patients with acute mTBI compared with healthy
controls. Our results indicate that statistically significant
differences can be detected between the mean PLR parameters
of patients with acute mTBI and healthy controls using
smartphone quantitative pupillometry. The percent change,
minimum diameter, maximum diameter, and mean constriction
velocity PLR parameters were significantly lower in the acute
mTBI cohort (Table 2). This reflects the functional rather than
structural abnormalities in neuronal homeostasis that are the
basis of mTBI pathophysiology [19]. After using SMOTE [17]
to resolve the class imbalance in our sample, we observed the
performance of 4 binary classification models for differentiating
between acute mTBI and healthy controls (Table 3), the best of
which produced accuracy, sensitivity, specificity, AUC, and

F1-score all above 90%, suggesting useful diagnostic
discrimination.

Comparison With Previous Work
There has been increased interest in PLR as a physiologic
biomarker of mTBI and in automated pupillometry. One study
of the NPi-200 commercial pupillometry device in patients with
blast-induced mTBI 15-45 days post injury found that mean
constriction velocity, latency, and mean dilation velocity were
slower than controls [7]. A follow-up study of 100 soldiers with
a concussion compared with 100 controls without a concussion
<72 hours post injury had similar findings [20]. Pupillary
changes have also been demonstrated in those with chronic
mTBI compared with controls >45 days and >1 year post injury
using automated quantitative pupillometry [8,9]. Most recently,
changes in pupillary reactivity were demonstrated in 98 youths
with a concussion compared with 134 controls at a median of
12 days post injury [10]. Smartphone apps have also been
studied previously in the diagnosis and management of
concussion and mTBI based on subjective clinical findings
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[21-23], although before this study, only 1 used pupillometry
[24].

Detailed Discussion of This Work
The smartphone pupillometer used in this study (PupilScreen)
has several advantages over more traditional devices. It is more
affordable and would be more accessible and practical in clinical
care settings outside of the hospital. It also has demonstrated
improved performance when compared with a proprietary
pupillary reactivity index [25] in the setting of severe TBI [14],
without effects from opioid medication use [15]. The smartphone
pupillometer in this study has also shown potential use in the
diagnosis of other neurological conditions such as in the
detection of acute preintervention ischemic stroke while a
proprietary pupil index [25] remained within the normal and
reactive range for all participants who had stroke [13]. Other
quantitative pupillometry technologies have been studied with
varying hardware and software features and requirements
[25-29], yet these technologies have not been studied as
extensively, do not support simultaneous binocular recording
of the PLR for dynamic assessment, and do not incorporate
machine learning to uncover nuanced relationships between
PLR parameters that may not be easily summarized in a
proprietary reactivity index [25].

In this study, we observed alterations of the autonomic nervous
system in mTBI compared with healthy controls (reduction in
maximum and minimum pupil diameters) and direct effects of
mTBI functional pathophysiology on cranial nerve III or its
postganglionic short ciliary nerve derivatives [1] (difference in
percent change and mean constriction velocity parameters).
These results correlate with previous studies in acute mTBI [20]
on the importance of the mean constriction velocity but not on
that of the mean dilation velocity, which may be due to
mechanical differences in the method of capture between other
quantitative pupillometers and the smartphone quantitative
pupillometer used in this study. A report of patients with chronic
mTBI demonstrated findings similar to our study (despite
evaluating chronic, rather than acute mTBI), finding significant
differences seen in the maximum resting pupillary diameter,
mean constriction velocity, maximum constriction velocity,
mean dilation velocity, and percent change PLR parameters [8].
Our study is unique in that it includes only participants within
36 hours after injury, unlike others for which recruitment
occurred up to several weeks after mTBI [7-10], and in that it
uses smartphone pupillometry as an accessible and practical
alternative to traditional quantitative pupillometry.

Using Multimedia Appendix 2 as an example, PLR curves
between a healthy control and a patient with acute mTBI look
subjectively similar to the naked eye. Despite this, a statistically
significant difference was found in the structural curve
morphology parameters listed above, indicating that using these
quantitative PLR parameters in combination (rather than each
one alone) may be necessary to detect subtle changes that may
be present in acute mTBI. The results of our binary classification
models support this, as when the PLR parameters are used in
combination with one another as features in a machine learning

binary classification model, we see a reasonable capability of
the model to differentiate between healthy and participants with
acute mTBI with more than 90% on all model performance
metrics. In addition, the important PLR parameters mirror those
from the literature and our individual parameter comparison
results. While preliminary, our results show promise in the usage
of a mobile smartphone pupillometer with advanced PLR
analysis to detect mTBI, which could have major implications
in fields such as athletics, prehospital care, the military, and
digital health in general. Although we did not evaluate the
diagnostic spectrum of mild, moderate, and severe TBI in this
pilot study, such work is ongoing using the smartphone
pupillometer studied here. In addition, we believe that there is
value in studying an objective tool for acute mTBI
differentiation from healthy controls as it has been demonstrated
in the literature that cases of acute mTBI are missed in the acute
care setting (such as the emergency department setting where
this study was conducted) [30,31].

Limitations
This study is limited by multiple factors, the first of which is
the small sample size of 12 patients with acute mTBI. We have
addressed this limitation through our use of SMOTE [17] to
equalize the sample size of both cohorts to 132 recordings for
binary classification machine learning analysis, nonetheless,
larger studies are required for external validation and there is a
risk of overfitting in the machine learning models when using
this approach. Another limitation of this approach is the
possibility that the sample of patients with acute mTBI is not
representative of the broader acute mTBI population. Using the
case descriptions in Multimedia Appendix 1, a heterogeneous
distribution of case types is seen with a wide range in time after
injury, a variety of mechanisms (falls, assaults, and motor
vehicle collisions), and findings on examination that are
qualifying for the ACRM definition of acute mTBI. Thus, we
believe that despite the small sample size, we have captured a
somewhat representative group of the broader emergency
department population with acute mTBI using availability
sampling. Another limitation is the mechanism of injury, which
was entirely mechanically induced, which may limit the
application of our findings to participants with blast-induced
injury in military settings [7]. Finally, our healthy cohort was
younger than the acute mTBI cohort, and thus known changes
in the PLR along the spectrum of aging [32] may have affected
our results.

Conclusions
In this pilot study, mobile pupillometry using a smartphone app
detected significant differences in PLR parameters and
performed with greater than 90% accuracy, sensitivity,
specificity, AUC, and F1-score on binary classification between
acute mTBI and healthy cohort. The technology studied in this
pilot study may have potential future use in hospital or
nonhospital settings to detect acute mTBI and concussion after
future validation to test the generalizability and stability of its
predictions on prospectively collected external testing data sets.
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Multimedia Appendix 1
Table – Injury Characteristics.
[DOCX File , 15 KB - neuro_v3i1e58398_app1.docx ]

Multimedia Appendix 2
Acute mTBI (A) and healthy subject (B) pupillary light reflex (PLR) curves. Top panel: PLR curve of right (red) and left (blue)
eyes. Bottom panel: Brightness of the recording as detected by the smartphone camera. Although some motion artifact is present
in both curves, the mTBI and healthy subject curves appear qualitatively similar with pupillary constriction during increased
brightness (due to the light stimulus from the smartphone camera flash) and pupillary re-dilation towards baseline diameter after
cessation of light stimulus. Brightness is a unitless measurement of the ambient brightness detected by the built-in iPhone camera
during the entire recording of the PLR. It is reported in APEX (Additive System of Photographic Exposure) which is an
iPhone-specific measurement; more details can be found in iPhone software documentation.
[PNG File , 401 KB - neuro_v3i1e58398_app2.png ]
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