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Abstract

Background: Recreational and leisure activities significantly contribute to the well-being of older adults, positively impacting
physical, cognitive, and mental health. However, limited mobility and cognitive decline often impede access to these activities,
particularly for individuals living with dementia. With the increasing availability of digital technologies, there is a rising interest
in using technology to deliver recreation and leisure activities for cognitively impaired individuals, acknowledging its potential
to provide diverse experiences. The COVID-19 pandemic further highlighted the need for virtual program delivery, especially
for individuals in long-term care settings, leading to the development of tools like the Dementia Isolation Toolkit aimed at
supporting compassionate isolation. To better support future implementations of the DIT, our rapid scoping review explores
evidence-based, technology-enabled recreation programs for older adults with cognitive impairments, which promote well-being.

Objective: We conducted a rapid scoping review of published peer-reviewed literature to answer the following research question:
What recreation and leisure programs or activities are being delivered using technology to adults living with dementia or another
form of cognitive impairment?

Methods: In total, 6 databases were searched by an Information Specialist. Single reviewers performed title or abstract review,
full-text screening, data extraction, and study characteristic summarization.

Results: A total of 92 documents representing 94 studies were identified. The review identified a variety of technology-enabled
delivery methods, including robots, gaming consoles, tablets, televisions, and computers, used to engage participants in recreational
and leisure activities. These technologies impacted mood, cognition, functional activity, and overall well-being among older
adults with cognitive impairments. Activities for socializing were the most common, leveraging technologies such as social robots
and virtual companions, while relaxation methods used virtual reality and digital reminiscence therapy. However, challenges
included technological complexity and potential distress during reminiscing activities, prompting recommendations for diversified
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research settings, and increased sample sizes to comprehensively understand technology's impact on leisure among this
demographic.

Conclusions: The findings suggest that technology-enabled recreational activities, such as socializing, relaxation and
self-awareness activities, music and dance, exergaming, and art, can positively impact the mood and overall well-being of older
adults with cognitive impairment. Future research should embrace a more inclusive approach, integrating design, diverse settings,
and a broader sample of older adults to develop technology-driven leisure activities tailored to their unique needs and promote
their effective use.

(JMIR Neurotech 2024;3:e53038)   doi:10.2196/53038

KEYWORDS

scoping review; review methods; review methodology; knowledge synthesis; synthesis; syntheses; scoping; rapid review; rapid
reviews; gerontology; geriatric; geriatrics; older adult; older adults; elder; elderly; older person; older people; ageing; aging;
gerontechnology; technology; recreation; recreational; leisure; hobby; hobbies; cognitive; MCI; Alzheimer; dementia; digital
health

Introduction

Background
Participating in recreational and leisure activities is a significant
contributor to the health and well-being of older adults [1,2].
Recreation and leisure activities include pursuits such as
dancing, walking, singing, or playing a musical instrument,
creative pastimes such as painting, pottery or woodworking,
and a wide variety of sports and games. Recreation and leisure
activities can be enjoyed alone or as part of a group and have
been shown to positively benefit older adults’ physical and
cognitive function and mental health [3].

In later life, a range of factors can reduce opportunities and
access to recreation and leisure pursuits including limited
mobility [4] and cognitive loss [5]. People living with dementia,
for example, face multiple barriers to continued participation
in recreation and leisure activities [6-8] due to progressive
cognitive decline. Consequently, limited access to recreation
and leisure activities negatively impacts people living with
dementia or other forms of cognitive impairment through lack
of socialization and stimulation [9,10].

Technology-Enabled Delivery of Recreation and
Leisure Activities
The use of technology to deliver recreation and leisure activities
for people living with impaired cognition, is becoming more
commonplace [11-15], with the recognition that technology can
facilitate in-person leisure as well as new forms of uniquely
digital experiences [16,17]. The rise in interest may reflect the
increasing availability of digital technologies, from tablets to
robots. Touchscreens, for instance, are particularly accessible
for people living with dementia as they provide immediate
feedback through touch [13]. As such, touchscreen tablets and
larger devices have been successfully used to deliver a variety
of recreation activities including games [13], reminiscing
activities [18,19], and music [20]. Touchscreens have also been
tested in the form of telepresence robots—simple, nonhumanoid
frames with a touchscreen that can be controlled to move on
flat surfaces [21]. Art is another popular target for technology
for people living with dementia including virtual reality [22]
and virtual reality tours of art galleries [23], making and viewing
art together on tablets [24,25] and art therapy [11,26]. More

energetic activities using motion-based game systems such as
the Wii [27] and Xbox [28] have been shown to not only
promote physical activity but also socialization and enjoyment
[29].

COVID-19 Heightened the Need for Web-Based
Program Delivery
The impact of a lack of recreation and leisure activities for
people living with cognitive disabilities was underscored during
the COVID-19 pandemic. Compromised cognitive functioning,
language, insight, and judgment associated with dementia impact
the ability of individuals to understand and appreciate the
necessity of isolation and to voluntarily comply with isolation
procedures [30]. The enforcement of isolation protocols to
prevent the transmission of the virus during the pandemic
drastically reduced recreation and leisure activities for people
living with dementia [31]. Long-term care (LTC) home staff
faced significant challenges in enforcing these protocols, leading
to ethical dilemmas and moral distress as they navigated the
balance between ensuring safety and promoting the well-being
of residents [31-33]. At this stage of the pandemic, outbreaks
of infectious diseases, including COVID-19, remain frequent
events in LTC homes, and there is an ongoing need for the
delivery of recreation opportunities for residents in isolation.

The Dementia Isolation Toolkit (DIT) was developed to support
compassionate, safe, and effective isolation of people living
with dementia in LTC settings and contains a series of tools
designed to provide ethical, legal, and clinical guidance to
support decision-making (34,35). It also includes methods and
approaches, including those that are technology enabled, to
support safe isolation for individuals living with cognitive
impairment, ensuring their dignity and well-being. Given the
wide variety of technologies and digital activities being
developed and tested for older adults living with impaired
cognition [12,15,36], we conducted a rapid scoping review to
identify technology-enabled recreation and leisure programs or
activities that are being delivered to older adults living with
cognitive impairment. Our aim was to identify programs with
supporting evidence of efficacy, which might complement the
DIT and facilitate its adoption and use in LTC. While reviews
exist focusing on technological interventions for individuals
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living with dementia, they often focus on loneliness rather than
other benefits of recreation [15].

Methods

Research Design
We conducted a rapid scoping review of published
peer-reviewed literature. A rapid review was selected to allow
us to generate timely results to inform the design of novel digital
interventions to deliver recreation and leisure activities for
people living with cognitive impairment [37]. However, we
combined rapid review methodology with scoping review
methodology to allow us to map the key issues or topics in a
research area where the literature has not been reviewed
comprehensively, and many different study designs may be
applicable [38,39]. This review was conducted following Arksey
and O’Malley’s [40] scoping review methodology and was
informed by the Cochrane guidance on rapid reviews [41]. The
review is reported following the PRISMA-ScR (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
extension for Scoping Reviews) framework [42] (see Multimedia
Appendix 1).

Step 1: Identifying the Research Question
Based on the knowledge and experience of the multidisciplinary
DIT team and familiarity with the literature on technology for
recreation and leisure for persons living with dementia, we
identified the following research question: What recreation and
leisure programs or activities are being delivered using
technology to adults living with dementia or another form of
cognitive impairment?

Step 2: Identifying Relevant Studies
On January 20, 2021, the following health and technology
databases were searched using a search strategy developed by
the research team, which included an Information Specialist
(JB):ACM Digital Library, CENTRAL (Ovid), CINAHL
(EBSCO), Embase (Ovid), IEEE Explore, and MEDLINE
(Ovid). No limitation was set on publication year. When

possible, searches were limited to include only English-language
publications and primary research articles.

The searches for CINAHL (EBSCO) and MEDLINE (Ovid)
were then updated on April 11, 2024 (see Multimedia Appendix
2), using the same search strategy. The decision for selecting
these 2 databases was done by analyzing included studies from
the original search to determine from which databases the studies
were retrieved. All the studies selected for inclusion were
retrieved from these 2 databases, and thus, to expedite the
process of the update, an informed decision was made to focus
updates on these 2 databases.

In addition to comprehensive database searching, the reference
lists of included studies were reviewed for relevant studies.

Stage 3: Study Selection
The study selection process consisted of 2 stages: first by
screening titles and abstracts; and second, by full-text screening.
To be eligible for inclusion at both stages, the article must have
reported on primary research that included an evaluation of a
technology and explored the experiences of older adults with
cognitive impairment using the technology. The technology
must have been used to deliver or enable recreation and leisure
programs. Inclusion and exclusion criteria are presented in Table
1.

Inclusion criteria were refined iteratively throughout each stage
of the screening process (title and abstract, full text), as
recommended by Levac et al [43]. First, all team members
screened the same subset of titles and abstracts to calibrate the
inclusion criteria. Then, one team member screened
approximately 25% of the titles and abstracts [41]. All team
members screened another subset of titles and abstracts to further
refine the inclusion criteria [41]. Finally, the remaining
approximately 75% of the titles and abstracts were divided
amongst 5 team members and individually screened.

All team members reviewed an initial subset of full texts to
calibrate our inclusion criteria. Twenty percent of the remaining
full-text articles were double reviewed, and discrepancies were
resolved through discussion.
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Table 1. Inclusion and exclusion criteria.

ExclusionInclusionCriteria

Languages other than EnglishEnglishLanguage of the studies

Study design •• Nonempirical study designs, such as reviews.Empirical research articles (eg, qualitative, randomized
controlled trials [RCTs], quasi-experimental designs,
observational studies [eg, cohort studies, case-control
studies), cross-sectional studies, longitudinal studies,
pre-post studies, mixed methods studies)– reporting on
an evaluation focused on older adults.

• Exclude conference abstracts.
• The evaluation should not solely be on the

technology or the caregivers.

• Must explore experiences of older adults.

Intervention •• The intervention should not focus on the as-
sessment, monitoring or detection of cognitive
impairment (if no game component or refer-
ence to experience).

Recreation and leisure (eg, arts-based interventions,
music, dance, games, exergaming, recreational activi-
ties, recreation, leisure activities, creative, games, ex-
ergaming, cognitive stimulation therapy, socializing,
and social interactions) “program” or “activity” for
adults aged 18 years or older with cognitive impairment.

Mode of delivery •• Technology that is used to monitor or detect
cognitive impairment.

Delivered using technology (eg, app, device, platforms,
robot).

• Technology must have leisure component.

Population •• The populations cannot be at risk for cognitive
impairment prevention (ie, older adults who
are not currently cognitively impaired).

Adults aged 50 years or older with cognitive impairment
including (but not limited to) dementia, Wernicke en-
cephalopathy, delirium, amnestic, Alzheimer disease,
organic brain disease or syndrome, benign senescent
forgetfulness, Binswanger, Korsakoff syndrome, stroke-
related cognitive impairment, Wilhelmsen-Lynch dis-
ease, aphasia, Benson syndrome, Huntington's disease,
mild cognitive impairment or disorder, Creutzfeldt Ja-
cob disease, or Parkinson disease

• Internet gaming disorder and addiction or al-
coholism-related disorders are excluded.

Stage 4: Charting the Data
Our data were charted and sorted according to areas of potential
relevance to the research questions including (1) country in
which the study was conducted; (2) study site; (3) type of
activity; (4) sample size; (5) population age range; (6) sex, if
available; (7) type of cognitive impairment; (8) research question
or aims; (9) study methods; (10) description of technology; (11)
outcomes or findings; and (12) feasibility, as described by study
authors. Double data extraction was conducted on the final set
of articles included in this review. Using Microsoft Excel, 2
research assistant team members charted the data. A third team
member reviewed the charting and coded the data extraction
into categories, where relevant.

We did not assess the quality of included studies, as quality
assessments are neither required nor appropriate for scoping
review methodology [39,43].

Stage 5: Summarizing and Reporting the Data
Data were organized numerically using descriptive statistics
and summarized using a narrative descriptive synthesis by
members of the research team that included gerontologists,
nurses, psychologists, and health researchers who provided their
perspectives on the findings [44]. The constructs considered for
review included age, patient population, technology used, and
outcomes.

Results

Overview
Our initial search yielded 4342 results, with a further 1061
results following a search update. Following deduplication,
3962 results were eligible for screening. The screening process
resulted in a total of 92 documents, 61 from the original
searches, and an additional 31 documents in the updated search.
See Figure 1 for the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) flow diagram [42].
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram.

Publication dates ranged from 2000 to 2022, with most (57/92,
62%) published between 2016 and 2021, which confirmed an
expected interest in the topic over time. Of these 92 documents,
1 paper [45] reported on 3 studies, resulting in a total of 88
studies for analysis. The studies were conducted in multiple
countries; mostly in the United States, Canada, and the United
Kingdom. Table S2 in Multimedia Appendix 3 outlines the key
characteristics of the included studies.

From these studies, 46 employed mixed methods (46/94, 49%),
28 were qualitative (28/94, 30%) and 21 were quantitative
(21/94, 22%). Among the qualitative studies, the most common
methods for data collection were interviews (9/28, 32%) [45-53]
and observational techniques (15/28, 54%)
[28,45,47,48,51,54-63]. Among the quantitative studies, the
most common methods of data collection consisted of
experimental data collection (16/21, 76%) [64-79] and surveys
or questionnaires (4/21, 19%) [74,80-82].

Participants Targeted
The sample sizes ranged from 1 [54,81,82] to 139 [84]
participants. In total, this review contained 2332 participants.

Ages ranged from 50 [85] to 104 [86] years. There were
inconsistencies with reporting patient demographics with 11
studies (11/94, 12%) failing to report age range or mean
[48,51,56,64,65,71,87-91]. Most studies indicated that they
recruited both male and female participants (65/94, 69%). The
primary clinical indicator for participants was dementia
(unspecified) (60/94, 64%), followed by Alzheimer disease
(9/94, 9.5%), and mild cognitive impairment (12/94, 13%). An
additional 8 studies (10/94, 11%) reported a mixed form of
dementia. Most participants were recruited from either
residential care (eg, assisted living) facilities (40/94, 42.5%),
day care (eg, senior) centers (19/94, 20%), home (13/94, 14%),
hospital inpatients (4/94, 4%) or other health care settings (2/94,
2%), and hospice (1/94, 1%). Only a few studies (14/94, 15%)
reported on the ethnicity of participants
[24,52,54,57,63,69,83,86,92-97], with mostly White participants
participating in all but 1 study [92]. Table S3 in Multimedia
Appendix 4 outlines the key characteristics of participants.
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Types of Leisure Activities
The types of technology-enabled recreational and leisure
activities for older adults with cognitive impairment were
categorized as follows: (1) socializing; (2) relaxation and
self-awareness; (3) music and dance; (4) exergaming; (5) video
or audio (nonmusic) entertainment; (6) playing games; and (7)
art. Socializing (46/94, 49%) [48,50,53,58,63,65,
66,70-72,76,80,82,84,86,91-94,96,98-114] was the most
commonly used recreational and leisure activity; 20 (20/94,
21%) studies used a combination of activities. Examples of how
socializing activities were fostered by technology included the
use of social (companion [111]) robots (eg, PARO
[82,86,102,106,109,110] and MARIO [99,103,113]), online pet
companions [101], social recognition watch [93], and Skype on
Wheels [87]. According to some articles, these technologies
facilitated social engagement as they recognized the gestures,
emotions, stimuli, and speech of older adults and engaged them
in active conversation [66,98,104,108].

The prevalence of socialization activities was followed by
relaxation and self-awareness activities (22/94, 22%) studies
[50,52,63-65,68,75,76,81,88,92,94,98,100,102,111,115-121].
These activities were facilitated through various means including
virtual reality [65,115,116], computer activities [94], digital life
storybooks [121], digital reminiscence therapy [75,111]). Table
S4 in Multimedia Appendix 5 outlines the category of activities
used in each study.

Types of Technological Delivery
There was a wide range of technology-enabled delivery methods.
Most technologies were commercially available. Table S5 in
Multimedia Appendix 6 outlines the origin of technology used
in each study indicating whether it was obtained commercially
(57/94, 61%), developed in-house (17/94, 18%), or a
combination of both (20/94, 23%). However, it is important to
note that the studies included in the analysis did not provide
sufficient information regarding the technological development
process.

In addition to robots, as previously mentioned, some studies
used game consoles, including those that accurately track the
participants' arm, hand, and body movement as well as facial
expressions [62,74,84,122,123]. Some interventions were rooted
in artificial intelligence to address social and emotional needs
by engaging with older adults with speech and touch
[46,65,80,98,99,113,124]. Some interventions used tablets
[24,49-51,58,60,75,83,85,100,101,105,114,116,119,124-128],
televisions [47,49,62,64,68,73,88,120,121], or computers
[61,87,90,92,94,95,98,115,116,129,130] to engage participants
in auditory and visual activities by stimulating cognition such
as through memory stimulation. Other studies used technologies
that facilitate simulated and interactive experiences with
near-eye displays or touchscreen displays to boost active
experience among older adults [85,100,119]. Some of the other
tablets included iPads or television sets for software-driven
visual interfaces or stimulation, such as creating self-portraits
o r  l i f e  s t o r i e s  f o r  o l d e r  a d u l t s
[52,58-60,81,87,92,93,96,109,121,131]. The tablets were used
to connect residents with friends and family [72,105]. Some
researchers delivered musical interventions using devices

familiar to older adults, including the radio or MP3 players
[45,57,66,87,99,120,131-134].

Outcomes of Interest
The majority of the articles reported positive outcomes (64/92,
69.5%), while a smaller portion had mixed results (28/92, 30%).
Table S6 in Multimedia Appendix 7 outlines the measurement
of the outcomes, and results. Positive outcome studies generally
relied on descriptions of participant experience, such as analysis
of interview conversations [50,59,91,135,136], questionnaires
[ 5 3 , 7 8 , 8 1 , 1 0 0 ]  a n d  o b s e r v a t i o n s
[48,49,54,66,68,72,85,97,102,115]. Studies with mixed
outcomes tended to rely on the use of measurement tools like
physiological tests [87] and observation
[47,51,82,94,96,103,124,126,129]. In this context,
positive/neutral/negative outcomes refer to the effectiveness
and acceptability of the intervention among participants,
reflecting both favorable and unfavorable responses.

Mood and Overall Well-Being
In total, 50 articles explored mood and overall well-being (50/94,
53%) [24,28,46-49,51,55,57,61,64,66-68,70,71,74,76,80-82,
84,86,87,89,95,96,98,100-102,106-112,114-116,118,119,123,124,126,129,132,137,138].
Platforms such as computers and tablets [87,96,100,119] that
helped to deliver virtual reality [115,116,118], exergames
[28,74,123], and robotic companions [66,70,71,84,98] overall
led to an improvement in mood and overall well-being, including
feelings of gratitude [128] and behavioral symptoms of dementia
[67]. Mood improvement was primarily measured via techniques
s u c h  a s  s u r v e y s  a n d  q u e s t i o n n a i r e s
[46,47,81,98,100,108,112,123] including physiological
assessment questionnaires [87] such as the UCLA loneliness
scale or Geriatric Depression scale [80]. Improvements in mood
were caused by either one or a combination of the following
technology-enabled activities: socializing [49,91], music and
dance [45,48,49,55,59,61,64,67,76,85,114,129,132], video or
audio (nonmusic) entertainment [47,57,101], and art [24,81,124].
Where companionship was a targeted outcome, engagement
with technology-enabled activities boosted feelings of
excitement and belonging while also decreased feelings of
depression, anxiety, and loneliness [80,107,108]. For example,
robots or online pets facilitated companionship [101,108].
Online companions were largely pets that provided comfort to
older adults that increased mood by allowing them to cuddle,
play, or pet them [82,86,106,107,109,110], or watching,
touching, or caring for the robot [71,101,138]. One study,
however, found an increase in anxiety in individuals with mild
cognitive impairment when using robotic pets as companions
[101], which was contrary to an intervention which used music
[76]. Games and activities with satisfying achievements for
completion encouraged high self-esteem and validation among
participants, especially when the challenges matched their
cognitive abilities [28,61,95,119,125,126] or allowed
autonomous art creation or viewing [24,51,124]. Another study
which used a mobile-reminiscing therapy app found no change
in mood [111].
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Cognitive Health
A total of 19 articles (19/94, 20%) explored improvements to
cognition facilitated through the use of exergames, tablet and
computer applications, and robots or music, which provided
stimulation [45-47,52,54-57,59,69,75,81,85,114,121,123,131,
132,139]. Technologies that engaged participants in physical
activity led to an outcome of improved cognitive health
(although this was not defined) as such leisure activities
stimulated motor skills often used in athletics [46,54,56].
Exergames were found to increase activity, only if the individual
had sufficient cognitive ability (eg, having mild dementia vs
severe) [123]. This was measured by a combination of usability
testing processes and semistructured interviews [46], or
observation combined with field notes ([54,54]. Opportunities
to facilitate memories, often facilitated through videos, photos,
and music encouraged expressive community engagement and
relationship-building through shared experiences
[45,47,52,55,57,59,75,85,132,139], provided beneficial cognitive
stimuli that helped with conversation, which in turn was believed
to be an indicator of improved cognitive health [81,121,131].

Functional Activity
Five articles (5/94, 5%) explored improvements to functioning
in daily life. These were facilitated through exercising (via
exergames [73,78]), robotic stimulation, and general time
management and behavioral strategies [57,73,98,112]. One
study classified improved functioning according to the World
Health Organization’s International Classification of
Functioning, Disability and Health [70]. One study found that
improved functioning included being able to maintain a schedule
[98] and reduce fidgeting [57]. The studies found negative, or
no improvement to sleep [57] and memory [93]. There are
contrary findings around physical activity through exergames,
with 2 studies suggesting negative or no improvement [73,131],
and 1 study found that virtual reality cycling improved physical
activity [122].

Discussion

The use of technology to deliver recreation and leisure activities
for people living with impaired cognition is becoming more
commonplace [11-15]. This rapid scoping review identifies and
describes the existing literature that describes technologies used
in recreation and leisure programs or activities that are delivered
to older adults living with cognitive impairment. Our review
found a diverse range of activities for older adults with cognitive
impairment aged 50 [85] to 104 [86] years old, related to (1)
socializing, (2) relaxation and self-awareness, (3) music and
dance, (4) exergaming, (5) video or audio (nonmusic)
entertainment, (6) playing games, and (7) art. Numerous
technologies supported these activities and programs including
the use of tablets [24,49-51,58,60,72,75,83,85,100,101,105,
114,116,119,124-128], televisions [47,49,52,58-60,62,64,68,73,
81,87,88,92,93,96,111,120,121,131], radio and MP3 players
[45,57,66,87,99,120,131,132,134] or computers
[6,7,61,87,90-92,94,95,98,115,116,129,130]. Touchscreen
displays were frequently used to engage older adults in their
activities [85,100,119], and some incorporated the use of
artificial intelligence [48,49,80]. The technologies focused on

obtaining various outcomes, including improving mood
[24,28,46-49,51,55,57,61,64,66-68,70,71,74,76,80-82,84,
86,87,89,95,96,98,100-102,106-112,114-116,118,119,123,124,126,129,132,137,138]
and cognitive stimulation [45-47,52,54-57,59,69,75,
81,85,114,121,123,131,132,139]. Many of the included studies
reported positive results, supporting the use and effectiveness
of some technologies to support recreation and leisure activities.
However, study results should be interpreted within the context
o f  t h e i r  s m a l l  s a m p l e  s i z e
[56,71,84,92,99-101,107,111,128,131,134] and the lack of
consideration for older adults with diverse cognitive and
physical disabilities [71,74,84,100].

Technology-Related Challenges Within the Context of
Recreation and Leisure Activities for Older Adults
Living With Cognitive Impairment
Across the articles, authors raised numerous concerns about the
use of technology to facilitate recreation and leisure activities
for older adults with cognitive impairment. For instance, authors
cautioned that technologies that focus on social interactions are
not replacements for human companionship [98,100]. In the
context of activities focused on reminiscing, some studies found
that older adults may experience distress while observing
photographs of deceased family members [99]. Technologies
that use multimodal interactions (ie, verbal and visual) may be
challenging and confusing for some people living with advanced
stages of dementia [49,113]. Likewise, older adults’ interest in,
and acceptance of Wii and exergames games varied based on
their cognitive health; people living with severe dementia were
more likely to reject the games; whereas people living with mild
dementia enjoyed exergaming but still needed supervision [123].
However, exergaming may not be cost-effective compared to
usual treatment [78].

With reminiscence therapy, the process of obtaining relevant
artifacts was time-consuming, and required commitment from
family members [83]. The use of gaming systems for older
adults also raised technical and ethical concerns for some
scholars [92,125], as they may perpetuate low self-esteem,
insecurity, and annoyance due to a lack of familiarity with the
technology and lack of digital literacy [125,126]. Lastly, radios
may experience reception issues (eg, static, signal dropping out)
that can bother the participants [134]. Beyond the challenges
with the technology itself, some studies reported that the
technology was expensive, which may present a barrier to
wide-spread implementation [78,82,84,109,138].

Many interventions discussed in this review, relied on costly
robots, such as PARO [82,86,102,106,109,110], MARIO
[99,103,113], and pet companions [101]. While pet companions
increase older adults’ mood, and robots allow them to care for
these robotic pets which in turn increases their enjoyment, robot
pets can also cause anxiety in individuals with mild cognitive
impairment [101]. These results suggest the need for future
research using similar interventions and may provide ideas for
testable hypotheses to further investigate the benefits of using
robots, including the target population and optimal timing during
the illness trajectory. In comparison to tablets, robots can be
prohibitively expensive for many older adults and care settings
[140-142]. However, robots can often be customized to older
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adults’ preferences [143,144] unlike other off-the-shelf
technologies, and thus might provide broader assistance in their
daily lives and overall quality of life. Exploring options to adapt
or customize lower-cost technologies like tablets to older adults’
preferences may support wider adoption. Moreover, future
studies are encouraged to provide more detailed information on
how customizations occurred, and the development process for
novel technologies. Engaging older adults with cognitive
impairments and other stakeholders, such as care partners and
health care providers, through a co-design design approach
could add value when developing new technologies to support
appropriate leisure and recreational activities. This approach
helps researchers and technology developers gain in-depth
insights into the preferences of different targeted populations
[145-147].

Facilitators to Using Technology Within the Context
of Recreation and Leisure Activities for Older Adults
Living With Cognitive Impairment
Although there were some challenges with the technologies,
many studies identified facilitators to their use across a variety
of settings, such as having technical support easily accessible
to older adults who were not familiar with technology [50]. In
addition, hosting the technology in friendly spaces (eg,
supportive environment, praise, and freedom to ask questions)
helped older adults feel welcome to learn about new
technologies [100]. A study found that the technical skills for
gaming activities such as Nintendo Wii were learned, retained,
and transferred to other leisure activities [54]. The availability
of both technical support and emotional support is critical for
older people who may not be as comfortable with the
technologies as younger people [100]. Moreover, it is important
for trainers to know how to communicate with and teach new
skills to people living with dementia [28]. For example, certain
types of prompts such as verbal prompts might not work well
with some older adults [28]. Therefore, trainers must be capable
and have a broad range of knowledge translation experience
and problem-solving abilities so that people living with dementia
will be optimally positioned to learn these new skills [28]. The
use of animation and video might also make training processes
more effective [81].

One study used robots that included infrared cameras that sent
alerts to caregivers and nursing stations in case of emergency,
and reminders for scheduled activities [112]. Robots with
humanlike characteristics, including variable expressions, helped
to engage older adults in recreational activities [108].

Researchers also found that older adults with mild cognitive
impairment engage more in computer-based applications if they
are provided in a gamified environment [50]. Computer systems
with wheels were convenient for residents living in LTC homes
as they could be transported from one room to another [92].
One system included a computer, webcam, microphone,
speakers, hand or foot pedal for exercise and therapy, joystick,
headset, and adjustable height unit for residents to allow play
when standing or sitting [92]. Other computer systems could
be set up using the existing television in resident rooms [121].
When feasible, setting up a new telephone line specifically for
technology can help overcome connectivity and reception issues

[134]. It is important to note that when computer activities match
the interests and cognitive abilities of residents living with
dementia in LTC homes, there is an increase in participation
and satisfaction [61]. Verbal encouragement from LTC staff
can also facilitate the use of technology [45]. Additionally,
technology can help support staff deliver reminiscence therapy
without additional training [111].

Few studies in our review reported information about participant
ethnicity and comorbid conditions. Studies have shown that the
digital divide (ie, the gap between those who have access,
knowledge and use of technology, and those who do not [148])
is most pronounced for some racial and ethnic groups [149-151]
and older adults [152]. Relying on technology to facilitate
connection and belonging, and socialization and enjoyment
between residents or with their families, may, therefore,
exacerbate existing disparities in the well-being of older adults
[153]. To address these disparities and promote inclusivity,
research should explore the experiences of diverse older adults
when using technology to support social and recreational leisure
activities. Other barriers to be overcome include cognition [154],
physical ability [154], low research literacy [155], lack of
cultural competency [155], and speech- and language barriers
[154,155]. These barriers occur in dementia research more
broadly and have led to the underrepresentation of certain groups
in research [155], limiting the generalizability of existing
research.

To overcome these barriers, collaboration with community
partners can be instrumental in ensuring inclusive recruitment
and data collection strategies [154,156]. Such efforts can
increase the representativeness of research samples and improve
the translation of research findings to diverse populations and
settings, into more effective and equitable technology
interventions for engaging older adults in social and recreational
leisure activities.

Methodological Recommendations for Researchers
The following 3 recommendations for scientists conducting
research in this domain emerged from our analysis of the
included articles:

1. Conduct research across settings: Most studies focused on
a single setting, but it is suggested that research should be
conducted in multiple settings such as home, community
care, and health care institutions, because outcomes may
vary due to the specific characteristics of each setting
[45,99,115]. In addition, including individuals at various
stages of cognitive impairment is crucial, as outcomes may
vary between early-stage and advanced cognitive
impairment [47,115,116]. In fact, few studies recommend
prioritizing people with more advanced stages (moderate
to severe) of cognitive impairment since there are severe
challenges in managing symptoms and improving quality
of life [106,115,116].

2. Increase the sample size and representation: Authors
emphasized the need to increase sample size, which would
allow greater demographic diversity in the research of older
adults using technology for leisure and recreation
[56,71,84,92,99-101,107,111,128,131,134]. This would
include people with various types of disabilities
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[71,74,84,100], and a greater number of male participants
to gain a better understanding of gender in technology
adoption [75]. Furthermore, some scholars have argued for
an increase in caregiver samples to help explore how
technologies could support them in their caregiving duties
and help alleviate their stress, which is often overlooked
within existing research [59,100,118].

3. Increase the use of experimental study design: Many studies
recommended the use of different research methods,
particularly experimental designs that use a control group
to understand potential confounding factors
[46,82,86,92,99,101,104,129,132]. This will help address
questions about the validity of clinical outcomes [101,132].
Additionally, obtaining time series data on adoption and
efficacy of technology will also help obtain deeper insights
[46,56,57,96,108,118].

This review demonstrates that many existing technologies can
support the socialization, relaxation, self-awareness and
meaningful recreation and leisure activities of older adults,
including playing games and creating art. Existing research has
highlighted that engaging older adults living with dementia in
meaningful activities can improve their quality of life [157-159].
An existing review explored the use of technology to promote
engagement in adults with dementia living in residential aged
care [159], whereas another explored technological interventions
such as robots, tablets, and computers in the context of
loneliness among individuals with dementia [15]. Our review
expands on this existing knowledge by incorporating the diverse
settings in which older adults engage in social activities,
including hospices and community settings. However, a previous
review noted that the benefits of engagement are not caused by
the technologies themselves but rather in the opportunities the
technologies provided to facilitate connection and belonging
[159]. Therefore, more research is needed to understand the
impact and benefits of technologies to facilitate connection and
belonging, in comparison to standard care. Thus, a critical lesson
from this review is the need to explore the existing barriers to
connection and belonging, as well as the unique functions that
technology can provide compared to those that can be provided
by individuals such as formal and informal care partners.

In summary, our review confirms the growing interest among
researchers in integrating technology into recreational and
leisure activities for older adults, with most articles being
published in the last 7 years. However, while there is interest
in using technologies, there is a lack of large-scale, experimental
studies, over time. Several factors may contribute to the limited

experimental research in this area including the upfront costs
of technology for older adults [160], older adults’ training needs
[161], and concerns regarding the long-term sustainability of
these technology-enabled programs [162,163]. Implementation
research is crucial to the scalability of technologies that might
support adoption and sustainability [164,165]; its scarcity is
notable in the existing body of literature. Additionally, the
literature rarely described technologies being used across
multiple care settings or the progression of diseases or
conditions. Future research with different stages and settings
will provide more insight into the diverse perspectives and
values that participants bring when considering leisure activities
[51].

Limitations
This study had several limitations. First, we only included
English-language literature and excluded gray literature and
conference abstracts, which may present preliminary findings.
Consequently, it is possible that relevant literature was not
captured by our search. Lastly, while we ran comprehensive
electronic searches and adhered to an established methodology
[40], the nature of a rapid scoping review including only
1-screener may have resulted in missed articles.

Conclusions
Technology has continued to emerge as a way to help engage
older adults living with dementia in social and recreational
leisure activities. Despite the availability of various digital
technologies and their evaluation studies in the context of older
adults, the literature is very sparse regarding how and how well
they are developed, adopted, sustained, and evaluated. Current
studies focus on the use of tablets, robots, televisions, computers,
exergames, and radios, but little is known about the acceptability
and feasibility of them in diverse settings, or about their clinical
effectiveness. Moreover, included articles lack discussion on
the adaptation of these technologies for older adults living with
cognitive impairment and various forms of disabilities. Future
research should take a more inclusive approach, incorporating
design and development (ie, co-design approaches), testing, and
implementation of technologies in diverse settings including
home, community care, and health care institutions, and include
a more diverse sample of older adults. By considering the
specific needs and challenges faced by older adults living with
cognitive impairment and other types of disabilities, researchers
can develop technology-enabled recreation and leisure activities
that are better suited to their unique requirements and promote
their effective use in different contexts.
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Abstract

Background: The COVID-19 pandemic transformed neurological care by both requiring digital health modalities to reach
patients and profoundly lowering barriers to digital health adoption. This combination of factors has given rise to a distinctive,
emerging care model in neurology characterized by new technologies, care arrangements, and uncertainties. As the pandemic
transitions to an endemic, there is a need to characterize the current and future states of this unique period in neurology.

Objective: We sought to describe the current state of the pandemic- and postpandemic-related changes in neurological care and
offer a view of the possible future directions of the field.

Methods: We reviewed several themes across the “new digital normal” in neurology, including trends in technology adoption,
barriers to technology access, newly available telehealth services, unresolved questions, and an outlook on the future of digital
neurology.

Results: In this new era of neurological care, we emphasize that synchronous audio-video telehealth remains the predominant
form of digital interaction between neurologists and patients, mainly due to pandemic-related regulatory changes and the preexisting,
steady adoption of video platforms in the prepandemic era. We also identify a persistent digital divide, with audio-only telehealth
remaining a necessity for preserving care access. Asynchronous telehealth methods and services, including care coordination,
interprofessional consultations, remote patient monitoring, and teletreatment are becoming increasingly important for neurological
care. Finally, we identify several unanswered questions regarding the future of this “new normal,” including the lasting effects
of emergency regulatory changes, the value proposition of telehealth, the future of telehealth reimbursement in neurology, as
well as privacy considerations and trade-offs in asynchronous neurological care models.

Conclusions: The COVID-19 pandemic has ushered in an era of digital adoption and innovation in neurological care, characterized
by novel care models, services, and technologies, as well as numerous unresolved questions regarding the future.

(JMIR Neurotech 2024;3:e46736)   doi:10.2196/46736
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Introduction

The COVID-19 public health emergency significantly
accelerated the adoption of digital technology in neurological
care [1] and established synchronous and asynchronous
telehealth as widely accepted care modalities across multiple
subspecialties of neurology [2-7]. While historic, this
acceleration also built upon the momentum generated by 2
decades of growing digital technology and service adoption in
neurology. This momentum included the advent of telestroke
[8], the establishment of video telehealth care programs in rural
areas of the United States [9], and the growing use of
smartphones and wearable devices in neurological care
paradigms and research [10]. Furthermore, broad telehealth
trends that led up to the COVID-19 pandemic, such as the shift
of telehealth from acute to chronic neurological conditions,
migration of care toward mobile device platforms, and
increasing focus on patient convenience and value [11], also
likely facilitated the shift to digital and web-based neurological
care in 2020.

Approximately 3 years after the start of the COVID-19 pandemic
in the United States, the field of neurology has transitioned to
a new digital environment, encompassing new and emerging
care models and services, novel technologies, as well as new
and persistent challenges and open questions. While this new
digital landscape is wide-ranging, complex, and often subject
to rapid changes, a comprehensive appraisal of the current state
of care can nonetheless be helpful in establishing policy
priorities and identifying opportunities to improve access to
digital technologies for patients with neurological conditions.
In this review, we sought to describe the digital state of
neurology care in the COVID-19 and post–COVID-19 eras,
placing emphasis on dominant forms of digital neurological
care, emerging technology trends and technology-enabled digital
neurology services, barriers to access to digital care, telehealth
in education, as well as ongoing challenges and uncertainties
facing the future.

Themes

Video Telehealth Is the New Dominant Digital Care
Modality

Comparisons Between Pre–COVID-19 and Late
Pandemic Use
The COVID-19 era saw synchronous audio-video (or simply
“video”) telehealth fundamentally shift away from a novelty
technology garnering little interest among most practicing
neurologists to an acceptable alternative to in-person face-to-face
encounters and other traditional neurological care modalities
for patients and providers [12]. In late 2021, the use of video
telehealth in multiple medical specialties remained
approximately 38 times higher in the United States than before
the onset of the pandemic and comprised 13% of neurology
outpatient visit claims nationwide [13]. On the health system
level, the use may be even higher, with certain rural health
systems recently noting that nearly 35% of ambulatory
neurology visits were conducted through telehealth. For many

neurologists nationwide, synchronous video telehealth remains
the preferred mode of telehealth delivery, followed by
audio-only telehealth [14]. Compared to the relatively infrequent
use of video telehealth in neurology before 2020, these findings
all underline the important place video telehealth now occupies
in modern neurological care.

Factors Driving the Rise and Predominance of Video
Insurance payment incentives were important in driving video
telehealth’s initial rise to prominence in neurology during the
pandemic, especially in the United States. In declaring the
COVID-19 public health emergency, the Centers for Medicare
and Medicaid Services (CMS), the nation’s largest insurance
payor, suspended multiple geographic restrictions for video
telehealth insurance reimbursement that had previously limited
patients from being evaluated over video telehealth in their
homes and outside of designated rural areas, effectively limiting
uptake and contributing to the “novelty” status of video
telehealth before the pandemic [15]. The lifting of such
restrictions early on in the pandemic and their continuing
suspension in later stages of the pandemic have incentivized
patients, providers, practices, and health care systems to widely
use video telehealth.

Additional factors that have contributed to the continued
dominance of video telehealth in neurology include high and
steadily increasing rates of smartphone ownership across the
world [16] and the liberal allowance of several platforms for
telehealth, particularly in the United States. More specifically,
enforcement discretion of HIPAA (Health Insurance Portability
Accountability Act) regulations by the US Department of Health
and Human Services during the public health emergency allowed
non–HIPAA-compliant technology platforms to be widely used
for video telehealth purposes [17].

Patients and neurologists have reported positive experiences
with video telehealth, which have likely preserved telehealth’s
dominance as a digital offering in our current era. Video
telehealth is perceived as convenient [18,19] and rated as highly
satisfactory among patients [2,20]. Similarly, notwithstanding
some reports suggesting that providers have had greater
challenges than patients with video telehealth encounters [2],
neurologists have generally found satisfaction, positive
experience [21,22], and effectiveness [23] with video telehealth
visits.

Elements of the Neurological Examination
Although the feasibility and accuracy of a detailed, video-based
neurological examination have been the subject of debate among
the neurological community, the pandemic era mandated the
need for remote neurological examinations and accelerated the
adoption of additional examination methodologies for
performing the digital neurological examination beyond video
technology. These phenomena build upon previous work
demonstrating that video-based neurological examinations can
accurately be used to administer standardized disease-specific
examinations, such as the Unified Parkinson Disease Rating
Scale (UPDRS) for Parkinson disease [24], the Unified
Huntington Disease Rating Scale [25], or the Montreal Cognitive
Assessment in individuals with movement disorders [26].
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Additional examples include digital versions of the Expanded
Disability Severity Scale in multiple sclerosis [27], the Multiple
Sclerosis Performance Test [28], or the Myasthenia Gravis
TeleScore [29].

While recent work has suggested not only that many elements
of the neurological examination could be completed over video
telehealth, additional studies have suggested that patients
themselves may be assessed through functional evaluation (eg,
performing exercises or shifting from sitting to standing
position), serve as their own examiners, as well as use household
items such as flashlights, toothpicks, or weights to aid
neurological assessments [30,31]. More importantly, most
elements that are most useful for neurological decision-making
can be performed over a video connection [23].

Despite this, several elements of the neurological examination
remain challenging to routinely perform over video telehealth,
such as fundoscopy, vestibular testing, visual field examination,
and muscle tone. Among these elements, televestibular and
fundoscopy assessment technologies currently exist but typically
require additional hardware beyond video-enabled smartphones,
thereby creating persistent barriers to use for most patients and
providers. Although these shortcomings do exist, they
nonetheless represent fertile ground for future technological
innovations to address the objective of completing entirely
digital neurological examinations. Indeed, neurologist surveys
suggest that devices to perform gait, sensory, fundoscopic,
oculomotor, and strength assessments are highly desirable to
complement the video examination [32].

Perceptions of the adequacy of the digital neurological
examination may also vary according to subspecialty. In a recent
survey of academic neurologists, neuromuscular specialists
expressed dissatisfaction with performing the neurological
examination over video, mainly due to an inability to assess
reflexes and tone. By contrast, movement disorder specialists
expressed concern over inadequate internet bandwidth for
bradykinesia assessments as well as unwieldy camera angles
that precluded in-depth evaluation of gait [33].

While these perceptions express some sense of dissatisfaction,
they nonetheless reflect that different neurological subspecialties
tend to emphasize different components of the neurological
examination (and, by extension, the remote neurological
examination) more than others. Accordingly, numerous
subspecialty-oriented teleneurology examination guides have
been developed since the onset of the COVID-19 pandemic,

which are now available through multiple web sources, including
professional society web pages [34].

These guides emphasize examination elements that differ
according to subspecialty. For instance, neuromuscular
examination guides suggest using validated scales such as the
Myasthenia Gravis Activities of Daily Living or the Revised
Amyotrophic Lateral Sclerosis Functional Rating scales,
assessing upper extremity tone by holding the patient’s arms
out and shaking them to assess for rigidity, determining motor
strength by observing limb movement against gravity, and
evaluating plantar responses by asking the patient to stimulate
the plantar surface of their feet with a pen [35]. By contrast,
guides for neurovestibular or neuro-ophthalmic disorders tend
to emphasize the oculomotor examination and vestibular or
visual field testing [36].

Evidence Supporting Teleneurology
In the decade leading up to the COVID-19 pandemic, a
multitude of studies had already investigated the quality impacts
of specific teleneurology care, including user satisfaction and
diagnostic accuracy, as well as impacts on clinical outcomes,
costs, and care access across multiple neurological conditions
encompassing dementia, multiple sclerosis, movement disorders,
headache disorders, inpatient neurology, traumatic brain injury,
neuromuscular disorders, and epilepsy (Table 1). Randomized
controlled and inferiority trial evidence generally suggests that
teleneurology is associated with positive impacts on clinical
outcomes, diagnostic accuracy, and physician or patient
satisfaction. Studies carried out in the post–COVID-19 era have
demonstrated similar findings with respect to satisfaction [37].
Improvements in cost-savings and care access were noted in
mainly small or nonrandomized studies, although there were
notably absent studies suggesting the latter in dementia,
headache, multiple sclerosis, and neuromuscular disorders
(Table 1) [38].

At the time of writing, nearly 50 US institution–sponsored
telehealth trials in prevalent neurological disorders, including
Parkinson disease, stroke, multiple sclerosis, epilepsy,
Alzheimer dementia, and headache disorders, are either active
or currently recruiting participants. Although a small minority
of these initiatives are not yet recruiting, these studies include
both observational and interventional trials to evaluate a range
of outcomes, including but not limited to feasibility, comparative
effectiveness, cost-effectiveness, and safety measures
(Multimedia Appendix 1).
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Table 1. Summary of available data across multiple quality measures of teleneurology by specialty. The table represents extant evidence on telehealth
in neurology as of early 2020. Reproduced with permission from Wolters Kluwer from Hatcher-Martin et al [38].

Cost savings (patient
and health system use)

Improved out-
comes

Diagnostic accura-
cy

Improved access to
care

Patient and physician
satisfaction

+++++b++aConcussion or traumatic brain injury

++++—c++Dementia

+++—++Epilepsy

+++++—++Headache

++++++++Movement disorders

+++++—++Multiple sclerosis

++——++Neuromuscular

++++—Inpatient general neurology

a+: small case series, indirect measurement.
b++: randomized controlled trial or inferiority trial, direct measure.
cNo studies.

Factors Limiting Digital Neurology Uptake

Persistent, Widespread Disparities and Barriers
Several digital and socioeconomic inequalities in the US health
care system clearly preceded the COVID-19 crisis that persisted
throughout the early and late phases of the pandemic and
profoundly impacted the adoption of digital care modalities
during the public health emergency. Indeed, telehealth was less
readily adopted among low-income, minority,
non–English-speaking, and governmentally insured neurological
populations during the early and middle stages of the pandemic
[4,39,40], and access to audio-video telehealth has continued
to demonstrate limited uptake among Black and governmentally
insured populations in later pandemic stages [41].

Defined as “the gap existing between individuals who have
access to modern information and communication technology
and those who lack access” [42], the “digital divide” has been
cited as a primary driving factor for asymmetrical digital
neurology service adoption in the COVID-19 era. This
perception has also persisted among providers. More than 2
years after the beginning of the COVID-19 pandemic, this
“digital divide” continues to serve as the largest barrier to
offering telehealth services among US providers [14]. Possible
causes driving these asymmetries may include digital literacy,
a lack of non–English-language interfaces, the prohibitive
economics of steady digital access, limited access to broadband
internet, inadequate cellular data plan coverages, and potentially
cultural factors.

It remains important to note that many of the disparities that
have been observed in the uptake of telehealth in neurology are
not unique to digitally enabled care platforms. Rather, they tend
to closely mirror existing sociodemographic disparities in access
to neurological care that have been long observed in
“nontelehealth” neurological care. Indeed, socioecological
factors have been identified by numerous stakeholders as driving
the vast majority of health disparities in neurological care [43].
Analyses of specific neurological conditions also reflect
sociodemographic disparities in care. For example, Black and

Hispanic patients are less likely to see outpatient neurologists
across a range of neurological disorders, including headache
disorders, Parkinson disease, stroke, and epilepsy [44].
Similarly, Black patients have lower odds of receiving
thrombolytic therapy for acute ischemic stroke nationwide than
White patients. Rural patients have similarly decreased odds
compared to urban patients, as do patients living in ZIP codes
with median incomes under US $64,000 in comparison to those
living in wealthier ZIP codes [45]. A number of additional
analyses have emphasized racial or sex-based disparities in
multiple neurological disorders and treatments, including deep
brain stimulation and general treatment for Parkinson disease,
temporal lobe resection for medication-refractory epilepsy,
evaluation and management of neuro-oncologic conditions, and
treatment of acute stroke [46-51].

The Critical Importance of Audio-Only Telehealth
In light of the digital divide and asymmetric digital neurology
adoption, audio-only services remain centrally important to the
new digital normal in neurology. Synchronous, audio-only
telehealth has played an important role as an alternative to
synchronous audio-visual telehealth since the outset of the
COVID-19 pandemic in 2020. This role has persisted through
multiple phases of the pandemic, particularly for populations
lacking regular access to broadband internet and cellular data
connectivity, including older people, disabled people, or socially
disadvantaged groups among both nonneurological [52,53] and
neurological populations [39,40,54].

Although single-center evidence suggests that usage of telephone
services may have steadily decreased in academic centers in
later stages of the pandemic [55], a primary driving force toward
use of audio-only telehealth services throughout the pandemic
was CMS’decision in March 2020 to temporarily add American
Medical Association (AMA) Current Procedural Terminology
(CPT) telephone-only evaluation and management billing codes
to a list of billable telehealth services for the duration of the
public health emergency [15].

Several factors underscore the important role of audio-only
telehealth currently plays and will likely continue to play in

JMIR Neurotech 2024 | vol. 3 | e46736 | p.24https://neuro.jmir.org/2024/1/e46736
(page number not for citation purposes)

Kummer & BusisJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


care delivery during the pandemic era and beyond. At the time
of writing, the US government has upheld the declaration of
the COVID-19 public health emergency, thereby guaranteeing
that telephone services will continue to be treated as billable
telehealth services through the calendar year 2023. Furthermore,
audio-only services continue to provide a crucial access point
to health care. Indeed, a significant proportion of providers
continue to use audio-only telehealth, with many reporting this
to be second only to synchronous audio-video telehealth [14].
Recognizing the importance of audio-only telehealth,
professional societies such as the American Academy of
Neurology have called on CMS and the US Congress to make
reimbursement rates for audio-only services permanent after
the cessation of the federally declared COVID-19 public health
emergency.

The Increasing Importance of Asynchronous
Telehealth

Asynchronous Teleneurology
Synchronous telehealth currently occupies a central position in
the universe of today’s available complement of digital
neurology services. By comparison, asynchronous telehealth,
in which geographically disparate participants are separated by
time as well as location, remains poorly used. However, it is
important to the growing importance of asynchronous telehealth
as part of the “new digital normal” in neurology. At the most
basic level, this form of telehealth includes well-established
modes of digital communication, such as email and SMS text
message, but can range to more complex technological
implementations. From a functional perspective, asynchronous
telehealth in neurology can be organized into 4 general
categories: remote diagnostic services (telemonitoring), remote
delivery of neurological treatments (teletreatment) [56],
electronic interprofessional consultations, and care coordination.

The pandemic era has seen a number of new billable clinical
activities emerge in the United States that have facilitated the
rising importance of asynchronous care services in neurology.
These services include remote patient (also termed
“physiologic”) and therapeutic monitoring, digital check-ins,
digital evaluation and management, principal care management
(PCM), and interprofessional consultations. In addition to these
billable services, these activities also substantiate a growing
trend in digital neurology in which centralized, inconvenient,
and synchronous care models are progressively shifting toward
distributed, asynchronous models that prioritize patient
convenience and access [10]. The onset of the COVID-19
pandemic in early 2020 accelerated this shift by expanding the
adoption of asynchronous services as well as synchronous ones
[57,58].

Telemonitoring
Neurological telemonitoring now encompasses a wide range of
clinical services. A commonly encountered form of
telemonitoring includes smartphone apps or electronic health
record (EHR) questionnaires that receive patient-centered
symptoms, validated clinical scales, or medication compliance
information that is then transmitted electronically to a care team
with the purpose of establishing a diagnosis or monitoring

responses to treatment [59]. Examples of such apps abound in
neurology, which comprises many chronic, polyphasic disorders
such as migraine [60-62], multiple sclerosis [63,64], epilepsy
[65], and Parkinson disease [66], among others.

Telemonitoring also includes “store and forward” services, in
which a patient transmits clinical image information such as
digital image, recorded audio, or video to a treating provider
team for asynchronous review. A particularly useful application
of store-and-forward in neurology is the diagnosis of paroxysmal
neurological events, such as seizure-like episodes [67], as well
as a close review of dynamic neurological examination findings
in Parkinson disease [68-70].

Remote patient monitoring (RPM), an already well-established
form of telemonitoring in nonneurological conditions such as
congestive heart failure, chronic obstructive pulmonary disease,
and diabetes, occupies an increasingly important position in the
care delivery to patients with neurological disorders. Similar to
nonneurological applications, neurological RPM uses
sensor-containing patient wearable devices, occasionally paired
with mobile app platforms, to record and transmit continuous
or near-continuous physiological information to care providers
for review and medical decision-making over a secure internet
connection [71]. In neurology specifically, the growing
importance of telemonitoring capitalizes on the growing
understanding that episodic patient assessments often provide
incomplete and sometimes inaccurate assessments of patients’
clinical and functional status [10].

However, neurological RPM notably differs in data acquisition
and transformation techniques from its nonneurological
counterpart. Because most neurological disorders rely on a
combination of qualitative radiographic or clinical examination
findings to establish a diagnosis or inform management rather
than laboratory or vital sign information, neurological RPM
generally uses raw data from limb accelerometer and gyroscope
sensors to extrapolate meaningful “digital biomarkers” such as
gait, arm swing, step count, falls, examination findings, or
abnormal movements. This is in contrast to nonneurological
RPM, where sensors directly measure clinically relevant
biomarkers such as blood pressure, blood glucose, or oxygen
saturation, for example [72,73].

Notable areas of RPM application to neurology include disorders
with prominent motor and gait features such as multiple sclerosis
[74] and movement disorders [75-78]. In addition to
demonstrating feasibility and acceptability, RPM has potentially
identified novel digital biomarkers. One notable example is the
daily step count, which is associated with functional status
decline in patients with multiple sclerosis [74] and incident
dementia [79]. While these RPM approaches are not yet
established as standard-of-care, they are being used increasingly
in clinical and research applications with an understanding that
further work is required to better grasp the implications of
collecting and transmitting this information [56].

Important to note are the few instances of fully integrated, scaled
neurology RPM programs in health care systems in the United
States as well as the relatively underused nature of these services
by neurologists. Nationwide analyses of US Medicare claims
data suggest that neurologists comprise a very small proportion
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of RPM-billing providers [80,81]. Interestingly, analysis of
nationwide commercial claims data shows that only 14% of the
nearly 17,000 RPM encounters billed by physicians to
commercial payers for neurological disorders between 2019
and 2021 were billed by neurologists, compared to 57% that
were billed by family medicine, pulmonary, and internal
medicine providers combined. Moreover, nearly 90% of these
encounters were billed for sleep-wake disorders, with
approximately 2% billed for common neurological conditions
such as cerebrovascular disorders, movement disorders, epilepsy,
migraine disorders, and polyneuropathies combined (B Kummer
et al, unpublished data, 2023). These data suggest that despite
its promise, RPM is underused by neurologists for neurological
conditions, particularly those that constitute relatively
straightforward clinical use cases, such as blood pressure
monitoring after stroke, or step counting in multiple sclerosis,
movement disorders, or neuropathies.

While billing activity reflects a limited dimension of RPM use,
the reasons for these findings could be that few Food and Drug
Administration–approved devices (a requirement for billing
new RPM codes issued after 2019) for monitoring physiologic
signals in neurological conditions currently exist. Alternatively,
high variability in the quality and availability of commercial
wearables and sensors may explain RPM underuse by
neurologists. Finally, the lack of integration of many RPM
solutions into EHR systems is likely a contributing factor that
has been identified as an important barrier to the adoption of
RPM services into real-world clinical settings across a spectrum
of medical specialties [82].

Teletreatment
Neurological teletreatment is now widely available for the
management of headache, epilepsy, and movement disorders.
A notable category of teletreatment options comprises stimulator
devices that deliver focused electricity to selected nervous
system regions [83], including vagal nerve stimulators,
responsive neurostimulators, and deep brain stimulators, which
have all found application in epileptic [84] and movement
disorders [85]. In migraine and other headache disorders,
analogous devices include peripheral stimulator devices
targeting the supraorbital, occipital, or sphenopalatine ganglion
[86]. Many of these devices can be remotely programmed by a
provider as well as collect and relay neurophysiologic data back
to care teams for treatment decisions. Furthermore, device
programming parameters can potentially be integrated into EHR
systems to provide a snapshot of the patient’s clinical status.

Some authors consider technology, per se, to constitute treatment
[87] and therefore represent an additional subcategory of
teletreatment. Under this conceptual framework, mobile health
apps that are capable of various monitoring and diary functions
may be thought of as treatment in and of themselves. One
notable application of “technology as treatment” includes
headache disorders, where symptom diaries may provide insight
into disease processes and inform treatment or guide
complementary and integrative therapies that modulate stress
levels and pain perception [59].

Care Coordination
In response to the rising prevalence of chronic conditions and
their significant associated costs in the United States, CMS has
developed billable care management and coordination services
in the second decade of the 21st century that make extensive
use of asynchronous telehealth interactions and represent another
increasingly important example of asynchronous teleneurology
in the COVID-19 era. These services are best exemplified by
chronic care management (CCM; introduced in 2015), which
supports care management of multiple chronic conditions, and
PCM (introduced in 2022) for the management of a single
complex condition. These services incentivize an integrated,
team-based approach to chronic condition management by
bundling care coordination, care planning, and condition-focused
goal setting into an overarching care management activity that
is primarily furnished through non–face-to-face encounters.
Both PCM and CCM allow care teams to interact with patients
asynchronously, using the technology platform of their choice.
Furthermore, CCM specifically includes care monitoring in the
definition of billable service, thereby allowing the use of RPM
and remote therapeutic monitoring.

In addition to CCM and PCM, coordination of care can be
performed through asynchronous patient portal communications
between patients and providers. These communications
dramatically increased with the onset of the COVID-19
pandemic [88], potentially as a result of increased video
telehealth adoption and the absence of office-based follow-up
arrangements. In addition to care coordination, the potential for
completing true evaluation and management of new medical
problems over patient portals led to the introduction of new
digital evaluation and management services (or “e-visits”) in
2020 as billable codes (CPT codes 99421-99423 and Healthcare
Common Procedure Coding System codes G2061-G2063).
While several US health care institutions in the United States
have successfully implemented billing for e-visits and increased
the volume of these services [89], some of these
implementations were accompanied by decreases in the use of
portal messaging and suggested that few portal messages were
truly billable as e-visits, arguing that these services have not
lessened the cognitive overload imposed by significant increases
in patient portal messaging [90,91].

Interprofessional Consultations
Although much of neurological telehealth refers to
patient-provider interactions, consultations between providers
remain an important area of digital care in neurology. Telephone
calls between providers and synchronous video teleneurology
consultations have existed for decades, with telestroke
constituting perhaps the most widely known example of the
latter [8]. Despite this, a growing number of interprofessional
neurology consultations are now performed asynchronously
and have been successfully implemented in headache and
neuro-ophthalmic conditions, leveraging electronic forms of
communication such as email, clinical notes, or direct verbal
communication over the telephone to requesting providers
[92-95]. Although discussion of recommendations with the
requesting provider may be a synchronous interaction, the bulk
of the service is provided asynchronously.
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Aside from the application of interprofessional consultations
to specific neurological conditions, some notable use cases for
this emerging service include improving access to neurological
expertise in the setting of worldwide neurologist shortages
[93,96], limiting personal exposures to hospitalized patients
with diseases carrying significant infectious risk such as
COVID-19, or improving the ability to evaluate and manage
common neurological problems among nonneurologists [95].
To incentivize this activity, in a manner similar to CCM and
PCM, CMS has delineated billable interprofessional consultation
services, for which a discrete number of acceptable billing codes
have been developed [97].

The Future of Digital Neurology
The future of digital neurology can be organized into 3 broad
areas: new information processing methods, new data types,
and the provision of care through new modes of interaction.
New processing methods are likely to include artificial
intelligence (AI) processes that automate the detection of
clinically meaningful information (assistive AI), analyze
automatically collected information (augmentative AI), or
analyze and draw independent conclusions from providers
(autonomous AI) [98]. While assistive and augmentative AI is
already in use within individual disease states, including stroke
[99], Parkinson disease [68-70], or epilepsy [100,101],
augmentative AI remains the least widely represented approach.

However, AI processes will probably not evolve to replace
providers or medical decision-making but rather automate simple
processes to allow providers greater bandwidth to tackle an
increasingly complex array of neurological disorders [102].

In addition to the growing role of AI, multilayer synthesis, or
“phenotyping,” of complex data streams is likely to become
more common as the use of physiological, structured EHR,
textual, and other data streams grows in neurological disorders
[103]. This phenotyping may be used to serve multiple
objectives, including the automation of standardized clinical
assessments in key disorders such as the National Institutes of
Health Stroke Scale or the UPDRS, the characterization of
clinically meaningful disorder manifestations or outcomes, or
the identification of novel disease subpopulations.

The future of digital neurology will also likely entail the
exchange of novel data types, including videos of neurological
events, examinations, and phenomenology, with or without AI
assistance, as well as social network activity and geo-localization
data to quantify patient “digital life space.” Treatment
information, such as responses to individual therapies, adverse
events, medication compliance, and symptom diaries, is likely
to become increasingly common within the ongoing digitization
of neurology. Additionally, as sensors become increasingly
sophisticated and compact, RPM in neurological disorders will
likely evolve to incorporate additional sensor streams such as
magnetometry, skin galvanic responses, and other novel
biomarkers into routine clinical care [103].

Finally, private companies and health system strategies’ shift
toward convenience- and patient-oriented care journeys is likely
to impact the manner in which patients with neurological
conditions and providers interact. Semi- or fully automated

chatbots, which are already widely available in the retail and
banking industries, may eventually provide around-the-clock
access for simple questions that do not require high-level clinical
decision-making. Recent private-sector initiatives featuring
on-demand, search-engine–based and technology-forward health
care for large populations of patients [104-106] suggest that
such “digital front doors” may become the primary method of
locating neurological expertise and obtaining resources for
patients with neurological disorders, rather than relying on
referrals from providers and other traditional pathways.

Unanswered Questions: a Look Toward the Future

The Telehealth Value Proposition
The value of telehealth and whether telehealth adequately attains
desired health outcomes relative to the cost of care delivery
[107,108], remains a largely open question across medical
specialties. Although video telehealth is associated with
significant patient and provider benefits, it has been shown to
generally increase costs, with the exception of cases of
eliminating long-distance travel [109]. More recently, a study
investigating the value of telehealth in young adults with cancer
overwhelmingly found that telehealth resulted in cost savings
[110].

In contrast to the limited investigations of value in
nonneurological conditions, modern telehealth for neurological
care faces an uncertain future with respect to the question of
value. Although the question chiefly concerns synchronous
audio-video telehealth, which is arguably the most common
digital neurology interaction today, the telehealth value question
remains relevant to all forms of digital neurological care [14].
Outside of synchronous telestroke care, which has long been
one of the clearest examples of telehealth value in neurology
before the COVID-19 pandemic era [111,112], there remains
a dearth of information regarding whether synchronous
telehealth provides an acceptable value of care in
noncerebrovascular neurological conditions. Large-scale,
multicenter studies should address this specific question for
synchronous audio-video as well as asynchronous forms of
telehealth as applied to neurological disorders [108].

Governmental or Public Health Emergency Restrictions:
the Future of Telehealth Reimbursement
By facilitating the adoption of various digital neurology
modalities among providers and patients, the suspension of
multiple telehealth reimbursement restrictions due to the
COVID-19 public health emergency by the US federal
government figures among the principal driving forces in
catalyzing the widespread use of digital neurology services
during the pandemic era [1]. At the time of writing, the public
health emergency officially ended on May 11, 2023 [113], after
which many suspended restrictions, such as CMS reimbursement
for video telehealth visits irrespective of geographic locations,
were extended into the end of 2024 [114]. However, many
exemptions, including temporary reimbursement of specific
telehealth services as category 3 codes and flexibilities involving
controlled substance prescription over telehealth, among others,
were extended only until the end of 2023. The rapidly changing
flexibility landscape as well as the multiplicity of time frames
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create a complex matrix of different regulations that is often
overwhelming and confusing to providers [115].

As opposed to federal-level restrictions, medical licensure and
scope of practice continue to be regulated by individual US
states, which restricts providers from delivering telehealth care
to patients not located in states where the provider is licensed.
To maximize patient access to telehealth care early in the
COVID-19 pandemic, several US states loosened licensure
requirements in order to allow out-of-state providers to easily
obtain temporary licenses. However, since the end of the federal
public health emergency, many states have rescinded these
temporary flexibilities, with unclear impacts on telehealth use.
It remains similarly unclear whether the Interstate Licensure
Compact, an agreement signed by 37 US states and territories
to simplify the licensure process for providers who wish to
practice in multiple states [116], will positively impact the use
of telehealth broadly speaking.

While the US Congress has introduced a bill to make several
pandemic suspensions permanent [117], many specifics
concerning the postpandemic regulatory landscape beyond
2024—and impacts on the long-term feasibility, viability, and
adoption of digital modalities such as synchronous and
asynchronous telehealth—remain unclear. As such, the rapidly
approaching end of this extended period represents a significant
source of uncertainty for the new digital normal.

Privacy Considerations of New Digital Interactions
Although privacy and security of personal health information
for the purposes of medical care is strictly regulated by HIPAA
in the United States, another important aspect of the new digital
normal in neurology is the proliferation of digital technologies
and services that collect and transmit personal health information
but are not considered to be the provision of medical care or
constitute a health care relationship under US federal law [118].
While this implies that they are not regulated under the purview
of HIPAA, many of these technologies are nonetheless
commonly used by providers and patients for the diagnosis and
management of neurological conditions. Concerningly, mobile
apps have been shown to disclose unauthorized personal health
information outside of their end-user licensing agreements
[119,120].

Patients using all forms of unregulated digital neurology services
are therefore faced with a fundamental trade-off between
collecting clinically meaningful information and infringing upon
personal privacy. Sharing personal health information, even if
knowingly, can potentially have undesired consequences. One
particular venue in which this is evident is the growing
phenomenon of employee wellness programs that collect
physical activity and geospatial position information through
wearable devices. These could disclose an employee’s actions
during work unbeknownst to the wearer and potentially result
in disciplinary action.

Open questions remain as to which venue is appropriate for
regulating these issues. At the time of writing, in the United
States, CMS and billing stakeholders such as the AMA have
not taken any official stance against limiting the sharing of
personal information on asynchronous teleneurology platforms,

with most controls existing at the level of specific company
data use policies and end user licensing agreements at the level
of user acceptance.

The Future of Digital Neurology
During the COVID-19 public health emergency, digital
neurology modalities clearly ensured safe access to neurological
care for patients, resulting in significantly increased adoption
and awareness of these tools among patients and providers.
Asymmetric adoption of digital tools across different populations
also cooccurred during the rapid rise in adoption, exposing the
significant, persistent challenge facing the US health care
system: access to specialty care [121]. Despite this, digital care
modalities continue to demonstrate beneficial effects on care
access and value [110,122-124] and carry even greater potential
for the future of the health care system.

The “new digital normal”—within and outside of
neurology—will realize this potential by reaching 3 critical
milestones. The first is to shift the current digital operating
framework, which places a significant focus on the range of
available digital care solutions and their technical differences
(eg, audio-only or audio-video and asynchronous or
synchronous), to a structure emphasizing a tailored approach
to digital care that combines “doses” of different technical
solutions to individualized patient use cases.

The second will be to incorporate the rapidly growing array of
AI technologies as complementary solutions in the current
armamentarium of technical options targeting care access
bottlenecks. By accelerating diagnosis recognition, automating
clinical processes, and reducing provider cognitive overload,
AI can effectively accelerate access to neurological expertise
throughout the health care system. As such, this emerging set
of technological innovations will likely prove itself to be a
crucial complement to currently available digital tools.

The third milestone is creating a sustainable reimbursement
framework that incentivizes providers to use digital tools. Efforts
targeting this milestone are already underway at the time of
writing and include the development of coding structures
targeting clinical activities centered on specific technical
solutions as well as classifying machine-performed clinical
work [98,125].

Conclusions

Contrasting with the temporary nature of the public health crisis
itself, the COVID-19 pandemic has profoundly and indelibly
altered the practice of neurology and medicine as a whole,
ushering in an era of digital technology adoption and innovation
characterized by novel care digital care models, services, and
technologies. Despite the significant uncertainty and numerous
unresolved questions facing this new digital normal in
neurology, reverting to “prepandemic” technical solutions and
care arrangements is failing to capitalize on one of the greatest
opportunities to move medicine forward in the history of our
species. It is crucial to consider the unprecedented scale and
depth of digital health innovation that has occurred during this
time [121] and the primordial importance of continued
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innovation in order to bring neurology and all specialties of medicine into the next phase of this “new digital normal.”
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Abstract

As a novel technology frontier, neurotechnology is revolutionizing our perceptions of the brain and nervous system. With growing
private and public investments, a thriving ecosystem of direct-to-consumer neurotechnologies has also emerged. These technologies
are increasingly being introduced in many parts of the world, including Africa. However, as the use of this technology expands,
neuroethics and ethics of emerging technology scholars are bringing attention to the critical concerns it raises. These concerns
are largely not new but are uniquely amplified by the novelty of technology. They include ethical and legal issues such as privacy,
human rights, human identity, bias, autonomy, and safety, which are part of the artificial intelligence ethics discourse. Most
importantly, there is an obvious lack of regulatory oversight and a dearth of literature on the consideration of contextual ethical
principles in the design and application of neurotechnology in Africa. This paper highlights lessons African stakeholders need
to learn from the ethics and governance of artificial intelligence to ensure the design of ethically responsible and socially acceptable
neurotechnology in and for Africa.

(JMIR Neurotech 2024;3:e56665)   doi:10.2196/56665
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Introduction

The increasing convergence of neuroscience, engineering,
materials science, and emerging technologies, such as artificial
intelligence (AI), robotics, extended reality, and so on, has given
rise to a novel technology frontier called neurotechnology. Once
dismissed as the stuff of fiction, cutting-edge invasive and
noninvasive neurotechnology is now becoming the reality of
our time. Significantly intertwined with advancements in AI,
machine learning, and deep learning, neurotechnology holds
tremendous promise for research and practice. From brain
imaging devices that have transformed our understanding of
brain structures and functions to neuromodulation and
neurostimulation devices that improve the quality of life of
people with brain disorders, neurotechnology is revolutionizing
our perceptions of the brain and nervous system. It is also
becoming a booming industry with growing private and public
investments in direct-to-consumer neurotechnologies [1]. This
is owing to a number of factors, including the increasing

prevalence of brain diseases and the increasing integration of
innovation into biomedical research and practice.

In the last decade, many countries and regions have recognized
the need for a maintained public investment in brain research
as a priority. Some of the publicly funded large-scale brain
research projects include the US Brain Initiative (US $3 billion),
the EU Human Brain Project (€607 million), China Brain Project
(US $746 million), Japan BRAIN/MINDS (US $365,163,41),
Australian Brain Alliance (US $500 million), Canadian Brain
Research Strategy (US $250.3 million), and Korea Brain
Initiative (US $1.2 billion) [2]. These projects and the emerging
landscape of public and private funding opportunities have
created a global ecosystem where countries in Africa and other
developing countries in the Global South are being left behind
in brain research and innovation. Public funding for
neuroscience research and innovation is almost nonexistent in
Africa [3]. Neurotechnology research and innovation are
practically being developed in select countries in North America,
Europe, and Asia. These are tech devices that are currently being
introduced in African contexts and to African consumers.
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However, as it has been identified in other emerging
technologies, such as AI, technology is developed with a specific
context in mind and reflects the dynamics of that context. The
use of the technology beyond the context it was created for
raises concerns, including bias and discrimination. This means
that the use of neurotechnology devices in Africa holds potential
ethical and legal risks to both individuals and society.

As this technology expands, neuroethics and ethics of emerging
technology scholars are bringing attention to the critical
concerns it raises [4-6]. These concerns are generally not new,
but uniquely amplified by the novelty of technology. They
include issues around privacy, rights, human identity, autonomy,
and safety. Many of these are already part of the ethics of
emerging technology discourse, particularly AI ethics. The
unique risks this technology raises have led to calls for adequate
regulatory oversight. Global discussions in this regard have
gained momentum in the last decade with a focus on ensuring
responsible and equitable design and deployment of this
disruptive technology. Intergovernmental bodies, such as the
Organization for Economic Cooperation and Development
(OECD), UNESCO (United Nations Educational, Scientific and
Cultural Organization), and the Council of Europe, are playing
major roles in this regard. Chile has become the first country
to implement legal measures that address the risks of
neurotechnologies [7]. The Chilean constitution was recently
amended to legally protect citizen’s mental privacy and free
will.

However, as more and more countries discuss the ethics and
governance of neurotechnology, there is an obvious lack of
regulatory oversight and a dearth of literature on the
consideration of contextual ethical principles in the design and
application of neurotechnology in Africa. This scenario parallels
the historical developments within the field of AI and Africa.
In order to circumvent the replication of past errors, this study
aims to delineate and address these pitfalls through an in-depth
examination and analysis of lessons to be learned. This paper
highlights prospective insights that the domain of
neurotechnology ethics and governance in Africa may derive
from the extant body of literature on responsible AI.
Stakeholders, such as neurotechnology developers, policy
makers, and academic researchers, stand to gain valuable
perspectives from these insights. The resultant impact is
anticipated to contribute significantly to the responsible design
and implementation of neurotechnology devices in Africa. This
encompasses the establishment of robust policies and
regulations, as well as the provision of guidance for academic
discourse within this domain. This paper starts by providing a
conceptual clarification of neurotechnology. Then it discusses
why Africa should care about neurotechnology and what
responsible neurotechnology will mean for Africa. Lessons are
then drawn from the available literature. It is important to note
that African societies are not considered as monolithic.
However, Africa is taken as a continent with common
sociocultural values and challenges relevant to the ethics and
governance of neurotechnology.

What is Neurotechnology?

The human brain remains the most complex organ in the human
body largely due to its intricate structure and its central role in
coordinating all functions and activities of the body. There are
many factors that contribute to this exceptional complexity,
including its adaptability and plasticity, cognitive abilities,
neural network, sensory processing capabilities, motor control,
homeostasis, consciousness, genetic complexity, metabolic
demand, multilayered structure, and infinite variability.
According to Jorgenson et al [8], the goal of comprehensively
understanding all these factors “remains elusive, although not
from a lack of collective drive or intellectual curiosity on the
part of researchers. Rather, progress frequently has been limited
by the technologies available during any given era.”
Neurotechnology has emerged to provide a greater
understanding of the brain and offer solutions to previously
understudied brain disorders.

UNESCO defines neurotechnology as a “field of devices and
procedures used to access, monitor, investigate, assess,
manipulate, or emulate the structure and function of the neural
systems of animals or human beings” [9]. It involves the
application of engineering principles to the “understanding,
engagement, and repair of the human nervous system” [10].
Neurotechnology refers to a set of technologies, rather than a
specific technology, that enables direct connection or interface
between technical components with the nervous system [4,11].
This interaction with the brain and nervous system raises a
variety of ethical and legal risks, necessitating the discussion
of the ethics of neurotechnology.

The importance of ethics in neurotechnology is demonstrated
in UNESCO’s call for solid governance of neurotechnology
design and deployment at the last international conference on
the ethics of neurotechnology on the theme “Towards an Ethical
Framework in the Protection and Promotion of Human Rights
and Fundamental Freedoms” [12]. From noninvasive
technologies used to study the brain to wearable or implantable
devices, neurotechnology is opening new possibilities to study
the nervous system and help diagnose, treat, and prevent
brain-related diseases [1,13]. These technologies are currently
being developed for diverse uses in clinical and research
settings, as well as for everyday life, workplace well-being, and
education. In research, the development of neurosensing
technologies, such as magnetic resonance imaging (MRI),
functional MRI, electroencephalography,
magnetoencephalography, positron emission tomography,
functional near-infrared spectroscopy, single-photon emission
computed tomography, biomarker analysis tools, and invasive
intracranial electrodes, has been transformative for studying the
brain. These technologies are fundamental for advancing the
understanding of the brain because they provide valuable
insights into brain function, neurophysiology, and neurological
disorders.

Beyond neurosensing, neurotechnology is also being developed
for other purposes, including neurostimulation, neuroprostheses,
and neurorehabilitation. Neurostimulation technological devices
have shown potential in trials to provide therapeutic relief for
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a number of brain-related disorders, such as epilepsy [14],
chronic pain [15], Parkinson disease (Schuepbach et al [16]),
obsessive-compulsive disorder [17], depression [18], addiction
disorders [19], spinal cord injuries [20], and Tourette syndrome
[21]. Neurotechnology encompasses invasive and noninvasive
devices that serve as motor [22] or sensory [23] neuroprostheses.
These devices work by connecting to or bypassing any damaged
neural pathways to restore function or enhance communication
in people with stroke [24], spinal cord injuries [25], amyotrophic
lateral sclerosis [26], cerebral palsy [27], and traumatic brain
injuries [28]. When these technologies are designed to help
individuals regain lost functional abilities, improve their quality
of life, and promote independence, it is called
neurorehabilitation [29]. These include noninvasive
brain-machine interfaces for patients with stroke [30] to
noninvasive interfaces, such as brain-actuated robotic devices
designed to restore the independence of people experiencing
severe motor disabilities [31].

Indeed, there is an emerging and thriving neurotechnology
industry; an industry that reached a market value of US $11.3
billion in 2021 and is projected to exceed US $24.2 billion in
2027, with an estimated annual growth rate of 14.4% [32].
According to a recent UNESCO report, “the United States
emerges as the main place where neurotechnology-related
innovations are generated (47% of worldwide IP5 patent
applications in neurotechnology), followed by Korea (11%),
China (10%), Japan (7%), Germany (7%), and France (5%)”
[1]. It is further revealed that out of 1400 identified
neurotechnology companies, 50% are based in the United States,
35% in Europe and the United Kingdom, and the rest in Asia
[1]. These figures are not surprising, given the level of public
funding that brain research and innovation are receiving in the
Global North. While investments in neurosensing,
neurostimulation, neuroprostheses, and neurorehabilitation are
different in size, volume, and level of maturity (neurosensing
being the most mature and with the highest investments), there
are exponential increases in all aspects of neurotechnology.

Why Should Africa Care About
Neurotechnology?

Globally, the burden of neurological disorders has increased
significantly over the past 2 decades, with a significant increase
in mortality (36.7%) and disability (7.4%) rates [33]. There is
also evidence from literature to show that there is a large
geographical variation in the burden of these disorders [33-37].
There is consistent evidence that there is an increasing
prevalence of neurological diseases in Africa, putting huge
burdens on public health systems [38-40]. Some of these
brain-related diseases include stroke, dementia, Parkinson
disease, epilepsy, migraine, medication overuse headache, motor
neuron disease, cerebral palsy, brain development disorders,
peripheral neuropathy, trauma, alcohol-related brain damage,
nervous system complications of HIV/AIDS, brain and nervous
system cancers, and multiple sclerosis. It also includes
psychiatric disorders and mental health diseases, such as
depression, anxiety, schizophrenia, psychosis, bipolar, stress,
and other behavioral disorders [41,42]. Many of these are

preventable (eg, some developmental disorders and strokes)
and others are possibly treatable with novel technologies and
therapies.

Silberberg and Katabira [43] believe that the increasing
prevalence and burden are the results of factors such as “adverse
perinatal conditions, malaria, HIV/AIDS and other causes of
encephalitis and meningitis, demographic transitions, increased
vehicular traffic, and persistent regional conflicts.” In addition
to these, there are other factors that increase the impact of
neurological disorders in Africa, such as sociocultural and
religious beliefs, stigma and discrimination, lack of quality
therapies or treatment, and the absence of organized public
sector response [40]. Neurological disorders are often neglected
or comprehensively ignored in most African societies [44].
Patients in Africa face challenges related to a lack of health care
infrastructure and access to specialized services. Many strongly
believe that there is no available treatment or therapy for
neurological disorders.

Neurotechnology provides hope to African societies struggling
with the burden of neurological disorders. It can help bridge
the gap in access to neurological care in many underserved
communities. They can help with early diagnosis through
advanced neuroimaging and diagnostic tools (eg, portable and
low-cost electroencephalography machines). Neurorehabilitation
tools, such as virtual reality–based therapies [45,46], functional
electrical stimulation [47], and telerehabilitation platforms [48],
can provide patients access to rehabilitation services in areas
with a lack of resources for therapy. A number of
neurostimulation devices may possibly provide effective
treatment options for patients with epilepsy, while remote
computer-based therapies offer possible relief for a number of
brain diseases. There are potentially significant opportunities
for neurotechnology to have a positive impact on neurological
diagnosis, treatment, and rehabilitation in Africa. However,
challenges related to cost and infrastructure remain and will
need to be overcome.

In addition to clinical support, neurotechnology can also
strengthen research in Africa to better understand the
epidemiology of neurological disorders, and factors contributing
to their prevalence in Africa, as well as improve the global
knowledge of the human brain and nervous system. The
introduction of neuroimaging data, generated and processed in
Africa, can contribute immensely to the global understanding
of the brain and its diseases given the genetic diversity in the
continent. It implies that brain diseases plaguing the African
population will be better understood, raising the likelihood of
developing suitable therapies for them. Neurotechnology can
also be applied in marketing and consumer research in Africa,
especially in the emerging field of neuromarketing. From
product testing, pricing, and value perception to emotion
analysis and branding, neurotechnology can help companies
understand and influence consumer behavior, preferences, and
decision-making. Although far-fetched, this can help African
businesses to become more competitive in the global market.

Despite the abovementioned potential benefits of
neurotechnology, there are also many good reasons for Africa
to prioritize other goals and issues, such as cleaning and
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sanitation, food security, housing and shelter, education, and
access to basic health care. This is a valid argument, and
governments need to focus more on these basic needs. However,
it is important to note that as a technology, neurotechnology is
pervasive, becoming increasingly widespread and influential
across various aspects of society. While most of these
technologies are being developed outside of Africa, they will
be used in Africa. In today’s interconnected world,
neurotechnologies can spread rapidly across borders through
various channels, such as trade, investment, collaboration, and
intellectual property agreements. Therefore, the pervasive and
ubiquitous nature of this technology makes it hard to neglect.

Furthermore, as UNESCO [12] has observed, the application
of neurotechnology triggers a number of critical ethical and
legal considerations, including, but not limited to, autonomy,
privacy, mental integrity, human dignity, personal identity, and
freedom of thought. Given the African sociocultural context
and possibilities of using this technology for enhancement, it
also raises fundamental questions related to personhood with
profound implications for individuals and societies at large.
There are also issues around benefit sharing, digital divide, and
accessibility and safety concerns. These concerns are amplified
by the fact that current neurotechnological systems are being
developed with limited data from Africa without consideration
of African sociocultural values and principles. For instance, a
brain-computer interface that decodes continuous language from
noninvasive recordings would have many useful scientific and
practical applications [49], but it raises fundamental questions
about the privacy of brain data. In a study that in part relies on
an AI transformer model, Tang et al [49] claim to have used
functional MRI to produce texts of participants’ imagined
thoughts. The implications this has on privacy are novel and
immensely significant in the face of an evident lack of
governance mechanisms to ensure that these technologies are
designed in an ethically responsible, socially acceptable, and
legally compliant way. But what should responsible
neurotechnology for Africa look like?

Responsible Neurotechnology in Africa

Like other emerging technologies, neurotechnology raises
crucial ethical and legal challenges. However, there remains a
dearth of policy frameworks and regulations to ensure the
development of responsible and trustworthy neurotechnology.
During the UNESCO conference on ethics of neurotechnology
in Paris on July 13, 2023, participants agreed on the need for a
comprehensive governance framework to harness the potential
of neurotechnology and address the evident risks it presents to
societies. Speaking at the conference, the Assistant
Director-General for Social and Human Sciences of UNESCO
declared that “…we must act now to ensure it is not misused
and does not threaten our societies and democracies” [12]. In
the absence of national, regional, and international principles,
policies, and governance mechanisms for neurotechnology, the
OECD adopted a set of recommendations on responsible
innovation in neurotechnology in 2019 [50]. This is the first
attempt to set an international standard that aims to guide
government agencies as well as innovators to address the ethical,
legal, and social challenges that neurotechnology raises.

Principles encompassed in the OECD recommendation are
promoting responsible innovation, prioritizing safety assessment,
promoting inclusivity, fostering scientific collaboration, enabling
societal deliberation, enabling capacity of oversight and advisory
bodies, safeguarding personal brain data and other information,
promoting cultures of stewardship and trust across the public
and private sector, and anticipating and monitoring potential
unintended use or misuse. While this instrument does not
constitute an international treaty, it covers critical challenges
and opportunities for better innovation practices through
responsibility-by-design approaches. Such a governance
approach is needed to protect and promote human rights and
fundamental freedoms. It is an approach that requires the
integration of relevant values and principles that reflects the
contexts within which the technology will be applied.

So far, the discussion on ethics and governance of
neurotechnology has neglected narratives, values, principles,
and contexts in Africa. African datasets that can inform the
design of neurotechnological systems are currently missing
from available open-access platforms. Potentially, therefore,
neurotechnology devices are being designed without relevant
data from Africa, and the field of neuroscience and
neurotechnology remains largely dominated by countries in the
Global North. The question then is can responsible
neurotechnology be achieved in Africa without African values,
principles, data, and experts? Neurotechnology cannot be
designed and developed in and for Africa without Africans,
their data, and without considerations of African sociocultural
contexts, needs, expectations, values, and principles. The current
debate on ethics and governance of neurotechnology has taken
a similar turn that AI ethics took. Therefore, as UNESCO moves
to develop a global normative instrument and ethical framework
similar to UNESCO’s Recommendation on the Ethics of AI, it
is important for policy makers, innovators, and civil society
groups to consider these lessons from AI ethics.

Lessons From AI Ethics and Governance

Neurotechnology and AI share some similarities and differences.
It is common knowledge that artificial neural networks draw
inspiration from the brain structure and function because they
are designed with interconnected nodes that loosely mimic how
brain neurons interact [51]. Both AI and neurotechnology also
involve some forms of learning and adaptation. Similarly, they
both have uses in health care. However, there are differences
in implementation, complexity, and function. For instance, AI
uses chips and programmed algorithms, and is based on
mathematical models, while neurotechnology often interacts
directly with biological systems (brains and nervous systems).

Brains use biological neurons with complex chemical
interactions, while AI uses silicon chips and programmed
algorithms. The implication of these differences and similarities
is that both AI and neurotechnology share common aims and
challenges, but they also demand distinct approaches,
methodologies, and considerations. The convergence of the 2
can potentially lead to breakthroughs in understanding the brain
as well as both biological and AI, ultimately providing benefits
for society. However, attention must be paid to the risks they
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raise for which the discourse on ethical considerations of AI is
more advanced than in neurotechnology.

In general, neurotechnology can learn valuable lessons from
the evolving field of AI ethics and governance to ensure
responsible design, development, and deployment. AI ethics
debates highlight the need for transparency and explainability
in disruptive technological systems to build trust and
accountability. Fairness, equity, responsibility, justice, and
autonomy are central to AI ethics. These are principles
neurotechnology innovators and policy makers need to adopt
to ensure that societal needs and contexts are prioritized.

In addition to these, there are also unique lessons for relevant
stakeholders designing, developing, and using neurotechnology
in and for Africa. These include innovators, neurotechnology
industry players, users, and policy makers.

Epistemic Injustice
Neurotechnology, like AI, is a value-laden technology, but the
critical question is, and should be, whose values and social
contexts shape the design and development of the technology
[52]? For a number of decades, AI design, development,
deployment, ethics, and governance were based on
Euro-American epistemic foundations. Values and principles
often discussed in the context of value-sensitive design largely
reflected worldviews from the Global North. Narratives, values,
and principles from the Global North were mostly forgotten or
ignored [53,54]. Ruttkamp-Bloem [55] argues that Africa’s
exclusion in global AI debates constitutes epistemic injustice
that cuts across both hermeneutic and testimonial injustice. This
includes the exclusion of African academics and AI practitioners
and the work they do in Africa. This lack of diversity, especially
in the design and development stage, leads to the exclusion of
important knowledge and perspectives from underrepresented
communities. Epistemic injustice in AI manifests in different
forms including increased bias in AI algorithms, exclusion and
marginalization, reinforcement of stereotypes, and other
unintended harms. In the context of neurotechnology, this can
lead to unfair or inaccurate diagnoses or predictions. Responsible
neurotechnology, particularly in Africa, ought to be based on
the foundation of epistemic justice—a recognition of Africa’s
unique contexts, sociocultural and ethical values, principles,
and needs. While there might be a need to enhance capacities
for neurotechnology design and implementation in Africa, the
inclusion of African experts, data, values, contexts, and
principles in the design and implementation of neurotechnology
is critical to the idea of responsible innovation in
neurotechnology.

Principles Alone Cannot Guarantee Responsible
Neurotechnology
As the awareness of the risks of AI has risen, private and public
institutions have responded with a “deluge of AI codes of ethics,
frameworks, and guidelines” outlining high-level principles and
values to guide ethical design, development, and implementation
of AI [56,57]. Mittelstadt [56] argues that the increasing
ecosystem of AI ethics has mostly produced, “vague, high-level,
principles, and value statements which promise to be
action-guiding, but in practice provide few specific

recommendations and fail to address fundamental normative
and political tensions embedded in key concepts.” The argument
here is that AI policy statements and ethical principles have
remained ineffective [58] and are largely ignored in many
technology-based companies [59]. As Baker and Hanna [60]
observed, big technology corporations’“commitments to ethics
are hollowed out by vagueness and legal hand-wringing—in
practice, they’re often merely commitments to maintaining
public image and mitigating future public relations disasters.”
While OECD’s principles of responsible innovation in
neurotechnology are laudable, these principles are not enough
to ensure that innovators and users practically embed relevant
values and principles into the design and implementation of
neurotechnology. Responsible neurotechnology needs
implementable governance mechanisms, that are ethical, legal,
and technical. Building on established approaches of translating
principles into practice in biomedical sciences, ethics, and
governance of neurotechnology should be more robust and
rigorous than what we have observed in AI ethics.

Possibilities of Ethics Dumping
Ethics and governance of these technologies help to anticipate
potential risks, promote safe innovation and deployment, and
prevent use that violates core values or exposes people to
unacceptable risks. As AI governance has gained momentum
in the Global North, Ruttkamp-Bloem [55] believes that Africa
has become the ethical dumping ground of the main players on
the AI technology scene because of weak regulations. Ethics
dumping here refers to the practice of carrying out unethical or
legally nonpermissible research activities in countries or regions
with weak or nonexistent regulations or governance frameworks.
In AI, there is emerging evidence of ethics dumping in the form
of “health data colonialism,” in which AI researchers and
developers from big technology companies collect data from
developing countries to build algorithms in these countries to
avoid stricter regulations in their countries [61]. Another
example is the outsourcing of data labeling by OpenAI to Africa
in what has been called labor exploitation and “unethical
outsourcing” [62].

These are possible scenarios that can happen with
neurotechnology. As countries in the Global North continue to
discuss possibilities of neurorights and governance of
neurotechnology, there is a likelihood that neurotechnology
companies will exploit the nonexistent regulatory framework
in Africa, from unethical human testing to labor exploitation.
Africa needs to be aware of this and become proactive in
considering governance mechanisms to guide the design,
development, and deployment of neurotechnology.

Diversity of Datasets Is of Critical Importance
The diversity of datasets in the design of emerging technologies
is of paramount importance. Diverse datasets offer a more
accurate representation of the real world and help to ensure that
the technology is fair, robust, inclusive, effective, and
sustainable. Fairness, equity, and generalizability in AI mostly
depend on how representative the data used to train the AI
system are. Nonrepresentative datasets infuse bias into the
system. It is also common knowledge that without datasets from
AI, AI cannot work for Africa. The quality, quantity, and
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diversity of data from Africa play a crucial role in the
development of accurate, reliable, and generalizable AI systems
in Africa. This is the same with neurotechnology. Racially
exclusionary practices have been attributed to nanotechnological
devices used for neuroimaging, both in the acquisition and
analyses [63-65]. Many electroencephalography devices are
simply not designed with black hair in mind, which creates
implicit racial bias. This means that these devices were designed
with insufficient data from black people. It is important for
neurotechnology innovators to focus on using sufficient and
relevant data from Africa in the design. Africa needs to focus
more on generating and having ownership of Findability,
Accessibility, Interoperability, and Reusability (FAIR) datasets
that can contribute to the design and development of
neurotechnology in and for our societies [66].

Inadequate Regulatory Frameworks
One lesson from the recent AI boom in Africa is that many
countries still lack a strong regulatory framework to address
the challenges that emerging technologies like AI raise. While
existing regulatory frameworks, such as data protection
regulations, provide potential channels for integrating regulatory
aspects of AI, the rapid advancements of this technology have
outpaced the scope of these laws. The European Union’s AI
Act has shown that to accommodate the dynamics of such a
disruptive technology, a dedicated regulatory mechanism is
required. Neurotechnology has been described as a disruptive
innovation that will disrupt existing practices as well as
traditional boundaries between medical therapies and consumer
markets [67]. It has the potential to cause profound social and
legal disruption. Owing to their increased capabilities aided by
improved computational ability, machine learning, AI, and the
availability of large-scale open-access databases, these
technologies have the potential to become critical to future legal
systems. There are possibilities of using them to predict the
likelihood to recidivate, assess volition and intent, detect lies,
as well as the potential to reduce recidivism [68]. There are
concerns related to mental privacy and surveillance (especially
workplace mental surveillance), issues related to equity, and
other aspects of personal liberties, which may not fully be
captured by existing regulations. Unlike in the case of AI, Africa
does not need to play catch up. Relevant stakeholders, including
policy makers and researchers, should be proactive in
scrutinizing advances in neurotechnology. The time to act is
now. There is a great need to develop an effective regulatory
or governance framework that can promote responsible
neurotechnology in a way that safety, ethical, and legal concerns
are sufficiently addressed.

Regulations are important here because this is a technology that
challenges existing laws and belief systems. There have been
claims in the literature that the risks neurotechnology poses to
fundamental freedoms of thought and expression demand new
regulations to protect cognitive liberties [69] or neurorights
[70]. The risks are significantly exacerbated by the increasing
application of neurotechnology in the military as well as the
consumer market for digital phenotyping, emotional information,
neurogaming, and neuromarketing. These use cases highlight
the possibilities of exerting control over brain activities and
individual thoughts, which raise the risks of dual use of concern,

digital mental surveillance, misuse of neurodata, and other
privacy issues. As AI has shown [71], this technology surpasses
the ability of existing laws, including data protection laws, to
govern its design and development. This paper certainly does
not make a case for neuroright laws but seeks to highlight the
need to establish regulatory frameworks or amend existing ones
that can make neurotechnologies align with African societal
values and contexts.

Available Data Protection Regulations Are Inadequate
The global landscape of data protection regulation is
significantly expanding, driven by increasing awareness of
privacy issues and the need to regulate the growing digital
ecosystem. Most importantly, the introduction of the European
General Data Protection Regulation in 2018 is greatly
influencing the global approach to data protection with its
stringent requirements and extraterritorial scope. So far, over
30 African countries have established data protection laws and
or regulations. It is important, however, to note that while data
protection regulations play a crucial role in safeguarding the
privacy of the individuals, the unique challenges posed by
neurotechnology require additional measures and considerations
[72,73]. Yuste [74] have raised awareness of the ability of
implantable and nonimplantable neural devices to record and
alter brain data in ways that jeopardize personal neuroprivacy.
There is evidence in the literature to suggest that these devices
can successfully decode mental imagery, emotions, story
interpretation, and speech [49,75-77]. There are apparent voids
in existing data protection regulations to address some of the
complex issues involved here. They are not fully aligned to
address specific risks and implications associated with the
collection and application of brain data by neurotechnology.

To address this gap, some have proposed the establishment of
novel human rights, neurorights [70,78], due to concerns around
mental privacy, mental integrity, and cognitive liberty. Others
have proposed a data-centered approach focused on revising
data protection regulations to incorporate issues raised by
neurotechnology [79]. As the landscape of neurotechnology
continues to progress in Africa, it is important for African policy
makers to understand that the available regulations and laws on
data are not adequately equipped to address the complex ethical
and legal issues neurotechnology raises. While the option of
novel human rights is globally being discussed, the data
protection–centered approach may be the most pragmatic
approach to address the immediate, data-related risks involved
in neurotechnology, given the claim for the exceptionalism of
neurodata [80].

The Need for Stakeholder Engagement
At present, the debate over AI governance and regulation in
Africa is being shaped by scientists, lawmakers, and scholars
in the humanities and the social sciences. However, such debate
tends to often lack representation from key stakeholders, which
are citizens and community members, who are using these
technologies and who will be subject to these new rights. There
is a growing consensus among scholars, national governments,
and technology corporations about the need to recognize and
involve the public as active participants in the design of AI
governance [81]. This is often discussed as the democratization
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of AI or algorithms [82]. AI can have profound impacts on
culture, society, and citizens’ rights. Public engagement ensures
that these impacts are proactively considered and that the
established governance mechanisms reflect the values and
priorities of those who will use them. Similarly, ethics and
governance of neurotechnology in Africa will benefit greatly
from public engagement, not only to raise awareness and
understanding of the technology but also to inform the
development of governance frameworks that are responsive to
the needs and concerns of the public. Public engagement
broadens the range of voices that can provide insights to better
anticipate potential risks of the technology. It is important that
such public engagement exercises are established to ensure
public trust which is critical to technology acceptance.

The Possibility of Corporate Capture
In the absence of functional governance frameworks for
responsible AI, technology companies have taken the lead by
funding most of the global AI ethics research. This provides an
opportunity to influence the research agenda [83]. This is what
Gerdes [84] called corporate colonization of the AI ethics
research agenda. Large parts of the global AI ethics research
are funded by big technology companies fundamentally more
interested in their profits rather than public interest [85]. Gerdes
[84] also identifies conflicts of interest in AI public
policy–making initiatives. Leveraging weak or nonexistent
funding mechanisms, regulations, and institutions in Africa,
there is a possibility for big neurotechnology companies to
control research on ethics and governance of neurotechnology
in Africa. Neurotechnology industry players can capture the
narrative or discussion on the ethics of neurotechnology to their
own benefit. This will have grave consequences in real life. The
ethics and governance of neurotechnology, particularly in Africa,
need multistakeholder engagement and less performative efforts
from policy makers and innovators. It also needs independent
(free from the big technology influence) research efforts that
will not only inform governance but that can build a sustainable
human and technical infrastructure in Africa.

Dangers of Overly Anthropomorphizing Technology
Human-technology interactions have shown that there is always
a tendency to anthropomorphize technology [86]. Indeed,
anthropomorphism has become part of the AI literature [87-89].
This is the attribution or projection of humanlike characteristics
to inanimate objects, animals, and in this case technology [90].
This is a cognitive bias [91] informed by sociocultural awareness
and beliefs. Anthropomorphizing AI can lead to unrealistic
expectations and overtrust of the technology. It can blur the
lines between humans and machines and consequent attribution

of moral agency to machines. As a technology that can interface
between the brain and computers, certain neurotechnological
devices are developed to create more humanlike interactions.
This raises the possibility of overly anthropomorphizing the
technology, particularly in Africa, where anthropomorphism is
already part of the cultural fabric through religion. This can lead
to misconceptions of their capabilities and limitations, raising
ethical and practical concerns. To mitigate the negative impacts
of the anthropomorphism of neurotechnology, innovators and
policy makers need to choose between creating user-friendly
neuro-interfaces and maintaining transparency about the nature,
capabilities, and limitations of the technology. This includes
the education of relevant stakeholders on the roles, nature, and
constraints of neurotechnology.

Conclusion

This paper makes an argument that neurotechnology is no longer
a future technology; it is here and is now available not only for
clinical research and practice but also to consumers. It is
revolutionizing our understanding of the brain and its diseases;
providing much needed therapies for a wide range of patients
are increasingly used in direct-to-consumer products. Some of
these technological devices are being designed in and for Africa
[92]. However, the rapid advancement of this technology raises
serious risks concerning safety, privacy, human rights, digital
divide, bias, and discrimination. With evident weak or
nonexistent ethical and regulatory institutions capable of
ensuring responsible development and use in Africa, individuals
and the society at large face serious risks. Without putting
Africans and their needs, interests, values, principles, contexts,
data, and expectations into consideration in its design and
governance, neurotechnology risks discriminating against
Africans as well as jeopardizing the privacy and safety of
citizens. This is similar to what is happening in the field of AI.
Stakeholders, including policy makers, innovators, and users,
can learn the above lessons from AI ethics and governance to
ensure that proactive actions are instituted to mitigate against
the risks neurotechnology presents to Africans. These lessons
need to be taken into consideration as public debates and
governance mechanisms for neurotechnology are shaped in
Africa. Proactivity and collaboration are the key to being
responsive to the demands of mitigating the risks this technology
poses. Researchers and scientists working in Africa also need
to focus on providing evidence-based insights that can inform
policy and practice. This includes consistently providing users
and citizens in general with the awareness of the benefits and
risks of neurotechnology, which is becoming the new and
disruptive technology frontier.
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Abstract

Neurological disorders are the leading cause of physical and cognitive disability across the globe, currently affecting up to 15%
of the world population, with the burden of chronic neurodegenerative diseases having doubled over the last 2 decades. Two
decades ago, neurologists relying solely on clinical signs and basic imaging faced challenges in diagnosis and treatment. Today,
the integration of artificial intelligence (AI) and bioinformatic methods is changing this landscape. This paper explores this
transformative journey, emphasizing the critical role of AI in neurology, aiming to integrate a multitude of methods and thereby
enhance the field of neurology. Over the past 25 years, integrating biomedical data science into medicine, particularly neurology,
has fundamentally transformed how we understand, diagnose, and treat neurological diseases. Advances in genomics sequencing,
the introduction of new imaging methods, the discovery of novel molecular biomarkers for nervous system function, a
comprehensive understanding of immunology and neuroimmunology shaping disease subtypes, and the advent of advanced
electrophysiological recording methods, alongside the digitalization of medical records and the rise of AI, all led to an unparalleled
surge in data within neurology. In addition, telemedicine and web-based interactive health platforms, accelerated by the COVID-19
pandemic, have become integral to neurology practice. The real-world impact of these advancements is evident, with AI-driven
analysis of imaging and genetic data leading to earlier and more accurate diagnoses of conditions such as multiple sclerosis,
Parkinson disease, amyotrophic lateral sclerosis, Alzheimer disease, and more. Neuroinformatics is the key component connecting
all these advances. By harnessing the power of IT and computational methods to efficiently organize, analyze, and interpret vast
datasets, we can extract meaningful insights from complex neurological data, contributing to a deeper understanding of the
intricate workings of the brain. In this paper, we describe the large-scale datasets that have emerged in neurology over the last
25 years and showcase the major advancements made by integrating these datasets with advanced neuroinformatic approaches
for the diagnosis and treatment of neurological disorders. We further discuss challenges in integrating AI into neurology, including
ethical considerations in data use, the need for further personalization of treatment, and embracing new emerging technologies
like quantum computing. These developments are shaping a future where neurological care is more precise, accessible, and
tailored to individual patient needs. We believe further advancements in AI will bridge traditional medical disciplines and
cutting-edge technology, navigating the complexities of neurological data and steering medicine toward a future of more precise,
accessible, and patient-centric health care.

(JMIR Neurotech 2024;3:e59556)   doi:10.2196/59556
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Introduction

Neurological disorders are a leading cause of disability and
mortality worldwide, affecting millions of individuals and
placing a significant burden on health care systems. In 2019,
these disorders were responsible for nearly 10 million deaths
and 349 million disability-adjusted life-years globally, with
stroke and neonatal encephalopathy being the primary
contributors [1,2]. Over the past 3 decades, the prevalence of
neurological disorders has increased substantially, particularly
in low- and middle-income countries, and this trend is expected
to continue as populations age [1]. However, we have also
witnessed remarkable advancements in technology and data
science that are transforming the field of neurology. These
developments offer new hope for improving the diagnosis,
treatment, and management of neurological disorders. This
paper explores the evolving landscape of neurology, focusing
on how the integration of cutting-edge technologies and vast
datasets is revolutionizing our understanding of neurological
disorders and paving the way for more personalized, effective,
and accessible care.

In the past 25 years, numerous technological advancements
have significantly impacted the field of neurological medicine.
These advancements include the integration of cutting-edge
imaging technologies that offer deeper insights into brain
anatomy, physiology, and function; the use of advanced
electrophysiological techniques to create detailed brain region
and connectivity maps; breakthroughs in neurogenetics and
molecular biology that aid in identifying and characterizing
neurological conditions; and the expansion of telemedicine,
which allows physicians to deliver more efficient and accessible
care.

Specifically, one of the most notable advancements has been
the widespread adoption of electronic health records (EHRs).
EHRs have not only transformed clinical practice but also
opened up vast opportunities for research by creating large
datasets that can be analyzed using advanced data science

techniques. The integration of EHRs with other data sources,
such as imaging and genetic data, has enabled researchers to
identify novel disease subtypes, predict patient outcomes, and
develop personalized treatment strategies. Another area where
technology has made significant strides is in the development
of novel diagnostic tools and biomarkers. For example, advances
in neuroimaging techniques, such as functional magnetic
resonance imaging (fMRI) and positron emission tomography
(PET) scans, have facilitated more accurate diagnosis of
neurological diseases. Similarly, the discovery of new genomic
and molecular biomarkers has paved the way for more targeted
therapies and precision medicine approaches. Furthermore, the
increasing availability of large-scale neurological datasets,
coupled with advancements in machine learning and artificial
intelligence (AI), has opened new possibilities for predictive
and decision support systems. These tools can assist clinicians
in making more accurate diagnoses, predicting disease
progression, and optimizing treatment plans based on individual
patient characteristics.

It is important to acknowledge that while this paper aims to
provide a comprehensive overview of the impact of AI on
neurology, its scope is necessarily limited. We have focused on
key areas that, in our assessment, have most significantly
influenced the field of neurology over the past quarter-century.
The subsequent 5 chapters of this paper dive deeper into these
advancements, exploring how they are reshaping the landscape
of neurological care and research (Figures 1 and 2). Rather than
attempting an exhaustive analysis of each topic, our goal is to
highlight the current state of the art, identify pressing challenges
and promising opportunities, and suggest potential future
directions within each domain. By doing so, we hope to provide
a balanced perspective on the transformative potential of AI in
neurology, while also recognizing the vast and rapidly evolving
nature of this field. This paper serves as a starting point for
further exploration and discussion, acknowledging that the
integration of AI in neurology is an ongoing journey with many
exciting developments yet to come.
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Figure 1. Fields of advances in the last half-century in neurology. AI: artificial intelligence; CT: computed tomography; EHR: electronic health record;
GWAS: genome-wide association study; MRI: magnetic resonance imaging; NGS: next-generation sequencing; PET: positron emission tomography;
RNA-seq: RNA sequencing.
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Figure 2. Timeline of key technological advances in the last 25 years. AD: Alzheimer disease; ADNI: Alzheimer’s Disease Neuroimaging Initiative;
AI: artificial intelligence; ALS: amyotrophic lateral sclerosis; CAD: computer-aided design; CT: computed tomography; EHR: electronic health record;
ENIGMA: Enhancing NeuroImaging Genetics through Meta‐Analysis; FDG-PET: fluorodeoxyglucose-positron emission tomography; GWAS:
genome-wide association study; MRI: magnetic resonance imaging; NIH: National Institutes of Health; scRNA-seq: single-cell RNA sequencing;
SeLECT: severity of the stroke, large artery atherosclerosis, early seizure, cortical involvement, and territory of the middle cerebral artery.

The Digital Transformation of
Neurological Evaluation: From Bedside
Physical Examination to Data-Driven
Diagnostics

Overview
The transition from traditional physical examination to digital
data acquisition and patient triage in outpatient clinics marks a
significant paradigm shift in neurological evaluation. It is widely
accepted that a meticulous patient history is crucial for achieving
an accurate and timely diagnosis, with estimates suggesting that
70% to 90% of medical diagnoses can be determined by history
alone [3]. This, combined with a physical examination and a
comprehensive understanding of neuroanatomy, constitutes a
traditional approach to neurological diagnosis, primarily aimed
at pinpointing the disease’s anatomical location. The specific
features that make neurology unique include a heavy reliance
on complex physical examination for diagnosis and follow-up,
use of specialty-specific neurophysiologic testing (eg,
electromyography or nerve conduction studies,
electroencephalogram [EEG], sensory evoked potential studies,
and sensory evoked potentials), high use of neuroradiologic
imaging such as magnetic resonance imaging (MRI) and
computed tomography (CT), use of videotaped examinations
by clinicians for movement disorders, use of patient-recorded
videos or pictures in the medical record (eg, seizures,
pseudoseizures, tics, and dyskinesias), and importance of patient
documentation of episodic complaints (eg, migraines and
seizures).

While traditional approaches have been the backbone of
neurological practice, the rapid growth of digital technologies
and the increasing volume of patient data have necessitated a
shift in how neurologists approach diagnosis and treatment. The
digitization of medical records, in particular, has been a game
changer, allowing clinicians to capture, store, and analyze vast
amounts of patient information in ways that were previously
unimaginable. This transition has not only improved the
efficiency and accuracy of neurological care but also opened
up new avenues for research and discovery.

The adoption of EHRs has been a gradual process, driven by
advances in computing technology and the recognition of their
potential to improve patient care. The journey began in the
1960s with the earliest attempts to digitize patient information,
but it was not until the 1990s that electronic medical records
began to gain widespread traction. In the 1990s, the rise of more
affordable, powerful, and compact computing technologies,
alongside the increasing use of local area networks and the
internet, catalyzed the development and adoption of electronic
health and medical records, also known as EHRs [4]. Initially,
EHRs were predominantly deployed in academic medical
facilities, containing only partial medical information, with the
remainder still documented on paper [5]. These early systems
were mainly hosted on large mainframes with limited
functionalities, focusing on laboratory and medication [6]. Their
adoption faced challenges due to high costs, data-entry errors,
and only partial acceptance by physicians [7]. At this stage,
EHRs were primarily used for data interchange among
physicians [8] and for image scanning and documentation [9],
with clinical use increasing as computers became more
integrated into health care as “physician workstations” [10].
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There has been rapid adoption of EHRs over the last few years,
spurred largely by financial incentives allocated by the Health
Information Technology for Economic and Clinical Health Act
as part of the American Recovery and Reinvestment Act of
2009. In the years that have since passed, the global use and
reliance on EHRs in departments such as the emergency
department have grown stronger. By 2015, EHRs had gained
recognition from major medical organizations and governments
as essential for storing patient data to optimize care delivery
[11]. This app endowed the hospital with improved web or
client-server–based systems with relational databases,
facilitating easier data access and the sharing of medical
information through health information exchange networks [12].
This period also saw efforts to standardize EHRs internationally,
allowing for a common set of data exchange standards and
terminology. In outpatient clinics, there is a consensus that the
integration of EHR has resulted in a significant reduction in

overall waiting times and a decrease in documentation errors
[13].

Improved Patient Care and Triage in Neurology
The implementation of EHR system has fundamentally altered
both research paradigms and clinical workflows for neurologists
(Figure 3). The EHR system, by its very design, has transformed
the way neurologists compose clinical notes, often replacing
individualized communication styles with template-based entries
that aggregate vast amounts of data with minimal effort.
Neurologists have written about the challenges of EHR use with
many published articles discussing the difficulties in neurology
practice. Recent publications report concerns with the efficiency
of the use of EHRs in academic practice, challenges of
implementation, improper documentation, issues of privacy,
and impairing the physician-patient relationship.

Figure 3. Summary of neurology-related data science–based advances in the last half-century. AD: Alzheimer disease; ADNI: Alzheimer’s Disease
Neuroimaging Initiative; AI: artificial intelligence; ALS: amyotrophic lateral sclerosis; CRISPR: clustered regularly interspaced short palindromic
repeats; EHR: electronic health record; ENIGMA: Enhancing NeuroImaging Genetics through Meta‐Analysis; GWAS: genome-wide association
study; IMNM: immune-mediated necrotizing myopathy; NIH: National Institutes of Health; PRx: pressure reactivity index; SeLECT: severity of the
stroke, large artery atherosclerosis, early seizure, cortical involvement, and territory of the middle cerebral artery.

The adoption of EHRs has had a significant impact on the field
of neurology, along with the broader medical community,
influencing everything from clinical practice and patient care
to research and administration. EHR systems have standardized
the documentation process, making it easier to maintain
consistency across patient records. This is particularly beneficial
in neurology, where the complexity of neurological conditions
requires detailed recording of clinical findings, treatment plans,
and patient responses. However, the standardization can

sometimes lead to a loss of individual clinician’s nuances in
documenting their observations and thought processes,
potentially impacting the richness of the clinical narrative.
Another area is accessibility and coordination of care, which
allows for easier access to patient records across different health
care settings, which is crucial for neurology patients who often
require multidisciplinary care. This accessibility improves
coordination among health care providers, leading to more
integrated care plans and better patient outcomes. Furthermore,
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EHR systems have facilitated the growth of telemedicine, which
has become especially important for neurology patients with
mobility issues or those living in remote areas. One
overwhelming success is the wealth of data captured in EHRs
that can be a gold mine for neuroinformatic research and the
development of predictive models for neurological diseases.
This aspect is particularly relevant in academic and research
settings where EHR data can be analyzed to uncover patterns,
predict outcomes, and guide the development of new treatment
protocols [14].

Prediction Models Using Electronic Records
In this current era of big data, the focus has shifted toward
leveraging the vast databases of EHRs through AI and machine
learning technologies. This involves developing AI algorithms
for predicting patient risk and personalized treatment plans [15].
One example is a study that focuses on addressing the gap in
predicting poststroke seizures, a significant concern in neurology
given stroke’s role as a leading cause of acquired epilepsy in
adults [16]. The researchers aimed to develop and validate a
prognostic model, named the SeLECT score (“Se” severity of
the stroke, “L” large artery atherosclerosis, “E” early seizure,
“C” cortical involvement, and “T” territory of the middle
cerebral artery), for predicting the risk of late seizures (occurring
more than 7 days after) in individuals who have had an ischemic
stroke. The SeLECT score was developed through a
multivariable prediction model using data from 1200 participants
in Switzerland and validated externally in 1169 participants
across Austria, Germany, and Italy. It incorporates 5 clinical
predictors: severity of stroke, large-artery atherosclerotic
etiology, early seizures, cortical involvement, and territory of
middle cerebral artery involvement. The model’s effectiveness
was demonstrated by its ability to stratify the risk of late seizures
after stroke with a concordance statistic of 0.77 in validation
cohorts, indicating good predictive accuracy. This approach
exemplifies the potential of predictive models to transform
patient care in neurology by enabling tailored interventions
based on individual risk assessments [16].

Another example is a study that introduces a statistical model
designed to improve the diagnosis of immune-mediated
necrotizing myopathy (IMNM), a condition where delayed
diagnosis can lead to significant morbidity. In a subset of IMNM
diagnosis is particularly challenging as in patients describe
chronic course and lack specific symptoms. The model leverages
electrical myotonia versus fibrillations as biomarkers to predict
immunotherapy treatment response, based on data from 119
cases of IMNM and 938 other patients with myopathy. All
patients underwent electrophysiological evaluations, muscle
biopsies, neurological examinations, and creatine kinase
measurements [17]. In the broader context of predictive models
in neurology, this study exemplifies how statistical models can
significantly enhance the diagnosis and treatment of neurological
conditions. By identifying specific biomarkers and incorporating
them into a predictive framework, such models offer a path
toward more personalized and timely interventions. This
approach mirrors the potential seen in the SeLECT score for
predicting poststroke seizures, further illustrating the critical
role of predictive models in advancing neurology practice.

Predictive models may also incorporate other types of data,
including imaging, biomarkers, and environmental and lifestyle
factors. The scope of predictive models is broad; in cerebral
hemodynamics, they focus on assessing cerebral autoregulation
to determine the optimal cerebral perfusion pressure for
individual patients. For example, the pressure reactivity index
[18] uses data from ventricular catheters [19] or
intraparenchymal devices [20]. Cerebral metabolism is another
area benefiting from predictive analytics, with algorithms
analyzing brain interstitial fluid via intracerebral microdialysis
to detect metabolic distress, anaerobic metabolism, cell injury,
and membrane breakdown. This monitoring facilitates early
detection of metabolic changes and guides therapeutic
interventions [21]. In addition, predictive analytics plays a
critical role in brain oxygenation monitoring, ensuring a balance
between oxygen supply and demand. The primary methods in
this field include direct brain tissue oxygen tension monitoring
[22], jugular venous bulb oximetry [23,24], and near-infrared
spectroscopy [25]. Moreover, in recent years, the development
of predictive analytics for neurological disorders has seen
significant advancements. For instance, researchers have derived
a single “Alzheimer Disease Identification Number” from
clinical and neuroimaging data, offering a novel approach to
tracking disease severity [26]. In multiple sclerosis (MS), a
developed predictive model can identify MS subtypes through
MRI data and unsupervised machine learning [27]. In Parkinson
disease (PD), predictive models have identified antitumor
necrosis factor therapy as a potential therapeutic option for
mitigating disease risk among patients with inflammatory bowel
disease [28]. These advanced analytics methods demonstrate
improved accuracy and prognostication over traditional models,
offering new insights into patient management and treatment
outcomes in neurovascular research.

This shift toward health care institutions taking on the
responsibility for developing decision support tools marks a
significant point in the regulatory environment and the need for
tailored solutions. At the same time, the global health care sector
is increasingly tapping into EHR data for AI-based projects,
aiming to use the vast amount of medical data to enhance patient
outcomes through disease prediction, treatment personalization,
and the acceleration of new drug discovery especially in
neurology. These efforts require strict protocols for data
standardization, processing, and privacy to maximize the
benefits of AI research while protecting sensitive patient
information. Supported by initiatives such as those from the
Korean government [29,30], there is a growing movement
toward leveraging AI in health care, pointing toward a future
where AI, powered by EHR data, becomes central to advancing
medical research and delivering personalized care to patients.

Creation of Large Accessible Datasets
Despite the critical importance of training databases, there is a
lack of publicly accessible, reliable datasets. This shortage
primarily results from data sharing barriers across institutions,
the time and cost of data annotation, and occasionally, the
complexity of building data processing pipelines. Training data
may be preannotated, a process known as “supervised learning,”
or it may not be, which is referred to as “unsupervised learning.”
In the realm of AI in health care, supervised learning models
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are predominantly used due to the critical nature of their
applications, where human lives hinge on the accuracy of AI
outputs. To address this issue, several national and multinational
data banks have emerged, covering various neurological
conditions [31]. From 2013 to 2014, several governments
initiated national initiatives aimed at understanding brain
function, such as the National Institutes of Health (NIH) BRAIN
Initiative [32], the Human Brain Project [33], and the Brain
Mapping by Integrated Neurotechnologies for Disease Studies
project in Japan [34]. Many of them soon became global and
involved collecting and analyzing voluminous data, including
neuroimaging, genetic, biospecimen, and clinical assessments,
to unlock and decipher the genesis and prognosis of neurological
conditions. As the collection of data became increasingly
prominent, the need for procedures, standards, hardware, and
software for data-intensive computing increased [35]. These
projects leverage big data to explore the brain structure
(“connectome”) and function with the ultimate goal of
developing new treatments for neurological diseases.

For instance, the Alzheimer’s Disease Neuroimaging Initiative
(ADNI), which was launched in 2005, aims to identify
biomarkers for the early detection and monitoring of Alzheimer
disease (AD). It supports interventions, prevention,
and treatments through early diagnostics and facilitates global
data sharing [36,37]. By collecting and analyzing data on
cognitive functions, brain structure, metabolism (via PET and
MRI scans), genetics, and biochemical changes in a diverse
cohort, ADNI has provided significant contributions. Its most
substantial contribution to date is the development of
methodologies for the early diagnosis of AD using biomarker
tests, such as amyloid PET scans and cerebrospinal fluid lumbar
punctures. This approach has revealed a significant number of
individuals in their mid-70s showing preclinical stages of AD
[38], underscoring the critical importance of early prevention
and treatment strategies for the disease.

In parallel, the Enhancing NeuroImaging Genetics through
Meta‐Analysis Consortium [39], established in 2009,
represents another pivotal big data initiative in the field of
neuroscience. It aims to integrate neuroimaging and genetic
data to investigate brain genotype-phenotype relationships.
Notable achievements of the Enhancing NeuroImaging Genetics
through Meta‐Analysis consortium include identifying
genome-wide variants related to brain imaging phenotypes
[40,41] and examining MRI-based abnormalities across various
conditions [39,42] such as major depressive disorder [43] and
bipolar disorder [44]. These discoveries have substantially
improved diagnostics and patient care, showcasing the value of
integrating big data in advancing neuroscience research.

Beyond the contributions of major organizations, recent years
have witnessed the emergence of numerous big data–driven
diagnostic solutions in neuroscience from smaller entities. Key
discoveries include the identification of MS subtypes using
sophisticated imaging analyses and improvements in MRI data
[27] and unsupervised machine learning as well as the
differentiation of dementia subtypes through the analysis of
multimodal data from ADNI [45]. In addition, significant strides
have been made in depression research, highlighted by the
successful prediction of treatment response through various

methods: connectome gradient dysfunction paired with gene
expression [46], resting state connectivity markers of
transcranial magnetic stimulation response [47], and a
sertraline-response EEG signature [48]. In terms of migraine
research, the Italian Migraine Registry is being developed to
serve as a comprehensive source of clinical, biological, and
epidemiological big data. This registry aims to enhance our
understanding of therapeutic response rates and the efficacy of
treatments [49]. Another notable diagnostic initiative is the
iPrognosis mobile app designed to expedite the diagnosis of PD
and improve the quality of life for patients with PD. The app
functions by collecting data during the user’s interaction with
smart devices, including smartphones and smartwatches,
showcasing the innovative use of technology in patient care and
research [50].

In summary, over the past decade, numerous emerging AI
technologies have significantly enhanced patient flow through
various means. These advancements range from facilitating
direct intrahospital communication to autonomously analyzing
radiological images and assisting in the selection of patients for
specialized treatments. The development and refinement of
these AI systems rely heavily on access to extensive data banks,
which serve as foundational resources for training purposes.
Such repositories, both large and small, have already yielded
substantial improvements in the diagnosis of numerous
neurological conditions. The trend toward leveraging big data
is expected to intensify, with the emergence of larger databases
in the coming years. This expansion will be further supported
by an increasing volume of data collected through wearable
technology. Consequently, these databases will play a crucial
role in enabling the development of new AI-driven approaches
for treatment and diagnosis [51].

New Communication Technologies:
Telemedicine and Remote Patient
Monitoring

Overview
As powerful an approach as AI-mediated medical treatment is,
it still does not fully address the growing demand for
neurological care, which is exacerbated by a shortage of
neurologists. This challenge is expected to intensify with the
expanding aging population, highlighting the urgent need for a
more substantial neurological care provision. Telemedicine
emerges as a promising solution to bridge this gap, offering
access to those hindered by geographical or physical barriers
such as mobility issues (Figure 3). It facilitates earlier access
to specialized care, potentially reducing the strain on patients
and caregivers while enhancing patient satisfaction. In addition,
telemedicine provides an avenue for neurologists facing social,
physical, or health-related challenges to maintain or extend their
practice, including those considering part-time work or
retirement. It also allows for more efficient use of neurologists’
time by eliminating travel between facilities, thereby increasing
their availability for patient evaluations and the ability to serve
remote clinics. Telemedicine leverages a wide array of
technologies, including 2-way videoconferencing, data storage
and forwarding, and mobile and wireless devices, to deliver
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care more flexibly and efficiently [52]. Despite previous barriers
to telemedicine adoption, such as reimbursement issues, recent
policy changes by the Centers for Medicare and Medicaid
Services, which expanded Medicare-covered telehealth services
for 2019, have significantly improved access to neurological
care. These changes not only enhance patient care options but
also open new revenue streams for neurologists, signaling a
shift toward a more accessible and sustainable model of
neurological care delivery [53,54].

Virtual Consultations
Telestroke services, first described in 1999 and formally
integrated into stroke care systems for over a decade, have
significantly influenced the broader field of telemedicine. This
period has seen expanded access to care, improvements in
quality, and higher rates of reperfusion therapy for patients with
ischemic stroke [55]. In addition, comparisons between
telestroke and in-person evaluations have shown similar rates
of stroke mimics, indicating that assessment scales and imaging
interpretations are just as effective when conducted remotely
[56]. Telestroke’s acceptance across diverse cultures further
underscores its effectiveness and potential for broader
application. However, despite these strides in enhancing stroke
care through telemedicine, there remains a gap in data regarding
the suitability and practicality of telemedicine for treating other
neurological conditions [57], highlighting an area ripe for
exploration and development.

Another example is in neuromuscular conditions that encompass
a wide range of disorders, from common diabetic neuropathy
to rare diseases such as periodic paralysis. Many of these
conditions, including amyotrophic lateral sclerosis (ALS),
necessitate a comprehensive, multidisciplinary management
approach. Despite rapid advancements in diagnostic
technologies, the accurate diagnosis of many neuromuscular
disorders often hinges on detailed neurological examinations
to detect subtle clinical signs that might be overlooked in
teleneurology assessments. However, telemedicine has been
found beneficial for patients with established diagnoses and
stable symptoms, offering a convenient option for follow-up
evaluations [58]. Research on the use of teleneurology
specifically for neuromuscular disorders is limited, and only a
handful of studies have been published to date. These studies,
primarily focused on patients with a confirmed diagnosis of
ALS [55], revealed a generally positive perception of
teleneurology among patients, caregivers, and health care
providers. Patients expressed high levels of satisfaction
appreciating particularly the elimination of travel-related
burdens, which led to less stress and more comfortable medical
interactions. In addition, a smaller study involving patients with
advanced facioscapulohumeral muscular dystrophy indicated
that teleneurology was well-received by both patients and
caregivers [57]. The quality of care provided via teleneurology
was rated highly in patient questionnaires, although it was noted
that acute care issues were not addressed in these evaluations.

There are other examples such as concussions and traumatic
brain injuries [59,60], dementia evaluations [61], and the
management and follow-up of patients with epilepsy [62,63].
It has also facilitated the diagnosis and treatment of nonacute

headaches [64-66], assessment of movement disorders [67-69],
remote care for MS [70,71], as well as follow-up consultations
and care management patients with neuromuscular diseases
[52,72]. The COVID-19 pandemic saw an increase in
telemedicine use across specialties to manage patient care during
lockdowns, mask mandates, and overall minimization of
personal interactions. This era is characterized by the adoption
of telemedicine on a national scale, exemplified by Saudi
Arabia's adoption of telemedicine as an alternative health
delivery system [73] and the launch and deployment of a
telemedicine program by the Italian government [74].

Improving Patient Flow and Early Detection
Stroke is a highly prevalent neurological disorder, affecting
approximately 9.4 million Americans aged >20 years between
2017 and 2020 [75]. More than half of the patients who
experienced stroke were left chronically disabled [76], and the
annual mortality rate as of 2020 was 160,000 Americans [75].
For many years, stroke diagnosis was significantly hampered
by time delays between the initial detection at radiologic centers
and subsequent treatment at thrombectomy centers within
hospitals. As of 2016, this delay averaged nearly 100 minutes
in the United States, leading to increased morbidity [77] and
disability [78]. In response to this challenge, an AI company
developed a convolutional neural network (CNN) algorithm
capable of automatically detecting ischemic stroke patterns
associated with large vessel occlusions (LVOs) [79]. Upon
identifying an LVO, the algorithm autonomously alerts the
stroke treatment team, bypassing the need for any intervention
by the clinician who requested the radiologic examination.
Alerts are dispatched through a mobile app, facilitating
immediate communication and resulting in an average reduction
of 52 minutes in the time to LVO treatment initiation [80].
Beyond facilitating direct communication, modern AI-based
telestroke systems enhance patient flow by autonomously
analyzing radiological images, often surpassing the capabilities
of human radiologists [81]. Clinical AI today is adept at
interpreting CT and MRI scans to determine the size and extent
of brain damage caused by ischemic strokes [81] and can even
forecast the potential progression of the stroke [82].

AI has also augmented radiologist performance by aiding in the
selection of patients for endovascular thrombectomy. This is
achieved through the integration of automated Alberta Stroke
Program Early CT Scores (ASPECTS) with clinical
presentations, thereby correlating with the NIH Stroke Scale
scores [83,84]. Moreover, AI proves its proficiency in acute
prognosis prediction by evaluating detected infarct volumes
[85] or white matter hyperintensities [86]. It even enables
predicting treatment outcomes [84,87,88] with remarkable
accuracy, including a notable 7% improvement in forecasting
symptomatic intracerebral hemorrhage [89]. These
advancements highlight AI’s broad application in stroke care,
from the analysis of radiological imaging to the identification
of stroke indicators, enhancing intrahospital communication
and significantly contributing to the decision-making process
for timely and effective treatments.
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Quantum Computing
Quantum computing represents the potential to change the way
we view data storage, specifically in neurology. Unlike classical
computers, which use bits to process information as binary 0s
or 1s, quantum computers use qubits that can exist in multiple
states simultaneously due to superposition. This allows quantum
computers to process vast amounts of data at unprecedented
speeds, making them exceptionally powerful for complex
computations. Quantum computing could significantly enhance
our ability to analyze large datasets, such as those generated
from neuroimaging, genomics, and EHRs. The ability to process
and analyze these massive datasets more efficiently can lead to
more accurate models of brain function, disease progression,
and treatment outcomes. For example, quantum algorithms
could optimize machine learning models used for diagnosing
neurological disorders, predicting disease trajectories, and
personalizing treatment plans.

In summary, telemedicine and remote patient monitoring have
emerged as transformative forces in neurological care, offering
unprecedented access, convenience, and efficiency. From virtual
consultations for stroke, neuromuscular disorders, and
movement disorders to AI-driven early detection and
prognostication in acute stroke management, these technologies
are reshaping the landscape of neurological services. As we
navigate the challenges posed by an aging population and a
shortage of neurologists, the continued adoption and
advancement of telemedicine hold immense promise in ensuring
timely, equitable, and effective care for patients with
neurological conditions worldwide.

Genetics and Omics: Driving
Personalized Medicine in Neurology

Overview
The genetic and molecular insights gained from omics studies
are informing the development of neurotechnological
interventions, from brain-computer interfaces (BCIs) to
neuroprosthetics (Figure 3). Despite the historical limitations
imposed by the high costs of genetic analysis and the constrained
ability to address neurological disorders once identified, recent
technological advancements in DNA sequencing and gene
editing have propelled genetic analysis and gene therapy to the
forefront of clinical neurology. These innovations promise
significant improvements in patient care, emphasizing the
critical role of genetics in understanding and managing
neurological diseases. The human genome’s complexity, with
its 3 billion nucleotides, of which <2% encode proteins,
underlines the intricate relationship between genetic variations
in both protein-coding genes and noncoding regulatory DNA
and disease risk. Diseases can be monogenic, resulting from a
single gene mutation, or polygenic, involving mutations across
multiple genes. The advent of next-generation sequencing (NGS)
has exponentially increased the speed, accuracy, and
affordability of DNA sequencing, making it possible to use an
individual’s genome to guide their medical care. This leap in
sequencing technology, alongside developments in gene editing,
particularly Clustered Regularly Interspaced Short Palindromic
Repeats (CRISPR)/Cas9, marks significant advancement toward

correcting genetic mutations responsible for neurological
diseases.

The integration of genomic information from genome-wide
association studies (GWASs) for predicting disease risk and
aiding in the identification of patient populations for clinical
trials, points toward a future where genetic screening plays a
crucial role in early intervention strategies. As gene-based
diagnostics and treatments become more accessible and refined,
the potential for addressing a vast array of neurological
conditions grows, underscoring the importance of continued
investment in basic science research to fuel the development of
tomorrow’s treatments.

Genetics in Predictive Analytics
Together, NGS and GWAS significantly enhance neurological
predictive analytics by offering a comprehensive approach to
understanding complex diseases. NGS provides detailed genetic
screening and diagnosis, enabling precise prognostication,
informed treatment planning, and accurate genetic counseling
through genetic risk scores. It deepens our understanding of
disease mechanisms by mapping phenotype or genotype
correlations, paving the way for novel therapies and personalized
medicine in neurology. GWAS, in turn, identifies genetic loci
associated with various neurological conditions, illuminating
their heritability and pathophysiology and revealing potential
therapeutic targets. Collectively, these technologies form a
potent toolkit for elucidating the genetic foundations of
neurological disorders, promising advancements in treatment
and patient care [90-92].

In the past 2 decades, GWAS facilitated many discoveries, such
as the identification of multiple novel risk loci in
neurodegenerative diseases like AD and PD (CR1, BIN1, and
PICALM for AD [93]; SNCA and MAPT for PD [94]) that
elucidate roles in lipid processing, the immune system, and
synaptic-cell functioning pathways. Similarly, in ALS, GWAS
findings have highlighted genes such as UNC13A and the
significance of the 9p21.2 region in both familial and sporadic
forms [95,96]. Chronic conditions such as MS [97], epilepsy
[98], and restless legs syndrome [99] have benefited from
GWAS revealing numerous loci, particularly highlighting the
autoimmune nature of MS and the dopaminergic
neurotransmission and iron dysregulation in restless legs
syndrome. Cerebrovascular disorders, such as stroke [100] and
Moyamoya disease [101], have revealed specific genetic risk
factors through GWAS, including the identification of 8 different
loci causing neurological instability postischemic stroke and
the strong association of the RNF213 locus with Moyamoya
disease risk. These discoveries underscore the complexity of
neurological diseases and the crucial role of genetic factors,
paving the way for targeted therapies and improved diagnostic
strategies.

Genetic insights are instrumental for predictive models that use
algorithms and statistical techniques, including machine learning
and neural networks, to identify patterns and predict future
clinical outcomes from data. For example, in neurovascular
conditions such as cerebral aneurysms [102] and arteriovenous
malformations [103], predictive models have successfully
forecasted risks of cerebral aneurysm rupture and outcomes
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following endovascular treatment of arteriovenous
malformations. These predictions are based on a combination
of basic demographics, clinical information, and computational
blood flow simulations processed through machine learning
and image processing techniques.

Beyond DNA sequencing, other “omics” have been
transformative in various neurology traits. For instance,
transcriptome analysis, used to measure the expression levels
of genes, provided significant insights across various diseases.
In AD, it uncovered 3 molecular subtypes [104] and led to the
development of a blood RNA test that distinguishes AD from
other dementias before symptom onset [105,106], also
highlighting the downregulation of NeuroD6 as a potential
biomarker [107]. For PD, it enabled patient stratification based
on mitochondrial or lysosomal dysfunctions and assisted in
selecting neuroprotective compounds [108]. In ALS,
transcriptome analysis facilitated the molecular classification
into 2 distinct subtypes, sporadic ALS group 1 and group 2, by
analyzing deregulated genes and pathways in postmortem cortex
transcriptomes [109,110]. Moreover, it revealed central nervous
system (CNS) dysregulation of over 300 biological processes
in prion infections and suggested alternative pathways for
astrocyte activation [111]. It also identified molecular
heterogeneity in trigeminal ganglia subregions, aiding in the
understanding of migraine and headache mechanisms through
the analysis of postmortem trigeminal ganglia [112]. Even
though it was revolutionary at the time, bulk transcriptome
analysis has several disadvantages that have prompted the
development and adoption of single-cell RNA sequencing
(scRNA-seq) and spatial transcriptomics technologies. One key
limitation of bulk transcriptomics is its inability to capture
cellular heterogeneity within complex tissues or cell populations,
as it provides only an average expression profile from a bulk
sample. This averaging masks the diversity of individual cell
types and their unique transcriptional states, which are crucial
for understanding biological processes and disease mechanisms.
In addition, bulk transcriptomics lacks spatial context, meaning
that it cannot pinpoint where specific genes are being expressed
in a tissue. scRNA-seq addresses these issues by profiling the
transcriptomes of individual cells, revealing the cellular
heterogeneity and enabling the identification of rare cell types
and subpopulations. This detailed cellular landscape often yields
valuable insights into disease progression, such as the discovery
of key demyelinating subpopulations mediating early AD
progression [113]. These discoveries are made possible and
reliable due to large scRNA-seq databases, which can be either
self-generated or obtained from publicly available repositories
and atlases. The past decade has witnessed the emergence of
many such atlases, including the Allen Brain Atlas [114],
making it easier for researchers to conduct scRNA-seq analysis,
as self-sequencing of data may be time-consuming and costly.
Spatial transcriptomics technologies go a step further by
retaining the spatial context of gene expression, allowing
researchers to map where in a tissue each gene is active.
Together, scRNA-seq and spatial transcriptomics offer a more
detailed and nuanced view of gene expression.

Selective neuronal vulnerability as a subfield in neurology
focuses on the molecular mechanisms underlying enhanced

neuronal degeneration. This field highly benefited from
single-cell technologies, which linked tau accumulation to AD
progression and depletion of specific excitatory neurons [115].
In addition, these technologies enabled the identification of
molecular features pruning degradation of dopaminergic neurons
in PD [116]. Moreover, it facilitated the characterization of
specific hippocampus and dorsolateral prefrontal cortex neuronal
subtypes, involved in many neuropsychiatric disorders, such as
schizophrenia and major depressive disorder [117]. Another
neurology subfield highly benefiting from scRNA-seq-based
discoveries is neuroimmune dysfunction, which sheds light on
the function of immune cells in neurodegenerative disease
progression. For example, studies have identified
disease-associated microglia with unique gene expression
profiles in AD models and distinct microglial responses
associated with different stages of neurodegeneration [118,119].
In MS, transcriptomic analyses have uncovered microglial
subtypes with specific gene dysregulations, suggesting potential
therapeutic targets [120]. Furthermore, the adaptive immune
response, involving T cells and B cells, has been implicated in
the pathology of MS and PD, highlighting the influence of
immune cells on neuronal degeneration [121,122]. Single-cell
sequencing has also revealed key insights into glioma, showing
how myeloid cell interactions within the tumor
microenvironment drive disease progression and affect treatment
outcomes [123]. Similarly, in COVID-19, it has identified
changes in microglia and astrocytes gene expression, suggesting
that inflammation and immune responses contribute to
neurological symptoms, opening new paths for treatment [124].
Finally, single-cell technologies have also revolutionized the
understanding of how different cell types within the CNS and
tumors respond to treatments. In glioblastoma [125] and
medulloblastoma [126], for instance, scRNA-seq has identified
potential therapeutic targets based on the cells’ developmental
and inflammatory processes, demonstrating the potential for
tailored treatments.

Despite significant advancements in the field, single-cell
transcriptomics still faces challenges and limitations. These
include technical hurdles in sample collection [127] and cell
isolation from brain tissue [128,129], which impact data quality
and reproducibility. Key future directions involve advancing
single-cell multiomics to integrate various data types with
clinical information, enhancing the precision of spatial
transcriptomics and applying these technologies to brain
organoids for deeper insights into brain function and pathology.

Neurotechnology: Advancing Diagnosis,
Treatment, and Rehabilitation in
Neurology

Overview
Neurotechnology refers to the integration of techniques and
devices facilitating a direct interface between technical
apparatuses and the nervous system (Figure 4). These technical
components, including electrodes, computers, or advanced
prostheses, serve the purpose of capturing signals from the brain
and converting them into operational commands or modulating
brain activity through the application of electrical or optical
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stimuli. Ongoing research explores closed-loop interactions
between systems for signal acquisition and stimulation (control
circuits) [130].

Neurotechnology has its roots in the early exploration of brain
electrical activity. Electrical currents of the brain were first
described in 1875 by Richard Caton, who observed
electroencephalography from exposed rabbits’ and monkeys’
brains. In 1924, German neurologist Hans Berger enhanced the
measurement of human brain electrical activity through the
scalp, recording and depicting it graphically on paper. This laid
the foundation for modern EEG technology, which has become
a cornerstone of noninvasive BCIs. EEG signals are now
commonly used in BCIs to facilitate bidirectional
communication between the human brain and external devices.
By monitoring various cortical regions, it is possible to extract
signals across multiple frequency bands associated with distinct
human behaviors, enabling the study of corresponding patterns.
EEG-based BCIs have significantly advanced our understanding
of cognitive activities and contributed to progress in computer
science and engineering [131]. In EEG-based BCI applications,
machine learning technologies typically fall into 2 major
categories: classification and individual adaptive tasks. Deep
learning, a subset of machine learning, uses deep neural
networks to learn EEG patterns [132], featuring numerous
neurons across multiple layers to capture cognitive-related
features. The potential of BCIs is particularly evident in the
field of robotics. EEG-based BCIs have demonstrated efficacy

in communication with robots, with early applications, including
the control of wheelchairs through visual simulations or motor
imagery [131]. These advancements pave the way for more
sophisticated neurotechnological interventions in movement,
language, and speech, as we will explore in the subsequent
sections.

In summary, as neuroprosthetics involves devices that interact
directly with the nervous system to restore or enhance neural
functions and BCIs enable direct communication between the
brain and external devices, they can bypass traditional pathways.
They typically rely on electrodes that capture electrical signals
from the brain or stimulate neural tissue. These electrodes can
be noninvasive, which are placed on the scalp, or invasive,
which are implanted directly into the brain. BCIs decode neural
signals into commands that control prosthetic limbs, computers,
or other devices, often using machine learning algorithms to
interpret complex brain activity. There are a few technical
challenges such as ensuring long-term biocompatibility and
stability to prevent immune responses and device degradation.
The integration of neurotechnology into clinical practice requires
extensive training for both patients and health care providers.
Patients must learn to use and control neuroprosthetic devices
effectively, which often involves cognitive and physical training.
Health care providers need specialized knowledge to implant,
configure, and maintain these devices, as well as to provide
ongoing support and adjustments based on patient needs.

Figure 4. Summary of neurotechnology advances in the last half-century. AD: Alzheimer disease; AI: artificial intelligence; DWI: diffusion-weighted
imaging; MRI: magnetic resonance imaging; PD: Parkinson disease; PET: positron emission tomography.

Aiding Movement Language and Speech
One example is electrodes that are capable of noninvasively
capturing electrical fields generated by the active brain, typically
facilitated by their placement on the surface of the head in the

form of electrode caps. This method is deemed noninvasive as
the electrodes do not penetrate body tissues. Notably, it finds
application in patients afflicted with ALS, particularly during
the advanced, near-complete paralysis stages where it aids
speech by synthesizing it real time directly from brain activity
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[133]. For instance, electrodes used for deep brain stimulation
(DBS) are meticulously inserted by neurosurgeons into targeted
brain regions. Through modulation of these targets, it becomes
feasible to suppress or ameliorate certain symptoms associated
with various brain disorders. For instance, DBS serves as a
therapeutic option for patients with PD when conventional
medication proves ineffective. While DBS does not offer a cure
or halt the progression of neurodegenerative processes, it
substantially alleviates hallmark symptoms such as tremors or
rigidity, thereby significantly enhancing patient well-being and
overall quality of life [130].

Neurological Wearables
Another illustration within the realm of neurotechnology pertains
to neurological wearables. A primary challenge concerning
wearable sensors revolves around creating stretchable and
skin-attachable electronic devices capable of seamlessly and
inconspicuously monitoring human activity and vital signs
without impeding or restricting the user’s movement [134]. The
initial breakthrough in implantable medical devices came with
the development of a pacemaker for patients with arrhythmia
in 1958 [135]. Since this milestone, a range of pacemakers and
implantable cerebellar stimulators have been developed and
used [134].

In neurology, wearable devices are considered an evolving
technology used to track and monitor the patient’s ambulatory
status for long periods. It can track vital signs and other types
of data, creating a digital profile of the patient [136], even during
their sleep. The collected data are expected to improve the
diagnosis, assessment, and treatment of patients with various
conditions. Out of the health care companies investing in the
development of wearable devices, around 60% were founded
after 2006, whereas the oldest one was founded in 1993 [137].
Many wearable devices were developed to diagnose, monitor,
and treat neurological disorders, such as stroke, PD, and
epilepsy. In stroke, smartphones and smartwatches are primarily
used to monitor parameters, such as upper extremity activity,
walking, and physical activity [138], all of which may detect
pulse and cardiac arrhythmia [139] that can cause subsequent
transient ischemic attacks or ischemic strokes [140]. In PD,
wearable devices in the form of sensors attached to the lower
back may track cardinal motor symptoms, such as postural sway,
tremor and bradykinesia, quantity and duration of freezing and
falling phases, sleeping distributions, and also more cognitively
advanced symptoms like dyskinesia [138]. In epilepsy, most
wearables are wrist-worn sensors with accelerometers, which
are used to identify seizures based on movement patterns that
might be associated with tonic-clonic or convulsive seizures
[138].

One example of such a device is the Embrace smartwatch, which
quantifies alterations in skin electric conductance that
correspond to epileptic activity within the brain, and it can notify
contacts or caregivers about the seizure activity it identified
[141]. Other such devices include one that had electrodes
attached to the biceps and detected tonic-clonic seizures and
another that detected simple partial seizures [141].

An additional instance pertains to the use of wearables within
the realm of sleep neurology. The neurological status of patients

is notably influenced by both the quality and quantity of sleep.
Wrist-worn actimetry sensors have been established as
longstanding tools in sleep studies, enabling the monitoring of
various physiological parameters associated with sleep [140].
These devices may be supplemented by cardiac monitoring or
mattress-based devices, colloquially termed “nearables,” which
possess the capability to track respiratory movements [142].
Several newer devices actively intervene with the patient’s
sleep, helping them to get better sleep quality [140].

In all the mentioned wearables, AI technologies play a crucial
role in their embedded architecture, as they enable the mass
analysis and process of the detected data. However, efficient
AI tools or wearables require large amounts of training data,
effective noise removal from detected features, and subsequent
feature selection (ie, focusing on important data characteristics
for each type of evaluation). Furthermore, it involves
distinguishing between similar activities and developing
computationally efficient algorithms and hardware
implementations. Nevertheless, there are significant technical
challenges such as the need for energy-efficient designs to
ensure long battery life, robust data privacy and security
measures, and overcoming the devices’ limitations of real-time
data processing. Addressing these challenges is essential for
the successful deployment and widespread adoption of
AI-enabled neurological wearables [143,144].

Despite its ongoing popularity and contribution to patient care,
there are some current issues with wearables in the field of
neurology. These mainly include a lack of high-quality data,
an absence of accepted evaluation standards, and limited
implementation strategies; many wearables lack robust efficacy
data that would improve the care of abundant disabling
neuropsychiatric conditions, such as migraine and depression
[140]. As for evaluation standards, even though the American
Psychiatric Association proposed a framework for evaluating
digital health tools in 2018 [145], there is still no widely
accepted standard [146]. This lack of standards results in
inconsistent evaluations and limits implementations. Apart from
evaluation problems, the rapid development of wearables also
outpaces the creation of validation protocols, resulting in a lag
in adapting these tools to health care systems [140].

Robotics in Neurological Diseases
Researchers have discovered that robotic devices significantly
enhance stroke rehabilitation by offering patients tailored,
intensive, and repetitive training. These devices facilitate
real-time feedback, enabling immediate correction of movement
errors, thus fostering more efficient and effective motor learning.
With the ability to provide targeted training, these robots not
only enhance motor learning but also deliver objective
performance and function measurements. Customizable to
individual patient needs, these robotic systems can be
programmed for specific training or therapeutic interventions,
underscoring their versatility in rehabilitation [147]. Neural
rehabilitation is an emerging field aiming to restore defective
neurological circuits’ functionality or enhance the remaining
functionality of impaired ones. Its purpose is to enhance
patient’s independence and improve their quality of life by
relying on the principle of neuroplasticity [148,149], a subject
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that relies on the idea that CNSs and peripheral nervous systems
can be retrained after an injury to achieve an effective
rehabilitation [150]. Another application is in pediatric
neurosurgery; robot-assisted stereotactic biopsies for brainstem
and thalamic lesions have proven effective, showcasing the
potential of robotic procedures in enhancing surgical precision
and accuracy and minimizing tissue damage. This approach has
been particularly promising in pediatric neurosurgery, offering
a method to improve outcomes while reducing the risk to
surrounding healthy tissues [147].

Robotics is also making strides in the clinical assessment of
neurological disorders and upper-limb therapy, indicating a
broader application of this technology beyond traditional
settings. Investigations into robot-assisted diagnosis and the use
of robotic control through neural interfaces for individuals with
tetraplegia highlight the innovative applications of robotics in
neurology and intensive care.

Human-robot interaction is an emerging field that integrates
AI, robotics, and social sciences to facilitate interaction and
communication between humans and robots. It has various
applications in medicine and also specifically in
neurorehabilitation [151,152]. When using robots, numerous
considerations must be considered, including safety, learning
by demonstration, imitation learning, cognition and reasoning,
perception, and more [153]. Typically, AI algorithms and
systems are used to address these issues, thereby enhancing the
overall interaction and experience for patients. Owing to the
presence of multiple representations within an environment,
there is often an abundance of multimodal data, such as visual,
audio, infrared, and ultrasound inputs. These inputs are used by
AI algorithms capable of conducting tasks, such as object
classification, prediction, and task planning [154].

Neuroprosthetics
Neuroprosthetics is an evolving field that combines
neuroscience, engineering, and medicine to develop devices
that can restore or enhance neural function. These devices,
known as neuroprostheses, interact directly with the nervous
tissue, usually to bridge the gap between lost function and the
brain’s control over the body. Over the past 25 years, several
key advancements have propelled the field of neuroprosthetics
forward. Notable examples of these advancements are BCIs,
which have emerged as a promising avenue for restoring
communication and control in patients with severe motor
impairments. Notable achievements include the development
of high-performance BCIs that enable users to control prosthetic
limbs with near-natural dexterity and speed. One example of
such achievement is a description of 2 patients with spinal cord
injury who were able to regain their grasp function through
neuroprosthesis, by using an asynchronous BCI, allowing them
to complete a Grasp and Release Test of the paperweight
multiple times [155].

Another example is advancements in sensory restoration.
Neuroprosthetics has made significant progress in restoring
sensory function, particularly in the realm of hearing and vision.
Cochlear implants, which aid more than half a million people
worldwide with severe to profound hearing impairment [156],
electrically stimulate the auditory nerve to restore hearing and

have become increasingly sophisticated, offering improved
sound quality and speech recognition. Recently, a demonstration
of a new development in the cochlear implant field was
presented, allowing better pitch perception for the users by using
haptic stimulation on the forearm [156]. Similarly, retinal
implants and optogenetic approaches have shown promise in
restoring visual perception in individuals with blindness, as can
be seen from the launching of 2 electrical retinal prostheses in
the last 2 decades, as well as preclinical and early clinical trials
of gene therapies in the field of optogenetics [157].

Neuroprosthetic devices have also been developed to stimulate
the spinal cord, offering new treatment options for individuals
with spinal cord injuries or neurological disorders. These devices
can modulate neural activity in the spinal cord, leading to
improved motor function, reduced spasticity, and enhanced
sensory feedback. Recent studies have demonstrated the
potential of spinal cord stimulation to restore voluntary
movement in patients with paraplegia. Another demonstration
is of functional electrical stimulation electrodes that help patients
with improper trunk stabilization due to spinal cord injuries by
stimulating lumbar erector spinae among other muscles,
improving their posture and forward reach and easing their
transfers [158,159]. Furthermore, epidural spinal cord
stimulation has been proven to activate central pattern generator
for locomotion, thus improving walking in patients with
incomplete spinal cord injuries [160].

Neuroprosthetics have led to the development of closed-loop
systems that can sense and respond to neural activity in real
time. These systems incorporate feedback mechanisms that
allow the device to adapt its stimulation parameters based on
the user’s needs and intentions. Closed-loop neuroprosthetics
have shown promise in applications, such as tremor suppression
in PD and seizure detection and intervention in epilepsy. A
neurotechnology company created a closed-loop stimulation
device that can detect and prevent seizures from 4 channels
[161], by comparing preseizure parameters to predefined
thresholds, by both cortical and deep-brain stimulation. It also
reduced sudden unexpected death in epilepsy significantly [162].
Another company developed a closed-loop device for PD
treatment that can record focal deep-brain potentials and
accordingly adjust the stimulation amplitude and frequency
[163].

Finally, neuroprosthetic devices have become increasingly
miniaturized and wireless, improving their implantability and
reducing the risk of complications. Wireless power transfer and
data communication have enabled the development of fully
implantable systems that can operate without the need for
external hardware. These advances have greatly enhanced the
practicality and acceptability of neuroprosthetic devices for
long-term use. One example of miniaturized neuroprosthetics
is cochlear implants, which use small electrodes with small
diameter wires of 20 μm [164] and an electrode array that is
considered one of the longest is only 31.5 mm [165]. Another
example of a miniaturized and wireless device is an
endovascular, wireless, and battery-free millimetric implant
that can stimulate specific peripheral nerves that are difficult to
reach surgically [166].
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Despite these advancements, challenges remain in the field of
neuroprosthetics. These include ensuring the long-term stability
and biocompatibility of implanted devices, optimizing the
specificity and resolution of neural interfaces, and developing
more intuitive control strategies for users. In addition, translating
neuroprosthetic technologies from research settings to clinical
practice requires rigorous testing, regulatory approval, and
consideration of ethical and social implications.

Looking ahead, the field of neuroprosthetics holds immense
promise for improving the lives of individuals with neurological
disorders or injuries. Ongoing research aims to further enhance
the functionality and usability of neuroprosthetic devices,
incorporating advancements in materials science, machine
learning, and neuroscience. As these technologies continue to
evolve, they have the potential to revolutionize the way we
approach neurological rehabilitation and restoration of function.

Advancements in Neuroimaging:
Transforming Neurosurgery,
Neuro-Oncology and Stroke Care

Overview
As we look forward to breakthroughs in neuroprosthetics,
advancements in neuroimaging are equally revolutionizing the
field of neurological diagnostics and treatments. The advent of
new imaging techniques like CT, nuclear magnetic resonance,
PET, and ultrasonic scanning has revolutionized our
understanding of the nervous system in both its healthy state
and when affected by the disease (Figure 4). These
advancements have provided unprecedented clarity and detail
in imaging, greatly enhancing our diagnostic capabilities.

Neuro-Oncology and Neurosurgery
Innovations in neuroimaging have been pivotal in enhancing
patient care, significantly reducing morbidity and mortality rates
among patients receiving neurosurgical care [167]. The
improvement in brain MRI for anatomical mapping has led to
rapid growth and progress. This enhancement is important for
diagnosing and treating oncological diseases of the nervous
system, which include a variety of tumors such as meningiomas.
Among the most prevalent primary brain tumors in adults are
cerebral gliomas, with an incidence rate of 5 to 6 per 100,000
person-years [168]. At the point of initial diagnosis, the
challenge of distinguishing brain tumors from benign lesions
is challenging due to their similar appearances on MRI scans.
Contrast-enhanced MRI, favored for its superior soft-tissue
resolution and accessibility, serves as the primary method for
such differentiation. Typically, brain tumor diagnoses rely on
conventional MRI techniques, including T1-weighted and
T2-weighted sequences. However, these standard imaging
approaches sometimes struggle to distinguish between tumor
changes due to disease progression and nonspecific,
treatment-related alterations, especially after therapeutic
interventions. PET scanning, using various radioactive tracers
to target distinct metabolic and molecular processes, offers more
data that enhance specificity, especially in clinically ambiguous
cases. Radiolabeled amino acids in PET scanning become
essential in neurodiagnostics, with the Response Assessment

in Neuro-Oncology working group recommending its use
alongside MRI for comprehensive brain tumor management.
Meanwhile, advanced MRI techniques like perfusion-weighted
imaging, diffusion-weighted imaging (DWI), and proton
magnetic resonance spectroscopic imaging [87] continue to be
evaluated clinically for their potential to provide critical
physiological or biochemical insights beyond standard MRI
capabilities. The evolution of modern neurosurgery and
radiology demonstrates the impact of radiological advancements
on neurosurgical practices. The pace of these developments is
so rapid that newer neurosurgical residents might be unfamiliar
with older procedures like pneumoencephalography or the
challenges of distinguishing between neurosurgical pathologies
before the advent of CT. Moreover, such progress has supported
the execution of high-quality clinical trials, improving
evidence-based neurosurgical practice.

Stroke Medicine
Stroke is one of the leading causes of death in older ages and
time to treatment is crucial. Over the recent decades, ischemic
stroke medicine has evolved with new technological innovations,
specifically with the advent of AI and the few critical examples
mentioned subsequently are just the tip of the iceberg. Multiple
AI-based models are able to detect and segment core infarct,
detect LVO, calculate ASPECTS score, and more [169]. One
example is a study from 2011, in which a computer-automated
detection (CAD) scheme using a circular adaptive region of
interest method was developed and implemented on noncontract
head CT scans to identify subtle changes in attenuation
indicative of ischemic stroke [170]. The findings from the study
indicated that CAD significantly enhanced the detection of
strokes for emergency physicians and radiology residents [170].
In another study, researchers demonstrated the efficacy of an
artificial neural network in distinguishing acute strokes from
stroke mimics within 4.5 hours of symptom onset, with a mean
sensitivity of 80% and specificity of 86.2% [171]. In the domain
of automatic lesion segmentation, a recent study used an
ensemble of 2 CNNs to effectively segment DWI lesions,
irrespective of their size, while simultaneously mitigating false
positives, achieving a Dice score of 0.61 for small lesions and
0.83 for large lesions [172]. In detecting LVOs, a support vector
machine (SVM) algorithm demonstrated high sensitivity (97.5%)
in identifying the Middle cerebral artery dot sign on noncontrast
CT scans in patients with an acute stroke [173]. A commercial
software, based on CNN, achieved an accuracy of 86% in
detecting proximal LVO, with a sensitivity of 90.1% and
specificity of 82.5% [174]. In ASPECTS grading, a commercial
software platform offering automated ASPECTS scoring
demonstrated comparable performance to neuroradiologists in
scoring ASPECTS on noncontrast CT scans in patients with
acute stroke (P<.003) [175]. In stroke prognosis, a study found
that a generalized linear model combining DWI and
perfusion-weighted imaging MR outperformed individual
modalities in predicting tissue outcomes [176], and another
study showed that a CNN trained on MRP source images
achieved an area under the curve of 0.871 in predicting final
infarct volume [177].
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Neurodegenerative Diseases
The significance of biomarkers in comprehending and
diagnosing neurodegenerative diseases is growing. The use of
imaging biomarkers for the live examination of these disorders
has seen a significant rise in recent decades, offering enhanced
diagnostic capabilities and deeper insights into disease
mechanisms.

Neurodegenerative diseases, notably AD, are understood to
commence years before the manifestation of symptoms.
Research, particularly on familial AD, outlines a sequence of
pathological events beginning with the buildup of amyloid beta
(Aβ), detectable via PET imaging and cerebrospinal fluid
analysis, culminating in cognitive deficits and dementia. These
processes not only occur in a specific sequence but also overlap
over time, offering insights into the disease’s progression. The
National Institute on Aging and Alzheimer’s Association has
established a research framework for AD diagnosis, using the
AT(N) scale to categorize Aβ, tau, and neurodegeneration
markers. These markers, identifiable through imaging
biomarkers in vivo, enhance the sensitivity and specificity of
AD diagnostics, underscoring the vital role of advanced imaging
techniques in the early detection and understanding of
neurodegenerative diseases. Neuroimaging has become integral
to diagnosing suspected neurodegenerative diseases, using
various MRI techniques, and developing novel PET ligands.
These tools provide objective measures for detecting and
monitoring disease presence and progression, aiding in patient
care, and facilitating clinical trial recruitment and treatment
efficacy evaluation. The cross-disciplinary approach,
incorporating imaging biomarkers, is crucial for diagnosing and
comprehending neurodegenerative disorders, emphasizing the
expanding utility of neuroimaging in medical research and
patient management [178]. Aβ PET imaging has transformed
the diagnostic landscape for AD, allowing for the in vivo
quantification of Aβ plaques, a key AD biomarker. The
development of Aβ-specific PET tracers, such as Pittsburgh
compound B and subsequent F-18-labeled tracers, has facilitated
this advancement [179]. Similarly, tau-specific PET tracers
have opened new avenues for diagnosis, prognosis, and clinical
trial outcomes in AD, correlating tau pathology with cognitive
symptoms and deterioration [180]. The portfolio of PET ligands
for identifying biomarkers of neurodegeneration has grown
considerably, with some advancing to clinical use and others
offering new insights into these conditions. MRI techniques
continue to aid diagnosis and enhance our understanding of
neurodegenerative diseases, with structural MRI being the most
accessible imaging tool. Fluorodeoxyglucose PET, despite its
limitations, remains a valuable tool for investigating neuronal
injury in dementia [181], illustrating the complex nature of
neuroimaging in understanding and treating neurodegenerative
diseases.

Few studies also use machine learning to aid diagnosis. For
example, an innovative CAD system was developed to diagnose
AD from MRI images, based on aging brains and machine
learning, and to identify the AD-related regions [182]. The
experiments demonstrated that the proposed method could
predict AD patients with a competitive accuracy of 92.36%,
comparable to existing methods. In another study, the

researchers trained a deep learning algorithm based on CNN to
predict a diagnosis of AD or mild cognitive impairment, based
on fluorodeoxyglucose-PET imaging [183]. The algorithm
achieved an impressive area under the receiver operating
characteristic curve of 0.98 when predicting the final clinical
diagnosis of AD in an independent test set. It demonstrated 82%
specificity at 100% sensitivity, with predictions made an average
of 75.8 months before the final diagnosis. Notably, the
algorithm’s performance surpassed that of human readers, with
a sensitivity of 57% and specificity of 91%. Saliency map
analysis revealed an attention to known areas of interest,
highlighting the entire brain’s importance in the diagnostic
process [183]. Another example is PD, a common
neurodegenerative disease where early detection is highly
important to improve patient’s quality of life [184]. In recent
years, remarkable progress has been made in using advanced
computational methods in neuroimaging, providing a valuable
tool set for the medical imaging research community to extract
pertinent features. These methodologies have been instrumental
in developing sophisticated diagnostic approaches for PD [184].
In one study neural activity and functional connectivity within
the olfactory brain network were investigated [181]. Through
the application of independent component analysis and the
generalized linear model, discernible differences between
patients with PD and healthy controls were identified, with
independent component analysis demonstrating superior
performance compared with generalized linear model. Similarly,
a predictive model using fMRI datasets for PD diagnosis through
multiclass patient classification was devised [182]. Feature
reduction and selection were achieved using
principal-component analysis and the Fisher discriminant ratio,
while the classification task was carried out using the least
square SVM. Notably, these classifiers exhibited impressive
accuracy levels of up to 87.89% and a precision of 82.54%. In
another study, resting-state fMRI datasets were used, leveraging
an SVM classifier to effectively distinguish 19 patients with
PD from 18 healthy controls [183]. In a study aimed at building
a model based on Grey’s cerebellum changes, an SVM classifier
used data of cerebellar structural changes derived from
voxel-based morphometry for PD detection with an accuracy
of more than 95% [184]. Researchers also reported that they
were able to detect and differentiate successfully patients with
PD from healthy ones, by associating different facial expressions
and brain activity on fMRI.

In conclusion, the field of medical imaging has witnessed
remarkable progress, evolving from the inception of x-ray
imaging to the advent of fMRI and other cutting-edge
technologies. This trajectory of innovation, coupled with the
emergence of AI technologies, has paved the way for
groundbreaking applications in the realm of neurological
disorders, significantly enhancing our understanding of various
neurological conditions.

Summary

The integration of AI with new medical technological
advancements has ushered in a transformative era for neurology,
reshaping diagnostic, therapeutic, and research landscapes. With
the advent of EHR systems and the widespread adoption of
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telemedicine, neurologists now have unparalleled access to
patient data and the ability to deliver care remotely. This shift
streamlines clinical workflows and enhances patient care by
enabling precise and timely interventions. As most neurological
conditions are chronic and require monitoring, this advancement
allows for scaling in treatment. Furthermore, the burgeoning
field of predictive modeling, powered by vast databases of
EHRs, leverages AI to forecast clinical outcomes, offering
personalized treatment strategies.

The paradigm shift from traditional physical examinations to
reliance on technological data has significantly impacted patient
triage and clinical management. Innovations, such as advanced
imaging technologies, revolutionized neurological diagnostics,
providing deep insights into the brain’s anatomy and function.
Stroke prevalence led to the dire need for rehabilitation in
neurology, while new wearable devices and robotics in
rehabilitation have further expanded the horizons of patient
care, offering targeted therapy that adapts to the dynamic needs
of individuals and saves expensive hospital visits. These
technological advancements highlight the evolving approach
to neurology, emphasizing the importance of integrating
cutting-edge tools for improved diagnosis, treatment, and patient
outcomes. AI models that analyze brain imaging to detect
strokes, coupled with predictive models for conditions like ALS

and AD, demonstrate the potential of machine learning to
improve patient care and bring to fruition personalized medicine
in neurology. The collaboration between neurology and AI
technologies paves the way for breakthroughs in understanding
and treating neurological disorders, marking a significant leap
toward advancing neuroscientific research.

Limitations are present across all these transformative ideas,
particularly in advanced imaging technologies such as fMRI,
PET, and CT, where challenges include cost, accessibility, and
resolution constraints. Another example of the limitations is AI
algorithms and their potential biases or hallucinations, data
requirements, and the challenges in integrating those into clinical
practice or ensuring patient privacy. In genomics, the issues are
ethical concerns, off-target effects, the high cost of these
technologies, and more.

In summary, the intersection of neurology with emerging
technologies has fundamentally changed the landscape of
neurological practice. From enhancing diagnostic accuracy and
streamlining patient care to personalizing treatment strategies,
the entire neurology field stands at the forefront of this
revolution. The integration of AI, advanced imaging, and
telemedicine underscores its dynamic evolution, driven by the
pursuit of excellence in patient care and neuroscientific
discovery.
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Abstract

Background: Low sleep quality is a common symptom of multiple sclerosis (MS) and substantially decreases patients’ quality
of life. The autonomic nervous system (ANS) is crucial to healthy sleep, and the transition from wake to sleep produces the largest
shift in autonomic activity we experience every day. For patients with MS, the ANS is often impaired. The relationship between
the ANS and perceived sleep quality in patients with MS remains elusive.

Objective: In this study, we aim to quantify the impact of the ANS and MS on perceived sleep quality.

Methods: We monitored 77 participants over 2 weeks using an arm-worn wearable sensor and a custom smartphone app. Besides
recording daily perceived sleep quality, we continuously recorded participants’heart rate (HR) and HR variability on a per-second
basis, as well as stress, activity, and the weather (20,700 hours of sensor data).

Results: During sleep, we found that reduced HR variability and increased motion led to lower perceived sleep quality in patients
with MS (n=53) as well as the age- and gender-matched control group (n=24). An activated stress response (high sympathetic
activity and low parasympathetic activity) while asleep resulted in lower perceived sleep quality. For patients with MS, an activated
stress response while asleep reduced perceived sleep quality more heavily than in the control group. Similarly, the effect of
increased stress levels throughout the day is particularly severe for patients with MS. For patients with MS, we found that stress
correlated negatively with minimal observed HR while asleep and might even affect their daily routine. We found that patients
with MS with more severe impairments generally recorded lower perceived sleep quality than patients with MS with less severe
disease progression.

Conclusions: For patients with MS, stress throughout the day and an activated stress response while asleep play a crucial role
in determining sleep quality, whereas this is less important for healthy individuals. Besides ensuring an adequate sleep duration,
patients with MS might thus work to reduce stressors, which seem to have a particularly negative effect on sleep quality. Generally,
however, sleep quality decreases with MS disease progression.

(JMIR Neurotech 2024;3:e48148)   doi:10.2196/48148
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Introduction

Low sleep quality can lead to decreased mental and physical
performance [1,2] and thus impacts quality of life. The
autonomic nervous system (ANS) indirectly affects sleep
because it regulates different physiological processes within
the human body that affect the way we sleep, for example,
respiration and heart rate (HR). The relation of the ANS to sleep
quality is not well studied for diseases that are explicitly known
to affect the ANS, such as multiple sclerosis (MS) [3], Parkinson
disease [4,5], or Alzheimer disease [6,7].

For patients with MS, sleep quality is one of the main drivers
for quality of life [8-11] besides disability, depressive mood,
and fatigue. Sleep quality is often reduced in patients with MS
due to cramps, pain, reduced mobility, spasticity, mucus
retention, and restless leg syndrome [12]. Reduced sleep quality
has been shown to increase the level of proinflammatory
cytokines, which can result in a general worsening of symptoms
(eg, fatigue or pain) [11]. Higher sleep quality has been linked
to reductions in MS-related (secondary) fatigue [13,14].

Patients with MS are often affected by a dysfunction of the ANS
[15]. Patients with MS have increased chances of observing
symptoms of a dysfunctional ANS as early as 10 years before
their diagnosis, indicating an early involvement of the ANS in
disease progression [16].

HR variability (HRV) is considered a noninvasive measure for
the activity of the ANS, for which it is one of the main
biomarkers [17]. Owing to the evolution of mobile devices,
such as smartwatches and fitness wristbands, their users can
now reliably and continuously track HRV as well as other vital
signs [18]. It is, therefore, possible to assess sleep quality using
continuous data streams in real-life settings outside of sleep
laboratories [19,20].

While laboratory-based polysomnography is still the gold
standard of analyzing how humans behave while asleep [21,22],
assessing sleep quality using continuous data streams in a
real-life setting has many advantages. Using a vital tracker worn
on the wrist, for instance, data can be recorded without great
effort from the participants [21]. Studies can, thus, run for longer
periods and unlock new data sources recorded outside sleep
laboratories (eg, HR or step count during the day). The
information acquired outside sleep laboratories using wearable
sensors is more precise at a more granular level [23] than what
can be assessed through questionnaires such as the Pittsburgh
Sleep Quality Index [24].

In this study, we investigate how the activity of the ANS affects
perceived sleep quality for patients with MS as well as a control
group by constructing predictive models for subjective sleep
quality based on continuous data streams collected over 2 weeks
using a wearable sensor and a smartphone app. We thereby
extend past studies that have investigated how HRV changes
during sleep [18-20,25], how sleep quality (subjective and
objective) is affected by factors such as stress [26-28], and how
the ANS and HRV are affected by sleep disorders [29,30] and
diseases such as MS [3,18,31]. In addition, we analyze the
trade-off in performance between explainable and interpretable

modeling techniques such as logistic regression and less easily
interpretable techniques when modeling subjective response
data. Techniques that are harder to interpret than logistic
regression (eg, support vector machines, neural networks, or
boosted decision trees) have been found to often outperform
generalized linear models (GLMs) on medical data [32-34].
However, these methods are closer to so-called black box
methods that are neither easily interpreted nor explained and
have to be treated carefully when used for medical application
[35].

Methods

Participants
For this study, patients diagnosed with MS aged between 18
and 65 years without concomitant diseases were recruited by
convenience sampling at the neuroimmunology department
outpatient clinic of the University Hospital Zurich, Switzerland.
Patients with MS (n=53) and a control group (n=24) were
recruited between November 29, 2019, and July 29, 2021. On
average, participants were aged 35.8 (SD 10.1) years, and 48
participants were female. We ensured that for each patient with
MS, there was at least 1 member of the control group with the
same sex and within –5 to + 5 years of age. Overall, we tried
to ensure a similar age distribution and sex ratio between the
control group and patients with MS. As confirmed by Wilcoxon
signed rank tests (Mann-Whitney U tests) post hoc, there is no
significant difference in age or sex ratio between the 2 groups.
With an average age of 36.8 years patients with MS are on
average more than 3 years older than participants of the control
group (33.5 years) corresponding to a P value of .11. In total,
35 out of 53 patients with MS are female compared to 13 out
of 22 participants of the control group. The P value for
differences in the sex ratio is 0.33.

In total, 2 patients with MS (not included in the count of 53)
aborted the study. One patient aborted the study because of a
medical emergency requiring stationary medical treatment. The
other patient aborted the study because of feeling overwhelmed
by the study procedure. Otherwise, all participants adhered to
the study protocol.

We based our study size on the general recommendations for
feasibility studies, which recommend numbers of 24 to 50
patients with MS [36-38]. We confirmed these estimates when
determining the study size based on the precision of compliance
rate estimates. Given the short duration of the study, we
expected high compliance rates of >85%. We calculated that
we would be able to estimate a participation rate as low as 85%
to within –10% to +10% at a 95% CI based on a sample size as
small as 49. Hence, we recruited via convenience sampling and
aimed for at least 49 patients with MS. The high compliance
rate was later confirmed with only 2 patients with MS aborting
the study.

We included information about the medication of patients with
MS in Multimedia Appendices 1 and 2. In particular, we listed
medication that is known to affect HRV metrics and
disease-modifying treatment (DMT).
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Ethical Considerations
The study protocol was reviewed and approved by the Cantonal
Ethics Committee of Zurich (SNCTP000003494). All
participants gave written informed consent, and procedures were
in compliance with the Declaration of Helsinki.

Data Set Description
For 2 weeks, the participants wore a wearable sensor on the arm
(Everion, Biofourmis AG) to continuously record their HR,
HRV, step count, and motion data from the arm. To ensure
continuous data recording, participants were equipped with 2
Everion sensors. The Everion records HR and the total
magnitude from a 3-axis accelerometer at 1 Hz as well as
interbeat intervals (IBIs). We processed the raw IBIs identifying
artifacts as proposed by Berntson et al [39]. We linearly
interpolated all missing IBIs and chunked the continuous data
stream into nonoverlapping 5-minute windows. We removed
any 5-minute window with ≥5 interpolated IBIs. For all
remaining 5-minute windows, we calculated the SD of the
distance from the 45° line of the Poincaré plot of consecutive
IBIs (SD1), the SD of the distance from the –45° line of the
Poincaré plot of consecutive IBIs (SD2), and the SD of IBIs
(SDNN).

Through a custom-developed smartphone app, participants
logged their sleep quality each morning after waking up

(Textbox 1) and stress levels continually during the day over
the course of the 2 weeks. Participants logged their level of
stress on a scale from 1 to 10. Participants received daily
reminders to rate their quality of sleep and stress levels. We
collected information about outside temperatures using an
application programming interface service [40]. We equipped
participants with a Google Pixel 3 (Google LLC) for the duration
of the study in case their phone was not suitable to install our
smartphone app (eg, they had an iPhone).

The continuous data streams (HR, HRV, motion, and step count)
were aggregated per day depending on whether the participants
were awake or asleep, extracting the average, minimum, and
maximum (Table 1). In addition to these resulting nonstatic
variables, which change on a day-to-day basis, we collected
demographic information of each participant. For patients with
MS, information about disease state, severity of MS-related
disability, functionality of the ANS, and affection of the spinal
cord was also collected. We modeled daily perceived sleep
quality recorded each morning using nonstatic variables
collected since the participants last woke up the previous day.

After the completion of the study, deidentifiable data were stored
on secure, password-protected servers. The data are only shared
with bona fide researchers upon reasonable request and after
signing a data sharing agreement ensuring that the data privacy
of all participants is protected and all data are stored securely.

Textbox 1. Explanation of self-reported sleep quality score.

Score and description

• 5: Very refreshing

• 4: Rather refreshing

• 3: Moderately refreshing

• 2: Hardly refreshing

• 1: Not refreshing
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Table 1. Collected data.

Day or nightDefinitionSource and name

Wearable sensor: Everion (Biofourmis AG)

Day and nightHeart rateHR

Day and nightSD of IBIsaSDNN

Day and nightSD of distance from 45° line of Poincaré plot of consecutive IBIsSD1

Day and nightSD of distance from –45° line of Poincaré plot of consecutive IBIsSD2

Day and nightStep count based on arm motionStep count

NightEstimated based on acceleration and HR dataSleep duration

NightEstimated based on acceleration and HR dataAwake duration

Visual crossing [40] APIb service

DayExtracted via API using location recorded through smartphone appTemperature

Prestudy questionnaires and medical assessments

—cExpanded Disability Status ScaleEDSS [41]

—Multiple Sclerosis Severity ScoreMSSS [42]

—Age Related Multiple Sclerosis Severity ScoreARMSS [43]

—Assessed using COMPASSe [44] questionnaireANSd dysfunction

—Patient with MS or control groupMSf diagnosis

—None, progressive MS disease state, or relapse remitting MS disease
state

MS type

Custom smartphone app

NightScale from 1 to 5 as outlined in Textbox 1Sleep quality

DaySelf-reported multiple times a day a scale from 1 to 10Stress

Night—Awake at night

Night—Sleep medication

aIBI: interbeat interval.
bAPI: application programming interface.
cNot applicable.
dANS: autonomic nervous system.
eCOMPASS: Computerized Pilot Aptitude Screening System.
fMS: multiple sclerosis.

Data
A summary of all collected data can be found in Table 1.

We collected data mainly from 3 different sources: a wearable
sensor, a custom smartphone app, and prestudy questionnaires
or medical assessments. Nonstatic data were aggregated every
day separately for when the participants were awake and asleep.
For nonstatic variables, we calculated the minimum, mean,
maximum, ratio of minimum to mean, and ratio of maximum
to mean. For the static variables Expanded Disability Status
Scale (EDSS), MS Severity Score (MSSS), Age-Related
Multiple Sclerosis Severity Score (ARMSS), and ANS
dysfunction, we used 3, 3, 4, and 17 as cutoff points,
respectively, to transform them into binary variables. For the
control group, we set these values to 0 before applying the cutoff
rule. The custom smartphone app was distributed through the
Google Play Store in Switzerland. Participants who did not own

an Android phone were equipped with the Google Pixel 3 for
the duration of the study.

Data Processing
For the analysis of HR and HRV, we only included periods
where participants were resting as recommended for
photoplethysmography-based HRV measurements [45].
Participants were classified as resting during 5-minute windows
if their HR (measured in bpm) was <0.55 × (220 bpm – age)
[46].

Furthermore, we transformed HRV recordings to normative
values considering age, sex, and time of day [47]. The recorded
data per participant was split into daily intervals based on when
the participants woke up and aggregated as outlined in Table
1.

The times when participants went to bed and woke up were
estimated manually based on HR, acceleration data from the
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wearable sensor, and step count. To remove periods where the
participants were in a transitional state between awake and
asleep, we excluded 1 hour of data before and after the estimated
going-to-bed and wake-up times.

All analysis was done in Python (version 3.8, Python Software
Foundation). For modeling, we made use of the scikit-learn,
keras, and XGBoost libraries [48-50].

Results

Overview
In this study, we analyzed the drivers of perceived sleep quality
via predictive modeling. We first looked at significant
differences in average perceived sleep quality between different
subgroups of the participants. Subsequently, we compared the
performance of different models for perceived sleep quality
normalized per participant. Finally, we analyzed the variables
where relative changes are calculated to significantly affect
participants’ sleep quality compared to their personal average
over the 2 weeks.

For the analysis, data were available on average for 19.7 hours
per day per participant (ie, approximately 82% of the time, SD
2.64 hours). This was consistent across patients with MS and
healthy controls. Besides nonwear, reasons for data not being
available at all times include participants switching between
the 2 devices they had been equipped with for charging and
subsequent synchronization issues.

Differences in Sleep Quality Across Subgroups
The average self-reported sleep score was 3.72 (scale from 1 to
5; Textbox 1). The distribution of responses is shown in
Multimedia Appendix 3. Table 2 lists the observed mean

differences and significances according to Wilcoxon rank sum
tests for subgroups defined by sex, patient status, type of MS,
dysfunction of the ANS, affection of the spinal cord, and
severity of MS in terms of scores on the EDSS [41] and
variations thereof (MSSS [42] and ARMSS [43]) measuring
MS-related disability. We chose Wilcoxon signed rank tests
(aka Mann-Whitney U test) over alternative methods, such as
t tests, because they are rank based and distribution-free.
Therefore, they are a natural choice for ordinal data (such as
items on a Likert scale) as well as nonnormally distributed or
binary data.

Table 2 shows the outcome of distribution-free 2-sided
Wilcoxon signed rank tests for mean shifts in self-reported sleep
quality between subgroups defined based on demographic
information, patient status, and disease state. A higher reported
sleep quality score corresponds to higher perceived sleep quality
(Textbox 1). P values are calculated based on distribution-free
2-sided Wilcoxon signed rank tests for mean shifts in
self-reported sleep quality between two groups of participants.

The perceived sleep quality score of female participants was
significantly lower, indicating that their perceived sleep quality
was higher than that for male participants. Participants with
different types of MS did not report sleeping significantly
differently. However, participants whose spinal cord was
affected by lesions or with ANS dysfunction reported
significantly lower perceived sleep quality—similar to
participants scoring high on the MSSS, ARMSS, and EDSS
scales. Apart from ANS dysfunction, the differences were not
(as) significant when including the control group. However, for
patients with MS, the severity of MS led to significant
differences in perceived sleep quality.
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Table 2. Mean comparison of the self-reported sleep quality score between different subgroups.

P valueGroup 2Group 1

Sleep quality
score, mean (SD)

Description, n (%)Sleep quality
score, mean (SD)

Description, n (%)

Sex

.013.54 (0.62)Male, 29 (38)3.84 (0.60)Female, 48 (62)

Disease status

.563.73 (0.68)Patients with MS, 53 (69)3.71 (0.48)No MSa, 24 (31)

.733.64 (0.57)MS type PMSb, 9 (12)3.71 (0.48)No MS, 24 (31)

.433.75 (0.70)MS type RRMSc, 44 (57)3.71 (0.48)No MS, 24 (31)

.643.75 (0.70)MS type RRMSc, 44 (57)3.64 (0.57)MS type PMS, 9 (12)

ANSd dysfunction

<.0013.42 (0.73)Dysfunction of ANSf, 24 (31)3.86 (0.52)No dysfunction of ANS: alle, 53 (69)

<.0013.42 (0.73)Dysfunction of ANSf, 24 (31)3.99 (0.52)No dysfunction of ANS: MSe, 29 (38)

Spinal cord status

.103.51 (0.77)Spinal cord affectedf, 24 (31)3.82 (0.53)Spinal cord unaffected: alle, 53 (69)

.063.51 (0.77)Spinal cord affectedf, 24 (31)3.91 (0.55)Spinal cord unaffected: MSe, 29 (38)

MS-related disability

.143.55 (0.69)MSSS≥3f, 23 (30)3.80 (0.58)MSSSg<3: alle, 54 (70)

.073.55 (0.69)MSSS≥3f, 23 (30)3.87 (0.64)MSSSg<3: MSe, 30 (39)

.173.59 (0.70)ARMSS≥6f, 6 (8)3.84 (0.53)ARMSSh<5: alle, 42 (55)

.053.59 (0.70)ARMSS≥6f, 6 (8)4.00 (0.55)ARMSSh<5: MSe, 18 (23)

.093.58 (0.79)EDSS≥3f, 18 (23)3.77 (0.56)EDSSi<3: alle, 59 (77)

.043.58 (0.79)EDSS≥3f, 18 (23)3.81 (0.61)EDSSi<3: MSe, 35 (45)

aMS: multiple sclerosis.
bMS type PMS: progressive MS disease state.
cMS type RRMS: relapse remitting MS disease state.
dANS: autonomic nervous system.
eA group called “condition: all” refers to all participants for whom the condition is true (patients with MS as well as control group). A group called
“condition: MS” refers only to participants diagnosed with MS for whom the condition is true (ie, no control group).
fAll participants for whom this condition is true were diagnosed with MS.
gMSSS: Multiple Sclerosis Severity Score [42]. Per definition of the MSSS, the chosen cutoff point distinguishes between light to no disability (≤3)
and more severe implications (>3).
hARMSS: age-related multiple sclerosis severity score [43]. Per definition of the ARMSS, the chosen cutoff point distinguishes between light to no
disability (≤4) and more severe implications (>4).
iEDSS: Extensive Disability Status Scale [41]. Per definition of the EDSS, the chosen cutoff point distinguishes between light to no disability (≤3) and
more severe implications (>3).

Comparison of Different Modeling Techniques for
Normalized Perceived Sleep Quality
Higher-dimensional “black box” methods have outperformed
clearly explainable and interpretable techniques such as GLMs
and thus have gained more and more popularity for medical
applications. For binary classification, neural networks [33] and
tree ensemble methods [51] tend to outperform logistic
regression in recent literature. However, logistic regression
naturally models the changes in odds for a binary outcome,

allowing for very easy and clear interpretation. The following
is a comparison of these modeling techniques as well as a
generalized additive model (GAM) and support vector machine
applied to model perceived sleep quality as part of our study.

To analyze how relative changes in input features affect
perceived sleep quality compared to participants’ average
responses, we normalized input features and the perceived sleep
quality response. We subtracted the mean value per participant
across the 2 weeks and divided by the respective SD for each
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participant. As the normalized sleep quality response failed the
Shapiro-Wilk normality test (P<.001), thus violating one of the
assumptions of linear regression, we transformed the problem
into the binary setting. We split the data into high-quality and
low-quality sleep based on whether a participant slept better
than their personal average recorded during the study. The
performances of the different models listed in Table 3 are similar
(63%-67% accuracy). For all models, we used 0.5 as a cutoff
point to classify between high- and low-quality sleep. The best
performing model is the GAM, achieving an accuracy of 67%
with an area under the curve (AUC) of 0.71. The support vector
machine, logistic regression (GLM), and symmetric boosted
trees achieve the same accuracy (65%). Of the 3, the support

vector machine achieves the highest AUC with 0.70. Adding
interaction terms to the logistic regression models (GLM of
order 2 and 3) does not improve accuracy but only decreases
AUC (from 0.69 to 0.66). In terms of accuracy, the neural
network performs the worst out of the selected models with
63%. In terms of AUC, however, neural networks outperform
boosted tree ensemble methods and GLMs with interaction
terms.

While boosted trees and neural networks perform feature
selection themselves, we constructed a sequential feature
selection procedure for GLMs, the GAM, and the support vector
machine.

Table 3. Model performances for predicting normalized perceived sleep quality using all available information recorded while participants were awake
and asleep.

AUCcRecallb (%)Precisionb (%)Accuracyb (%)Modela comparison

0.70646665Support vector machine

0.66656765Symmetrical boosted treesd

0.68636363Neural networke

0.69656665GLMf

0.68656565GLM order 2g

0.66656565GLM order 3h

0.71676767Generalized additive model

aThe models were evaluated on 50 perfectly balanced test sets, each consisting of randomly selected 20% of participants who were removed from the
training set.
bUsing a cutoff point of 0.5 for the calculated probabilities.
cAUC: area under the curve.
dArchitecture chosen based on Bayesian optimization [52]: depth of 5 and 600 boosting rounds.
eArchitecture chosen based on Bayesian optimization [52]: 2 hidden layers containing 16 neurons with hyperbolic tangent activation functions and
dropout rates of 0.7 and 0.5, respectively.
fGLM: generalized linear model.
gIn addition to the untransformed features, this model includes interactions between 2 variables.
hIn addition to the untransformed features, this model includes interactions between up to 3 variables.

Modeling Normalized Perceived Sleep Quality
In this subsection, we analyze logistic regression models for
normalized perceived sleep quality without interaction terms.
Although GAMs outperformed GLMs, they fit effects as
smoothing splines, making model comparison harder than in
the generalized linear setting where effects on the modeled OR
are assumed to be linear. Per participant, perceived sleep quality
and input features were normalized by subtracting the average
per participant and dividing by the respective SD per participant.
We constructed 3 models with different input features to
compare the consistency of effects depending on what
information is available to the model. The first model (M1.1:
night and day) uses all available data recorded during the night
and the previous day to model normalized perceived sleep
quality. The second model only uses data recorded, while the
participants were asleep (M1.2: night), such as HR while asleep.
The third model (M1.3: day) exclusively uses information
recorded when the participants were awake, such as HR while
awake. All 3 models include an L1 penalty to shrink the

coefficient values of features without great explanatory power
to 0. Table 4 lists variables that are statistically significant in
at least 1 of the 3 models. As outlined in the previous section,
logistic regression achieved an accuracy of 65% on a perfectly
balanced test set when including features collected while
participants were awake and asleep (M1.1).

Across M1.1 to M1.3 in Table 4, observed effects have a
constant sign across all models that they are included in,
indicating general consistency of calculated effects independent
of included input features. In addition to whether a participant
woke up during the night, the levels of stress they were exposed
to the previous day, the duration of their sleep, and recorded
motion while asleep, 8 HR- or HRV-related features
significantly affected perceived sleep quality in 1 of the 3
models M1.1-M1.3. In M1.1-M1.3, increased sleep duration
and decreased motion while asleep are calculated to affect sleep
quality positively—so are increases in HRV while asleep in
terms of average SD1, maximum SD2, and maximum SDNN
and increases in minimal HR while asleep. In contrast, increases
in average SD2 while asleep as well as increases in the ratio of
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maximum SDNN while asleep to average SDNN while asleep
are calculated to affect perceived sleep quality negatively. We
found higher levels of stress throughout the previous day and
if a participant woke up during the night to affect perceived
sleep quality negatively.

Table 4 shows variables that are statistically significant (P<.10)
in at least 1 logistic regression model for normalized

self-reported sleep quality without interaction terms where
feature selection was performed for both groups simultaneously
but the models were calculated for participants with MS and
the control group separately. Positive values increase the chances
of better self-reported sleep quality according to the fitted
logistic regression model.

Table 4. Statistically significant variables for normalized perceived sleep quality for patients with multiple sclerosis and the control group.

M1.3: day as input only, model coef-
ficient (P value)

M1.2: night as input only, model
coefficient (P value)

M1.1: night and day as input,
model coefficient (P value)

–0.14 (.04)——aMean stress awake

——0.16 (.03)HRb minimum ratio awake

—0.46 (<.001)0.47 (<.001)Sleep duration

—–0.58 (<.001)–0.58 (<.001)Awake at night

—–0.29 (.02)–0.29 (.02)Motion asleep

—0.13 (.04)—Minimum HR asleep

—0.26 (.01)0.30 (.004)Mean SD1c asleep

—–0.18 (.06)—Minimum SD2d asleep

—–0.43 (.02)–0.47 (.01)Mean SD2 asleep

—0.06 (.04)0.08 (.03)Maximum SD2 asleep

—0.47 (<.001)0.51 (<.001)Maximum SDNNe asleep

—–0.52 (.01)–0.54 (.01)SDNN maximum ratio asleep

a—: The variable was not included in that respective model (ie, removed during iterative feature selection process).
bHR: heart rate.
cSD1: SD of distance from the 45° line of the Poincaré plot of consecutive interbeat intervals.
dSD2: SD of distance from the –45° line of the Poincaré plot of consecutive interbeat intervals.
eSDNN: SD of interbeat intervals.

Differences Between Patients With MS and the Control
Group
We analyze differences in effects between the control group
and participants with MS by computing the 3 logistic regression
models M1.1-M1.3 for normalized perceived sleep quality
separately for the 2 groups (Table 5). We refer to these models
as M2.1-M2.3. They are based on the feature selection
performed for M1.1-M1.3, but the statistical significance of
effects are calculated for the 2 groups separately, thus analyzing
the stability of the calculated effects across the 2 groups. The
performance of M2.1 dropped from an accuracy of 65% for
M1.1 to 60% accuracy for the control group and 64% for
participants with MS. Furthermore, we constructed 3 more
logistic regression models, M3.1-M3.3, where the included
features are optimized for the control group and the patient
group separately (Table 6). Figure 1 visually summarizes Table
6. For the models M2.1-M2.3, the calculated effects for the
same variables have the same sign in all cases apart from 2,
indicating largely agreeing effects across the subgroups. When
optimizing the feature selection for each subgroup, we observe

divergence in the included features and an improvement in
performance (accuracy increases to 68% for the control group
and remains at 64% for participants with MS).

The effect of increases in minimal HR while asleep is calculated
to be positive and statistically significant at α=1% in M2.1 and
M2.2 for participants with MS but not statistically significant
and negative for the control group. The effect of increases in
reported stress levels in M2.3 is statistically significant (P<.01)
for patients with MS and the control group, yet <0.005 in
absolute terms for the control group.

In M3.1 and M3.2, sleep duration and being awake at night are
selected for both subgroups. For both effects, sign, statistical
significance, and general magnitude were the same. We find
stress, motion while asleep, minimal HR while asleep, and
maximum SD1 while asleep to only significantly affect
perceived sleep quality for participants with MS. In contrast,
the amount of time spent awake before going to bed and minimal
SD1 while awake only affected perceived sleep quality for
participants of the control group.
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Table 5. Differences in statistically significant variables for perceived sleep quality between patients with multiple sclerosis and the control group:
simultaneous feature selection.

M2.3: day as input only, model coef-
ficient (P value)

2.2: Night as input only, model coef-
ficient (P value)

2.1: Night and day as input, model
coefficient (P value)

Control groupPatients with
multiple sclerosis

Control groupPatients with
multiple sclerosis

Control groupPatients with
multiple sclerosis

–0.00 (.001)–0.19 (.01)————aMean stress awake

————0.13 (.39)0.20 (.01)HRb minimum ratio awake

——0.72 (<.001)0.40 (<.001)1.21 (.002)0.37 (<.001)Sleep duration

——–0.66 (.07)–0.57 (.001)–1.01 (.06)–0.56 (.001)Awake at night

——–0.24 (.23)–0.29 (.02)–0.40 (.21)–0.28 (.03)Motion asleep

——–0.21 (.19)0.25 (.004)——Minimum HR asleep

——0.40 (.004)0.21 (.08)0.47 (.10)0.28 (.01)Mean SD1c asleep

——–0.09 (.27)–0.27 (.02)——Minimum SD2d asleep

——–0.24 (.19)–0.47 (.02)–1.37 (.09)–0.32 (.06)Mean SD2 asleep

——0.08 (.03)−0.31 (.32)0.25 (.21)0.08 (.04)Maximum SD2 asleep

——0.17 (.007)0.99 (.06)1.25 (.07)0.39 (.001)Maximum SDNNe asleep

——–0.17 (.22)–0.67 (.01)–1.41 (.10)–0.47 (.03)SDNN maximum ratio asleep

a—: The variable was not included in that respective model (ie, removed during iterative feature selection process).
bHR: heart rate.
cSD1: SD of distance from the 45° line of the Poincaré plot of consecutive interbeat intervals.
dSD2: SD of distance from the –45° line of the Poincaré plot of consecutive interbeat intervals.
eSDNN: SD of interbeat intervals.

Table 6. Differences in statistically significant variables for perceived sleep quality between patients with multiple sclerosis and the control group:
separate feature selection.

M3.3: day, model coefficient (P val-
ue)

M3.2: night, model coefficient (P
value)

M3.1: night and day, model coeffi-
cient (P value)

Control groupPatients with
multiple sclerosis

Control groupPatients with
multiple sclerosis

Control groupPatients with
multiple sclerosis

—–0.19 (.02)————aMean stress awake

————0.43 (.05)—Awake duration

0.48 (.05)—————Minimum SD1b awake

——0.82 (<.001)0.42 (<.001)0.93 (<.001)0.39 (<.001)Sleep duration

——–0.86 (.06)–0.56 (.002)—–0.53 (.001)Awake at night

———–0.28 (.02)—–0.26 (.02)Motion asleep

———0.27 (.002)—0.08 (<.001)Minimum HRc asleep

———0.18 (.04)—0.17 (.02)Maximum SD1 asleep

a—: The variable was not included in that respective model (ie, removed during iterative feature selection process).
bSD1: SD of distance from 45° line of Poincaré plot of consecutive interbeat intervals.
cHR: heart rate.
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Figure 1. Approximate visualization of the statistically significant effects of M3.1-M3.3 for patients with multiple sclerosis (MS; upper half) and the
control group (lower half), as displayed in Table 6. In this visualization, only the order of the effects for each of the 2 groups separately is correct. The
distances are not proportional to the calculated effects (Table 6). Sleep continuity refers to “awake at night” in Tables 4-6, that is, whether participants
woke up at night normalized across the duration of the study. HR: heart rate; max: maximum; min: minimum; SD1: SD of distance from 45° line of
Poincaré plot of consecutive interbeat intervals.

Table 5 shows variables that are statistically significant (P<.10)
in at least 1 logistic regression model for normalized
self-reported sleep quality without interaction terms where
feature selection was performed for both groups simultaneously,
but the models were calculated for participants with MS and
the control group separately. Positive values increase the chances
of better self-reported sleep quality according to the fitted
logistic regression model.

Table 6 shows variables that are statistically significant (P<.10)
in at least 1 logistic regression model for normalized
self-reported sleep quality without interaction terms where
feature selection was performed for participants with MS and
the control group separately. Positive values increase the chances
of better self-reported sleep quality according to the fitted
logistic regression model.

Correlating Input Factors of the Logistic Regression
Models
Multiple input factors of the different models for normalized
perceived sleep quality (M3.1-M.3.3) correlated statistically
significantly (Multimedia Appendix 3). To highlight shared
information content between multiple models, Multimedia
Appendix 4 displays Pearson correlations for features selected
for M3.1-M3.3, where the feature selection and computation of
the statistical significance of effects were performed separately
for participants with MS and the control group. The correlations
are calculated separately for participants with MS and the control
group, allowing for comparison of the relation between the 2
groups. In total, 2 pairs of input variables for M3.1-M3.3
correlated particularly strongly with a correlation coefficient of
–0.41 to –0.49 (P<.001): the pair of duration of sleep and the
duration participants spent awake before going to bed and the
pair of average SD1 while asleep and minimal HR while asleep.
Interestingly, there are also 3 pairs where the difference in
correlation between the control group and the participants with
MS was particularly high. First, minimal HR while asleep and
motion while asleep correlated with a coefficient of .11 for
participants with MS but with a coefficient of –0.09 for the
control group. Second, minimal HR while asleep and recorded
stress levels correlated with a correlation coefficient of –0.17

for participants with MS but with a coefficient 0.06 for the
control group, indicating a difference in response to stress.
Third, the duration participants spent awake before going to
bed and the recorded levels of stress correlated with a coefficient
of –0.12 for participants with MS but 0.09 for the control group,
further indicating a potential difference in behavior as a reaction
to stress.

Discussion

Principal Findings
In this study, we analyzed how the ANS, the cardiovascular
system, stress, activity, and demographic information affect
perceived sleep quality for patients with MS and a control group.
Model performances suggest that relative changes in perceived
sleep quality per participant can indeed predict perceived sleep
quality using a combination of HRV metrics, activity data, and
stress (M1.1-M3.3). Generally, we find greater HRV to
significantly improve perceived sleep quality. However, we
find that activation of stress response (high sympathetic and
low parasympathetic activity), similar to higher levels of
perceived stress, significantly decreases perceived sleep quality.
For the control group, this effect is less severe.

With stress levels and sleep duration, we find predictors
particularly important for the sleep quality of patients with MS
that can be at least partially acted upon to improve perceived
sleep quality. However, calculated effects regarding signals that
are not directly controllable (eg, HRV) are much more difficult
to translate into actionable recommendations. For the effects of
HR and HRV, further studies are needed to better understand
the underlying drivers of these signals and how they can be
acted upon.

Effects of HRV on Sleep Quality
We found various HRV metrics to be suitable predictors for
perceived sleep quality. In particular, increased SD1 metrics
positively impacted normalized perceived sleep quality across
M1.1-M3.3, highlighting their consistency for patients with MS
as well as the control group. However, the calculated effects of
SD2 and SDNN seemed contradictory and inconsistent in
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M1.1-M1.3 and were not selected when the automated feature
selection procedure was conducted separately for participants
with MS and the control group for M3.1-M3.3.

There are various factors that influence ANS activity and thus
also HRV metrics. While participants are awake, physical
activity, stress, overall mood, and deep breathing [53,54] might
impact HRV metrics. In the long run, ANS activity is also
affected by MS disease progression [16].

While asleep, a possible explanation for the calculated effects
of increased activity of the sympathetic and parasympathetic
nervous system is their behavior during rapid eye movement
(REM) and non-REM sleep phases and their connection to
stress. HRV fluctuates strongly between different phases of
sleep [25,55-57] and is particularly high during REM sleep.
More time spent in REM sleep phases was found to increase
subjective sleep quality and also cognitive performance [58],
which matches the calculated effects regarding the sympathetic
and parasympathetic nervous system. While the activity of the
former increases during REM sleep compared to non-REM
sleep, the activity of the latter decreases during REM sleep
phases [59]. Furthermore, the sympathetic nervous system
regulates the fight-or-flight response and gives an indication of
stress levels. The negative effect of increases in sympathetic
activity and positive effect of increased parasympathetic activity
on sleep quality might thus indicate that participants experienced
stress throughout the day, which carried on into their sleep
(activated stress response), or that participants went through
stressful experiences during their REM sleep, which might again
be impacted by experienced stress while awake. As outlined in
M1.3-M3.3, we found increased stress to reduce perceived sleep
quality, thus matching the effects outlined above.

Effects of MS Diseases Status on Sleep Quality
Symptoms of severe MS significantly decreased perceived sleep
quality. However, we did not find significant differences in
subjective sleep quality between participants diagnosed with
MS and the control group. This indicates that MS itself does
not affect perceived sleep quality. However, scoring high on
the ARMSS, MSSS, or EDSS scale and affection of the spinal
cord or ANS resulted in significantly worse sleep for patients
with MS. Thus, symptoms that were found to decrease general
quality of life for patients with MS also contribute to lower
perceived sleep quality, matching previous studies [3,16,30,60].

Effects of Sleep Duration and Awake Duration on Sleep
Quality
We generally found increased sleep duration to positively affect
perceived sleep quality. The effects were statistically significant
for participants with MS as well as the control group across
M1.1-M3.3 and are rather unsurprising. This is a further
indication of the importance of an adequate sleep schedule to
achieve high-quality sleep and increase quality of life. For
patients with MS as well as healthy individuals, this offers an
opportunity to improve their sleep quality and subsequently
quality of life. Furthermore, at least for the control group, longer
times spent awake before going to bed positively affected their
perceived quality of sleep. This seems in contrast to the positive
effect of longer sleep duration; however, this might indicate

that too little time spent awake negatively impacts perceived
sleep quality. The 2 effects of longer sleep duration and longer
awake duration thus highlight the need of a balance between
the time spent awake and asleep.

Effects of Stress on Sleep Quality
We found stress levels (self-reported) to have a statistically
significant negative impact on perceived sleep quality. For
participants with MS, stress impacted perceived sleep quality
more strongly than it did for the control group (Table 6).
Furthermore, for participants with MS, stress correlated
significantly negatively with awake duration and minimal HR
while asleep. This indicates that stress more severely affects
patients with MS, which is even measurable using their minimal
HR while asleep. The significant negative correlation of stress
to awake duration for participants with MS, which is positive
but statistically insignificant for the control group, might indicate
that stress even impacted the daily routine of participants with
MS.

These effects are consistent with existing literature [26-28,61].
For patients with MS, several studies suggest that increased
stress increases the chances of relapse [62] and influences
inflammatory activity [63]. Furthermore, the ANS is a stress
response system. The more severe effect of stress on sleep
quality for participants with MS might thus be another symptom
of a dysfunctional ANS.

While we do not find reported stress levels to impact the sleep
quality for the control group, we observe negative effects of
increases in sympathetic activity (SDNN and SD2) in
M2.1-M2.3 for patients with MS as well as the control group.
The sympathetic nervous system controls the fight-or-flight
response, and stress might cause an activated stress response,
which is characterized by increased sympathetic activity and
decreased parasympathetic activity. This indicates a negative
effect of stress on perceived sleep quality for both groups,
although not observable through reported stress levels for the
control group.

While we calculate similar effects for perceived stress and
objective measures of stress (ie, an activated stress response),
perceived stress ratings and objective assessments of stress do
not have to align [64]. Comparisons between objective and
subjective assessments of stress must thus be treated carefully.

Effects of Motion (Steps) on Sleep Quality
An increase in recorded arm motion between initially falling
asleep and waking up in the morning significantly decreased
perceived sleep quality. The recorded motion records both steps
of participants (eg, to use the bathroom) and general movement
while asleep due to low sleep continuity or a sleep disorder,
such as period leg movement disorder. Period leg movement
disorder affects 8% to 11% of the population [65] and around
25% of patients with MS [13,18,66]. Generally, excessive
motion indicates disruption of sleep. Recorded motion during
the night furthermore correlates significantly with being awake
at night (r=0.22; P=.004). The negatively calculated effects for
increases in both variables match existing literature about sleep
continuity [67] as well as compartment 5 of the Pittsburgh Sleep
Quality Index [24].
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Effects of HR on Sleep Quality
Despite various HR-based variables being included in
M1.1-M2.3, only minimal HR while asleep significantly affected
perceived sleep quality for patients with MS in M3.1-M3.2.
While the effect of increases in minimal HR seems consistent
for patients with MS, it seems to have no effect on sleep quality
for the control group. This highlights a difference in the effect
of cardiovascular activity between the 2 groups.

Effects of Weather (Temperatures) on Sleep Quality
We did not find temperature to affect perceived sleep quality
in our study, contradicting previous research about the influence
of weather on sleep quality [68] and temperatures on the
well-being of patients with MS [69]. However, past research
suggests that mainly the room temperature when falling asleep
impacts sleep [70]. The overall temperature outside, as recorded
during our study, is only a (poor) estimate of room temperature.

Relation Between Demographic Information and Sleep
Quality
Female participants slept significantly better (subjectively)
compared to male participants in our study. This is contradicting
existing literature on objective sleep quality where female
participants were found to sleep significantly worse and also
shorter than male participants [71,72]. Furthermore, women
were also found to be 1.41 times more likely to experience
insomnia compared to men [73].

Matching previous studies [71,74], we found age to correlate
strongly with motion while asleep and being awake at night
(Pearson correlation of r=0.31 and r=0.23, respectively, with
P<.001). Both factors are calculated to significantly reduce
sleep quality (M1.1-M3.2), which matches existing literature
about reduced sleep continuity of older individuals [74].

Limitations
Our study has several limitations that question the
generalizability and immediate clinical applicability of our
results.

First, because we collect ANS activity passively, we cannot
control all the factors that influence ANS activity and might
confound our results. In the long run, ANS activity is influenced
by disease progression for patients with MS [16]. Temporarily,
ANS activity might be influenced by deep breathing exercises,
shock, mood, physical exercise, and generally any type of
stressor [53,54]. As we aggregate ANS activity over multiple
hours when participants are either awake or asleep, it seems
unlikely that we capture either very short bursts of ANS activity
or long-term trends caused for instance by MS disease
progression. The multitude of factors that influence ANS
activity, however, only allow for hypothesis about the exact
causes of the effects we observe. This uncertainty makes the
translation into actionable clinical recommendations difficult.

Second, the translation of our findings into clinical
recommendations is further limited because many effects found
to be important for sleep quality estimation are based on signals
collected while participants are asleep. Our analysis does not
reveal what actions cause variables such as minimal HR while

asleep to differ. Thus, we can only provide recommendations
for variables such as stress or sleep duration.

Third, despite the diversity within our study population, it is
unlikely that it covers the diverse range of MS disease traits.
As we recruited patients with MS solely at the neuroimmunology
department of the University Hospital Zurich, our study is
effectively limited to Switzerland. While our findings regarding
ANS activity might generally be assumed to generalize to
patients with MS outside of Switzerland, there are likely several
confounders that bias our findings due to specifics of the life
in Switzerland, its health care sector, or the genetic traits of
Switzerland’s population. As part of a larger and more
representative study, it would also be possible to stratify for
disease progression and ANS dysfunction to investigate the
robustness of our findings toward particularly severe cases of
MS with a highly dysfunctional ANS.

Finally, we investigate self-reported sleep quality, which does
not have to align well with objective measures of sleep quality
[75]. While we find objective measures of sleep quality to be
strong predictors of perceived sleep quality and also normalize
perceived sleep quality ratings per participant to remove
intrasubject variability, our results have to be treated with care.
Similarly, we investigate perceived stress ratings, which do not
form a passive and objective measure of stress. Again, we find
similar effects of objective measures of stress (ie, an activated
stress response at night) and self-reported stress levels and also
normalized stress ratings per participant. However, self-reported
stress levels do not have to be consistent, and a comparison
between self-reported and objectively assessed stress levels is
difficult [64].

Generally, all the points above outline that a larger study is
needed to confirm our findings and hopefully derive actionable
insides. This will hopefully allow to derive what actions cause
the observed changes in signals that are outside participants’
direct control. We hope our study lays the basis for such larger
efforts.

Future Research
In addition to addressing what is outlined in the Limitations
section, there are multiple avenues worth exploring for future
research.

First, we believe a better understanding of the ANS of each
patient with MS would prove most valuable. This might be
achieved via imaging, particularly through connectomes that
provide a mapping of the nervous system’s connectivity. Given
recent successes in connectome-based predictive modeling [76],
the mapping of connectomes of patients with MS to perceived
sleep quality might prove an interesting first step. Similarly, an
analysis of the location of lesions in the CNS might help to
explain why the ANS of patients with MS might relate
differently to perceived sleep quality. Subsequently, this might
help to identify different subgroups of patients with MS, who
might have to be treated differently to improve their sleep
quality and quality of life.

Second, we believe incorporating information about sleep stages
into the analysis might prove most valuable. As outlined in the
Effects of HRV on Sleep Quality section, ANS activity
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fluctuates between different sleep stages. Therefore, through or
simple aggregation across the whole night, important patterns
might currently be neglected.

Combined with large representative studies that are also able
to establish causal relationships between participants’ behavior
and changes in bio signals, we believe this would paint a precise
and representative picture of the connection between ANS
activity of sleep quality more generally for patients with MS
and heathy individuals alike.

Third, we believe a longitudinal study that captures potential
disease progression in patients with MS would provide valuable
insights into how sleep quality and ANS activity might change
based on different stages of MS, including relapses. It would
be most interesting to include interventions in such a study
design to verify the causality of our results, for example,
intervening on participants sleep duration.

Fourth, low sleep quality is a symptom of various neurological
conditions such as Parkinson, epilepsy, or Huntington. Some
of the results we derived might translate and prove valuable
also to patients with other neurological conditions.

Conclusions
The results we present are 3-fold. First, we have found new
predictors for the perceived sleep quality of patients with MS

as well as healthy individuals, which are conveniently
measurable using wearable sensors. We thereby gained a better
understanding of the impact of HRV on sleep quality and the
differences in effect for patients with MS, namely, an activated
stress response (lower parasympathetic activity and higher
sympathetic activity) while asleep impacts perceived sleep
quality negatively. However, the activity of the parasympathetic
nervous system has greater impact on perceived sleep quality
than sympathetic activity, especially for healthy individuals.

Second, we found the disease state of patients with MS to impact
perceived sleep quality. In particular, patients with MS whose
ANS was dysfunctional; whose spinal cord was affected; or
who scored highly on the MSSS, ARMSS, or EDSS reported
significantly lower sleep quality than patients with MS whose
ANS was not dysfunctional; whose spinal cord was unaffected;
and who scored lower on the MSSS, ARMSS, or EDSS,
respectively.

Third, for binary classification problems using medical sensor
data, we provide further evidence for the use of more
conventional models that are interpretable as well as explainable
over state-of-the-art black box models. While GAMs
outperformed all other models, GLMs performed similar to
boosted tree ensemble classifiers or support vector machines
and outperformed neural networks.
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Abstract

Background: Acquired brain injury (ABI) is a prominent cause of disability globally, with virtual reality (VR) emerging as a
promising aid in neurorehabilitation. Nonetheless, the diversity among VR interventions can result in inconsistent outcomes and
pose challenges in determining efficacy. Recent reviews offer best practice recommendations for designing and implementing
therapeutic VR interventions to evaluate the acceptance of fully immersive VR interventions.

Objective: This study aims to evaluate the usability and feasibility of a co-designed VR-based neurorehabilitation support tool
by conducting multiple proof-of-concept trials in a sample of patients with ABI within a hospital setting.

Methods: A single session deploying custom immersive serious games to train cognitive functions using a new-generation
head-mounted display was conducted among a sample of inpatients with ABI. Structured questionnaires were administered at
the end of the session to evaluate the usability of the system and the intervention, participants’ familiarity with the technology,
and any adverse effects related to cybersickness. Additionally, the training duration while wearing the headset and the demographic
characteristics of the participants were considered.

Results: A total of 20 patients with ABI participated in a 1-hour proof-of-concept trial. The mean usability score was 37 (SD
2.6) out of 40, the technology familiarity level was 9.2 (SD 2.9) out of 12, and the Simulator Sickness Questionnaire total score
was 1.3 (SD 2). On average, participants wore the headset for approximately 25.6 (SD 4.7) minutes during the intervention. There
were no substantial differences in usability and technology familiarity levels based on patients’ etiology or age, with no notable
symptoms of cybersickness reported. Significantly strong correlations were noted between cybersickness symptoms and various
usability categories, including exposure, motivation, interactivity, task specificity, and immersion aspects. Further, there was a
significant association between the intervention time and the number of tasks performed (P<.001). Furthermore, patients who
derived enjoyment from VR sessions expressed a heightened interest in incorporating VR into their daily neurorehabilitation
practice (P<.001). Moreover, oculomotor issues were found to be highly sensitive to the onset of disorientation sickness symptoms
(P<.001).
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Conclusions: Through a collaborative approach, this study showcases the usability and feasibility of a VR-based support tool
for cognitive rehabilitation among inpatients with ABI. Key components of such interventions encompass a multidisciplinary
array of immersive experiences integrating neurorehabilitation principles and serious games techniques.

(JMIR Neurotech 2024;3:e50538)   doi:10.2196/50538

KEYWORDS

acquired brain injury; virtual reality; head-mounted display; neurorehabilitation; usability; feasibility; co-design; multidisciplinary
experiences; immersive serious games

Introduction

Background
Acquired brain injury (ABI) is any postnatal brain damage that
is not hereditary, congenital, or degenerative [1], and
encapsulates 2 main categories, namely, traumatic brain injury
(TBI) and non-TBI [2]. TBI is an external traumatic event in
which injury to the brain is sustained. It is the most frequent
etiology of ABI and is primarily caused by falls and road
injuries. In 2016, there were 27.08 million new cases of TBI
and 55.5 million prevalent cases worldwide [3]. The incidence
of TBI is likely to continue rising, driven by factors such as
population growth, aging demographics, and increased motor
vehicle usage. By contrast, non-TBI arises from internal disease
processes, such as brain tumors, causing damage to brain tissue.
The primary cause of non-TBI is stroke, with ischemic stroke
accounting for 62.4% of all new strokes globally, followed by
hemorrhagic stroke at 37.6% [4]. In recent years, there has been
a significant increase in stroke rates among young individuals,
a trend expected to persist, especially in low-income countries.
ABI not only results in health deterioration and disability for
affected individuals and their families but also imposes a
substantial burden on health care systems and economies due
to lost productivity and high health care costs [2].

Individuals with ABI exhibit adverse outcomes across multiple
functional domains, encompassing sensorimotor, cognitive, and
behavioral areas, which impede the performance of basic
activities of daily living [1]. Regarding cognitive function,
deficits commonly manifest in attention, memory, and executive
functions [4]. The majority of patients with TBI experience
challenges with sustained, selective, or divided attention, along
with diminished information processing speed. Memory issues
often involve a heightened rate of forgetting, as well as slower,
disorganized, and incoherent learning compared with individuals
without TBI. Additionally, patients with TBI commonly exhibit
executive function alterations, including difficulties in planning,
limited mental flexibility, reduced inhibitory ability, and
challenges in verbally recalling phonetic categories [5,6].
Cognitive impairment following a stroke varies based on factors
such as the nature of the stroke, the specific brain regions
affected, and the stage of recovery. Individuals may exhibit
hemispatial neglect as well as various types of visuoperceptive
and visuospatial impairments. Additionally, deficits in verbal
memory and language-related issues are common, including
aphasia, which can affect writing and reading abilities [6,7].

Although some impairments may show improvement over time,
recovery rates vary as a result of differences in the baseline
characteristics of individuals [6]. Furthermore, despite the

distinct disease processes and medical issues associated with
TBI and non-TBI, patients often receive treatment and
rehabilitation in the same hospital facilities. To achieve optimal
clinical outcomes for all patients with ABI, health care
professionals need to deliver personalized and targeted
treatments, necessitating a comprehensive understanding of the
pathology across different categories of ABI [2].

Neurorehabilitation is a meticulously supervised process
designed to assist individuals with ABIs in reclaiming their
functional abilities and enhancing their quality of life.
Fundamental components of neurorehabilitation encompass a
spectrum of expert and multidisciplinary assessments, the
implementation of realistic and goal-oriented tasks, and the
evaluation of clinically appropriate outcome measures.
Importantly, this evaluation also takes into account the
perspectives of both the patient and their family [8].
Neurorehabilitation services serve as a bridge between isolation
and exclusion, often representing the initial stride toward
attaining fundamental rights. Health, indeed, is a fundamental
right, and neurorehabilitation stands as a potent service that
fosters personal empowerment, enhances independence, and
notably facilitates the return to work and active participation
within the community [1,8,9].

Virtual reality (VR) is emerging as a swiftly advancing
technology, garnering recent popularity as a promising support
tool for neurorehabilitation among individuals with ABI [10-13].
Using VR in rehabilitation represents a versatile, captivating,
and multifaceted approach capable of addressing patients’
sensorimotor and cognitive capacities, thereby eliciting positive
responses. It enhances treatment compliance while augmenting
levels of functioning and overall quality of life [14]. VR
provides a platform to simulate real-life scenarios and
ecologically valid activities within a safe and controlled
environment [15].

As the term “virtual reality” can encompass various
computer-based rehabilitation system types across studies and
may influence the feasibility and efficacy of interventions,
maintaining consistent terminology is crucial [12,16]. In 1999,
Brooks [17] defined a VR experience as “any in which the user
is effectively immersed in a responsive virtual world. This
implies user dynamic control of viewpoint.” Thus, for a system
to be considered VR based, it must fulfill 3 conditions: it should
be immersive, interactive, and true to reality.

Modern high-end VR systems can provide users with an
immersive experience, wherein they feel surrounded by a
computer-generated world that responds naturally and
convincingly, while also minimizing side effects such as
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cybersickness [18]. The utilization of new-generation
head-mounted displays (HMDs) enables stereoscopic perception
and perspective changes based on the user’s viewpoint.
Additionally, incorporating haptic controllers and precise
tracking of 6 degrees of freedom allow the system to accurately
recognize users’ motion (both position and orientation) in
3-dimensional space. Furthermore, contemporary computing
techniques and advanced rendering methods facilitate the
development of highly detailed graphics and real-time responses
[19]. Consequently, users can engage in a realistic virtual
environment, interacting with intuitive gestures that mimic their
real-world movements. This immersive experience often leads
to a profound sense of presence and may even induce a
phenomenon referred to as “virtual embodiment” [11,20].

Despite the increasing interest in the utilization of VR
technology, there remains a considerable degree of heterogeneity
among health applications. The majority of studies using VR
for rehabilitation have focused on addressing motor impairments
following a stroke, rather than exploring other rehabilitation
objectives or types of brain injuries [10,12]. Furthermore, it is
noteworthy that the most commonly used output devices are
flat screens and older-generation headsets [16]. Since the
introduction of the first high-end fully immersive VR-based
system commercially available in 2016 (ie, Oculus Rift [21];
Oculus VR), only a handful of studies have provided robust
evidence regarding the feasibility and efficacy of new-generation
immersive devices in rehabilitation [22-24]. Most reviews have
indicated that the limited evidence stems not from negative or
inconclusive outcomes, but from a deficiency in methodological
designs that yield high-quality evidence levels [16,25]. As a
result, determining whether the benefits of VR-based
interventions are clinically significant remains challenging [26].
Therefore, VR-based interventions are still in the early stages
of full implementation within real hospital settings. Establishing
a standard operating procedure would prove beneficial for
enhancing reproducibility, facilitating comparison, and
promoting the generalization of findings across studies.

Recent recommendations regarding the utilization of VR-based
interventions for clinical applications emphasize the significance
of implementing a phased approach design for new programs,
which includes conducting pilot studies to assess usability
[27,28]. The customization of tasks to cater to the specific needs
of individuals, along with the integration of serious gaming
techniques [29], represents key advantages of VR in promoting
effective neurorehabilitation [30-32]. Serious games techniques
encompass various strategies such as adjusting the intensity and
complexity of tasks, integrating multisensory feedback, using
avatar representations, reinforcing actions with sound effects,
and rewards. These techniques aim to foster a high level of
engagement and sustain individual focus and motivation during
rehabilitation sessions [33]. Moreover, they contribute to
enhancing neuroplasticity through repetitive training, as
highlighted by research studies [18,34,35].

The most recent studies on VR interventions for cognitive
rehabilitation following ABI have focused on conducting
detailed design and prototype evaluations of self-developed
systems [36,37]. These studies underscore the significance of
integrating expertise from cross-disciplinary perspectives, which

has resulted in high levels of user satisfaction and low levels of
simulator sickness. Additionally, the authors conducted
second-phase trials to effectively evaluate the feasibility and
preliminary efficacy of the VR-based intervention. Their primary
findings suggest improvements in outcome measures of
cognitive functions when the intervention is tailored to address
the specific cognitive function, incorporating serious games
techniques, using a patient-centered design approach, and
administering sessions lasting approximately 30 minutes each
[38-41].

Objectives
This study aims to address the aforementioned recommendations
by prioritizing the early engagement of both patients and
clinicians in the development process. The approach involved
the co-design of a new VR-based cognitive rehabilitation support
tool, which underwent iterative system testing to elicit
requirements and establish its utility, safety, and viability before
progressing to large-scale studies. The co-design process
included active participation from end users and a range of
health professionals, including physical medicine and
rehabilitation physicians, neuropsychologists, occupational
therapists, physiotherapists, as well as researchers and
technologists. The objective was to ensure the usability and
feasibility of a fully immersive VR-based cognitive
rehabilitation support tool among individuals with ABI through
a multiple proof-of-concept study. This insight was crucial for
formalizing the specific requirements for integrating VR into
the daily practice of real hospital settings. The findings from
this study may serve as a road map for developing new VR tools
in this field and lay the groundwork for future high-quality
studies. These studies are essential to ascertain the real efficacy
and cost-effectiveness of VR-based interventions in clinical
practice.

Methods

Overview
The methodology of this study comprised 2 main parts. First,
the design and development of a VR-based cognitive
rehabilitation support tool, which followed a thorough and
iterative approach involving a multidisciplinary team from the
Institut Guttmann, a specialized neurorehabilitation health care
center. Second, patients with ABI were recruited to participate
in a single session using the VR-based system within the real
hospital setting, aimed at assessing the usability and feasibility
of the proposed intervention.

Study Design
In the first part, the need for acquiring a VR-based support tool
was identified through interviews conducted with clinical
professionals involved in the neurorehabilitation process (for
detailed information, refer to Table S1 in Multimedia Appendix
1). Subsequently, a multidisciplinary team brainstormed new
ideas for VR-based interventions and suggested the development
of a novel cognitive rehabilitation support tool. The acquisition
of a modern VR headset was planned, and strategic placement
was arranged within the hospital configuration to facilitate its
use. Researchers, neuropsychologists, and technologists
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commenced work on a phased co-design and prototyping of VR
tasks targeting specific cognitive functions. These prototypes
underwent testing in close consultation with the
multidisciplinary team and patients with ABI. Feedback was
collected, and corresponding changes were implemented for
each task iteratively until maximum safety and desired
functionality were ensured.

The second part involved conducting a multiple proof-of-concept
study to evaluate the usability and feasibility of the
self-developed VR-based cognitive rehabilitation support tool
in patients with ABI (Figure 1). Participants were recruited from
the Institut Guttmann.

Figure 1. Study design methodology description, divided into 2 main parts: the co-design and prototyping phase and the usability and feasibility phase.
ABI: acquired brain injury; VR: virtual reality.

Ethical Approval
Ethical approval for this trial was obtained from the Ethical
Research Committee (CEIm) of the Fundació Unió Catalana
d’Hospitals (reference number CEI 22/34), and the study was
conducted in compliance with the principles outlined in the
Declaration of Helsinki. Written informed consent forms were
completed by all participants.

Participants
Various profiles participated in the co-design and prototyping
phase (refer to Table S2 in Multimedia Appendix 1). The initial
cross-disciplinary team comprised 9 research members from
the Institut Guttmann, including 3 neuropsychologists, 2
physiotherapists, 2 technologists, and 2 researchers in the field
of technological innovation applied to health. Together, they
developed the initial approach for the VR-based tool.

After the initial prototypes were developed and tested by the
research team, additional clinical professionals, including
physiotherapists, occupational therapists, and
neuropsychologists, were invited to test advanced prototypes.
They were asked to provide feedback as they familiarized
themselves with manipulating the tool.

The most advanced prototypes, which met acceptable safety
levels based on clinical criteria, were tested by 9 patients of
varying ages and sexes, spanning from childhood to youth to
advanced age, and with different etiologies including TBI,
stroke, or brain tumor. These patients were undergoing
functional training at the rehabilitation gym of the Institut
Guttmann. They were required to understand basic instructions,
possess sufficient mobility to manipulate a controller with at

least one hand, not have epilepsy or vertigo, and be capable of
wearing glasses if needed. Positive feedback was appreciated,
and valuable comments and observations were collected to
inform the final acquisition of the VR-based cognitive
rehabilitation tool.

For the usability and feasibility assessment, all individuals
admitted to the Institut Guttmann between June and August
2022 were considered for participation in the multiple
proof-of-concept study if they met the following criteria:

• Presence of an ABI (moderate to severe TBI, stroke, or
brain tumor).

• Age equal to or greater than 16 years.
• Presence of cognitive impairment assessed using a

neuropsychological test battery.
• Well-oriented in the 3 different spheres (person, space, and

time) and understands basic instructions.
• Had enough mobility to manipulate a controller with at

least one hand and press any button.
• Received cognitive rehabilitation training through a

not-immersive computer-generated tool named Guttmann
NeuroPersonalTrainer [42].

The exclusion criteria were as follows:

• Presents linguistic (aphasia) or visuoperceptive alterations
that could affect the administration and validity of the
results obtained in the neuropsychological assessment
battery or VR session performance.

• Psychiatric or neurological history before ABI.
• Have epilepsy or disorders associated with motion sickness.
• Patients with skull shape abnormalities who cannot

comfortably hold the VR headset.
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During the recruitment period, a total of 20 inpatients (9 female)
met the inclusion criteria and were enrolled in the study. Among
them, 7 patients had a TBI, 12 had a stroke, and 1 presented
with a brain tumor.

VR System

Device and Development Tools
The VR system must possess the capability to capture user
actions through motor interfaces. These actions will be

interpreted as requests to modify the virtual environment and
sensory reactions will be transferred to the sensory interfaces.
Furthermore, specific hardware capabilities, including the type
of display screen, resolution, image refresh rate, and field of
view, along with software attributes such as ergonomic
interactions and navigation, are crucial for mitigating
VR-induced symptoms and effects [43,44]. The minimal
technical specifications for such a system are listed in Table 1.

Table 1. VRa device minimal technical requirements specification.

RequirementObject

OLEDb or LCDcDisplay screen

>960 × 1080 pixels per eyeScreen resolution

≥75 HzRefresh rate

≥110° diagonalField of view

Integrated and adjustableAudio

6-DoFd tracking, accelerometer, gyroscope, proximity, and hapticSensors

Adjustable eye comfort setting (IPDe); head strapErgonomics

Up to 2 m × 2 mTracked area

Minimum of 2 with buttons and 6 DoFControllers

aVR: virtual reality.
bOLED: organic light emitting diode.
cLCD: liquid crystal display.
dDoF: degrees of freedom.
eIPD: interpupillary distance.

The HTC VIVE Pro Eye (HTC Corporation) [45], a
new-generation high-end HMD and handheld controller, was
selected and integrated into the hospital configuration. This
device is currently commercially available in most countries
and is compatible with industry-standard interfaces such as
SteamVR (Valve Corporation) [46] and OpenVR (Valve
Corporation) [47]. With the Unity3D (Unity Technologies)
game engine [48], our team successfully created immersive,
interactive, and true-to-reality virtual environments. These
environments can be executed on any VR station that meets the
aforementioned minimal technical requirements.

From Prototyping to Immersive Serious Games
A co-design approach was undertaken involving health
professionals, researchers, and technologists. The
multidisciplinary team engaged in discussions regarding the
configuration of the VR session, addressing aspects such as
duration, the number of tasks, task characteristics, and
measurable data. Recognizing that individuals with ABI may
have disabilities across multiple areas of functionality, the team
emphasized the importance of developing a set of unitary tasks.
This approach would allow for targeting different cognitive
abilities and obtaining relevant outcomes separately, thereby
ensuring comprehensive training for the patient.

Unitary tasks should be designed to be achievable, with clear
objectives, and customized based on each patient’s specific
needs to accommodate any physical or cognitive limitations

they may have (eg, muscle rigidity or hypersensitivity).
Participants could use 1 or 2 handheld controllers, and
interactions were simplified by programming multiple buttons
to perform the same action.

Tasks could be completed in either sitting or standing positions;
however, to minimize the risk of falling, as reported in a
previous study [49], all participants underwent the VR session
while seated. Accelerations or decelerations were avoided and
substituted with uniform linear motion or teleporting methods
to ensure a safe and comfortable experience for the participants.
This approach reduces motion sickness by requiring users to
actively control their viewpoints and be responsible for initiating
movement [18]. Virtual scenes were designed to be as realistic
as possible, corresponding to the stimulus type (eg, a sports
center for football stimuli), and the stimuli appeared within the
user’s field of view. All exercises followed a dual-task approach,
incorporating both cognitive and motor cues (eg, reaching
visuospatial stimuli), to provide a comprehensive rehabilitation
experience.

The final prototypes were attained through continuous testing
and evaluations involving end users and clinical professionals.
Key topics and features that underwent extensive discussion
and redesign were game mechanics, interactivity, sound effects,
graphic design, and variable thresholds to delineate difficulty
levels. Seven immersive experiences were developed, addressing
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3 different cognitive functions: attention (n=4), memory (n=1),
and executive functions (n=2).

Prototyping these experiences as serious games facilitated the
incorporation of appropriate feedback, including visual (V),
auditory (A), and haptic (H) cueing. This approach enabled the
provision of instructions, rewarding or annoying stimuli to guide
users in expected motion realization, and the ability to display
or perceive real-time performance results [50]. The emission
of slight vibrations when interacting with a virtual object can
induce the sense of having touched it. Additionally, task
difficulty was adjusted to fit the patient’s therapeutic window,
allowing the professional to select 1 of 3 possible difficulty
levels. Each task automatically modified certain dependent
variables based on the chosen difficulty level.

Attentional serious games consist of 4 visuospatial tasks (Figure
2). Each task involves a different presentation-interaction
approach: (1) stimuli moving at different constant speeds from
right to left in a straight line and then reversing direction at
different heights. The user, who is stationary, must shoot them;
(2) stimuli moving toward the user in a parabolic arch trajectory
from different positions. The user must intercept them; (3)
stationary stimuli distributed at various points within the user’s
field of view. The user must shoot them; and (4) stationary
stimuli appearing near the user’s left or right side while they
are virtually moving forward at a constant low speed. This
creates the perception that the user is moving toward the stimuli
and can reach them with their hands.

Figure 2. The 4 attentional immersive serious games: (A) Moon, (B) Goalkeeper, (C) Circus-I, and (D) Butterflies.

One memory task was developed to train short-term and working
memory within an immersive 3D naturalistic environment
(Figure 3). Users could focus on the exercise they had to carry
out without any external distractions. The task comprises 3
phases: an encoding phase, an interference phase (which can
be configured as maximum or minimum interference), and a
decoding phase.

The executive function tasks aim to train high-level cognitive
abilities, such as planning, problem-solving, and
decision-making. For this research, 2 tasks were developed
wherein the participant is immersed in performing a repetitive

task that varies in the principal instruction that must be carried
out (Figure 4). The first task follows the design of a sequence
imitation task, while the second exercise was designed to control
automatic responses using attention and reasoning through an
inhibitory control task.

During VR sessions, in-game measures were collected, including
time stamps, hits/failure scores, reaction times, user-system
interactions, gaze/position tracking data, and stimuli data. At
this stage, an easy-to-use system with a quick set up for sessions
involving a set of VR experiences addressing cognitive functions
was achieved.

JMIR Neurotech 2024 | vol. 3 | e50538 | p.95https://neuro.jmir.org/2024/1/e50538
(page number not for citation purposes)

Prats-Bisbe et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. A memory immersive serious game (Totem) and its phases: (A) encoding, (B) min-interference, (C) max-interference, and (D) decoding.

Figure 4. The 2 executive functions immersive serious games: (A) Conveyor-belt and (B) Circus-II.

Intervention
Immersive serious games were deployed on the HTC VIVE Pro
Eye device, which was equipped with 2 room tracking units
(infrared cameras) and 2 controllers. Once the doctor identified
a potential participant, he/she or a tutor was invited to participate
in the study. Enrolled patients substituted 1 hour of their
cognitive treatment with traditional cognitive rehabilitation
therapy with 1 hour of intervention using the VR-based system
tool. All sessions were conducted between June and August
2022.

During the initial 15 minutes, the participant completed the
informed consent forms and was seated in a chair or positioned
in their wheelchair in a designated area within the VR system’s
tracking zone. To ensure safety, clear space within the room
was maintained, keeping the participant at a distance from any
objects or individuals to prevent collisions. Subsequently, the
VR headset and controllers were placed on the participant. The
treatment provider configured the VR session via a host

computer by selecting the difficulty level for each cognitive
category (hard, medium, or easy) and specifying the hands
involved (see photos of the set up in Multimedia Appendix 2).

The session consisted of completing various tasks, with each
task lasting 4-6 minutes. The total intervention time wearing
the headset was approximately 30 minutes unless the patient
requested to conclude earlier. The intervention time was
calculated as the sum of the duration of each task carried out,
excluding the time elapsed between tasks when the treatment
provider ensured that the task objectives were understood and
instructed the patient on how to interact with the environment.
The number of total tasks performed was also counted. When
there were 15 minutes remaining until the end of the VR session,
the HMD was removed, and questionnaires were administered
to participants to assess their overall user experience.

Outcome Measures
To assess the usability and feasibility of the VR-based support
tool for cognitive rehabilitation in patients with ABI, 3
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structured questionnaires were used (Table S1 in Multimedia
Appendix 3). Additionally, information regarding the optimal
dose of treatment and patients’ age, based on the duration of
time spent performing VR tasks, along with demographic data,
was collected.

The first questionnaire comprised a 5-point Likert scale, ranging
from “5=fully agree” to “1=fully disagree,” assessing system
usability and acceptance based on the participant’s perception.
The responses were related to the sense of presence, dimensions
matching, the ability to see and differentiate objects,
interactivity, task specificity, task difficulty, motivation,
enjoyment, and errors. Following this, 3 questions were posed
regarding the frequency (on a 5-point Likert scale, ranging from
“5=all the time” to “1=never”) of using various new technologies
to gauge the familiarity level. Finally, the Simulator Sickness
Questionnaire (SSQ) [51] was used to evaluate side effects by
measuring users’ level of sickness symptoms such as nausea
(N), oculomotor problems (O), and disorientation (D). Each of
the 16 items in the SSQ is rated on a 4-point scale: 0 (none), 1
(slight), 2 (moderate), and 3 (severe). Participants were
instructed to indicate the severity of each symptom they
experienced during or after the VR exposure by selecting the
appropriate rating for each item.

For the Usability Questionnaire (UQ) and the Technology
Familiarity Questionnaire (TFQ), the value for the “worst”
condition answer will count as 0, and the value for the “best”
condition answer will count as 4. As the UQ has 10 questions,
the maximum total score can be 40. A higher usability score
indicates that the system is more useful and feasible for
implementation in a hospital setting for patients with ABI during
neurorehabilitation. The maximum total score for the 3-question
TFQ can be 12, indicating a greater acceptance of new
technologies.

By contrast, the total score for the SSQ can range from 0 to 48,
with significant symptoms indicated by scores between 10 and
15, concern for scores between 15 and 20, and scores over 20
indicating a problem with the simulator. Their usage permitted
detailed analysis of the distribution of nausea, oculomotor, and
disorientation symptoms elicited by the experimental
manipulation. If any score falls within a concerning range, it
should be studied separately because this scale was originally
designed for military flight simulators and may appear overly
strict when applied to nonaviators [52]. However, this
questionnaire is one of the most widely used ones for assessing
cybersickness in immersive VR rehabilitation [53]. Thus, its
use allowed for comparison with previous research.

Structured questionnaires containing numbered questions,
accompanied by keywords pertaining to usability, technical
familiarity, and side effects, along with the complete question
sentences, are available in Table S1 in Multimedia Appendix
3.

Statistical Analysis
We aimed to recruit enough inpatients with ABI to identify all
usability problems in the design [54] and the early stage of this
self-developed VR tool and to gather sufficient data to estimate
the SD of measured outcomes for planning a subsequent larger

trial [55]. Recent studies, which involved new-generation
headsets, customized VR-based rehabilitation tools, focused on
patient needs, tested the system in samples ranging from 11 to
35 patients with ABI, and found that VR was accepted and
feasible for rehabilitation [37,38,56].

Descriptive analyses were conducted to establish recruitment,
acceptance, and completeness, using demographic information,
questionnaire scores, measures of intervention duration, and
the number of tasks completed. Descriptive statistics data from
participants with TBI and stroke were reported separately. As
only 1 participant had a brain tumor, their data were not included
in the etiology-group comparison. However, their data were
included in the age-group comparison established for future
eligibility criteria.

The calculations were conducted using Microsoft Excel. The R
package (R Foundation) corrplot [57] was used to graphically
represent the scores obtained in the questionnaires and compare
them according to age and etiology. Additionally, the same
package was used to explore the correlation matrix between
SSQ subscale symptoms, usability categories, technology
familiarity, in-game measures, and some demographics. P values
with a significance level <.05 and correlation coefficients (r,
ranging between –1 and +1) were provided to aid in determining
the statistical significance and the direction and intensity of
correlations.

Results

Sample Characteristics
A total of 20 inpatients with ABI participated in this usability
and feasibility study. The sample mean age was 38.3 (SD 14.1)
years, with a mean time since injury (TSI) of 4.7 (SD 1.5)
months. The total scores obtained for each of the 3
questionnaires administered (ie, UQ, TFQ, and SSQ) were 37
(SD 2.6), 9.2 (SD 2.9), and 1.3 (SD 2), respectively. Finally,
the total mean duration of each intervention across all
participants was approximately 25.6 (SD 4.7) minutes, while
the number of tasks completed was 5.1 (SD 1).

Among the 7 patients with TBI, 4 reported a severe level of
impairment according to the Glasgow Coma Scale (between 3
and 8) [58]. Among the 12 patients with stroke, 7 had ischemic
strokes and 4 had hemorrhagic strokes. There were 2 cases of
minor stroke according to the National Institute of Health Stroke
Score (NIHSS; ranging from 0 to 42: 0, no deficit; minor
impairment, 1-4; moderate, 5-15; moderate to severe, 16-20;
and severe impairment 21-42) [59]. Seven patients had moderate
stroke severity, and 2 presented with moderate to severe stroke.
The patient who had a brain tumor underwent surgery for
resection of a pituitary macroadenoma.

Patients underwent a battery of neuropsychological tests before
being incorporated into the study; 8 of them had alterations in
the cognitive function of attention, 8 presented with memory
impairment, and 18 had difficulty performing executive
functions. Five patients had completed advanced studies (>12
years of schooling), while 8 had an intermediate level of
education (between 8 and 12 years of schooling) and 6
completed primary education (<8 years of schooling).
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Moreover, one patient presented with hemispatial neglect, 6
had left-side hemiplegia, and 4 had visual-field defects,
including homonymous hemianopia, diplopia, or limited gaze.

The individual demographics and some clinical data are reported
in Table 2. For more details and complete information, please
refer to Table S1 in Multimedia Appendix 4.

Table 2. Individual demographic and clinical data.

GCScNIHSSbTSIaEtiologySexAge (years)Patient code

Missing—e8.7TBIdFemale162020342-1

3—3.4TBIMale382020342-2

3—3.9TBIMale632020342-4

—185.5Ischemic strokeMale482020342-5

—124.6Hemorrhagic strokeFemale192020342-6

Missing—4.2TBIMale402020342-7

—25.0Hemorrhagic strokeMale412020342-8

4—5.3TBIMale202020342-9

3—5.0TBIFemale192020342-10

—203.5Ischemic strokeFemale392020342-11

—23.9Hemorrhagic strokeFemale322020342-12

——3.1Brain tumorMale382020342-13

—73.3Ischemic strokeMale252020342-14

—126.5Ischemic strokeMale582020342-15

—125.5Ischemic strokeFemale512020342-16

—Missing4.3Hemorrhagic strokeFemale292020342-17

—143.3Ischemic strokeFemale502020342-18

Missing—5.4TBIMale342020342-19

—126.9Hemorrhagic strokeFemale582020342-20

—52.8Ischemic strokeMale472020342-21

aTSI: time since injury (months).
bNIHSS: National Institute of Health Stroke Score.
cGCS: Glasgow Coma Scale.
dTBI: traumatic brain injury.
eNot available.

Evaluation of Outcome Measures
We divided participants into separate groups based on etiology
(TBI and stroke) and age (young: 16-39 years and adult: 40-63
years). We used appropriate measures of central tendency and
variability, such as means and SDs (Table 3). According to each
etiology and age subgroup comparison, all of them achieved
more than 36 points in the UQ score, very close to the maximum
of 40 points. Participant subgroups achieved more than 8 points
out of 12 for being experienced in using new technologies such
as personal computers, smartphones, and the internet. Regarding
the manifestation of motion side effects, none of the groups
achieved a minimum of 10 points on the SSQ score, indicating
the absence of negative symptoms. A difference of 7.4 minutes
was observed when comparing the intervention duration time
between the TBI and stroke subgroups. Thus, participants with
stroke scored 1 point higher in the TFQ score and completed 1
more task than participants with TBI.

The scores obtained by the participants in the TFQ questionnaire
were compared depending on age and separated by etiology,
excluding the patient with brain tumor (Figure 5). Most
participants reported an acceptable level of the use of new
technologies, but 5 achieved scores below half the maximum.
The 2 lowest scores, 4/12, were obtained by patients with TBI.
One participant, a 38-year-old male with a Glasgow Coma Scale
score of 3, obtained the lowest score of 4/12. Another
participant, a 40-year-old male with no available severity data,
also scored 4/12. The next lowest score of 5/12 was obtained
by 2 patients with moderate to severe stroke. One was a
51-year-old woman with an NIHSS of 12, and the other was a
39-year-old woman with an NIHSS of 20. Finally, a score of
6/12 was obtained by a 58-year-old male patient diagnosed with
moderate stroke (NIHSS of 12). It is important to highlight that
age-matched participants, even older, reported an acceptable
use of new technologies.
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Table 3. Descriptive statistics of age and TSIa, results of the UQb, TFQc, SSQd, intervention duration, and number of tasks realized.

Adult (n=9), mean (SD)Young (n=11), mean (SD)Stroke (n=12), mean (SD)TBIe (n=7), mean (SD)Statistic

50.7 (7.8)28.1 (8.7)41.4 (12.8)32.9 (16.5)Age

4.8 (1.4)4.6 (1.6)4.6 (1.3)5.1 (1.7)TSI

37.6 (1.9)36.5 (3)36.8 (3.1)37.4 (1.7)UQ

8.9 (3.3)9.5 (2.8)9.4 (2.8)8.4 (3.3)TFQ

1 (1.6)1.5 (2.4)1.4 (2.3)0.9 (1.9)SSQ

25 (5.7)26.2 (3.9)28.3 (2.8)20.9 (3.8)Duration

4.8 (1)5.4 (0.9)5.4 (0.8)4.4 (1)N_tasks

aTSI: time since injury.
bUQ: Usability Questionnaire.
cTFQ: Technology Familiarity Questionnaire.
dSSQ: Simulator Sickness Questionnaire.
eTBI: traumatic brain injury.

Figure 5. Comparison plot between TFQ scores obtained by etiology and distributed by age. TBI: traumatic brain injury; TFQ: Technology Familiarity
Questionnaire.

The mean tech familiarity score for patients with stroke (9.4)
was slightly higher compared with that for patients with TBI
(8.4), but this did not affect the usability scores. Overall, all
participants achieved high usability scores, equal to or over
35/40, except for 1 patient, a 32-year-old woman diagnosed
with a minor stroke (NIHSS of 2), who scored 29/40 points for

the usability of the VR intervention (Figure 6). This could be
because the patient consistently rated all questions with a 4/5,
instead of assigning lower scores to some items. Additionally,
she appeared indifferent regarding the occurrence of errors, as
evidenced by consistently assigning a score of 3/5.

Figure 6. Comparison plot between UQ scores obtained by etiology and distributed by age. TBI: traumatic brain injury; UQ: Usability Questionnaire.

When comparing the spatial distribution of the stroke and TBI
subgroups based on age, no substantial differences were
observed regarding usability, by either age or etiology.

Similarly, in terms of simulator sickness, neither the 2 etiology
groups nor the patient with a brain tumor (SSQ score=2)
exhibited any substantial differences in the presence of
symptoms, regardless of age (Figure 7). The upper limit of the
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y-axis, as shown in Figure 7, has been truncated at 10. This
range ensures safety by indicating the absence of simulator
sickness. None of the patients obtained a score greater than this
threshold.

Another aspect under examination is the duration of the
VR-based intervention while wearing the headset. Following
the time needed for patients to understand the intervention, fit
and set up the equipment, and complete questionnaires, all

participants were allotted approximately 30 minutes to engage
in a series of immersive serious games. The subgroup of patients
with stroke appeared to tolerate longer interventions wearing
the headset compared with patients with TBI because, on
average, the stroke subgroup performed more tasks.
Additionally, Figure 8 illustrates a decreasing trend in the
duration of VR interventions with older ages for patients with
TBI.

Figure 7. Comparison plot between SSQ scores obtained by etiology and distributed by age. SSQ: Simulator Sickness Questionnaire; TBI: traumatic
brain injury.

Figure 8. Comparison plot between intervention duration time differentiation by etiology and age.

The sample size of participants with TBI was small, but several
factors may contribute to explaining these differences in time
exposure. First, 2 participants with TBI completed a set of 5
tasks more quickly than those with stroke, possibly because
they were on average 10 years younger (see Table S2 in
Multimedia Appendix 4). According to the literature, younger
age correlates with faster reaction times [60]. By contrast, an
adult participant with TBI (code 2020342-19) reported feelings
of dizziness and pixelated vision (see Table S2 in Multimedia
Appendix 3). He stopped mid-intervention to remove the VR
glasses and rest for a couple of minutes. Additionally, the oldest
patient in the entire sample was from the TBI subgroup and was
the one who requested to finish early, completing only 3 tasks.
These occurrences contributed to a shorter intervention time for
the TBI subgroup.

Based on this rationale and observing the result of the
comparison between UQ scores and TFQ scores (Figure 9), the
co-designed and developed VR-based cognitive rehabilitation
support tool appears to be feasible when applied in the hospital
setting and with patients with ABI. It demonstrates high usability
regardless of age, the origin of the lesion, and familiarity with
new technologies.

We also investigated the correlations among Simulator Sickness
subscale symptoms, usability categories, tech familiarity scores,
age, TSI, number of tasks performed, and time wearing the VR
headset (Figure 10). The intensity of the square’s color is
directly proportional to the strength of the correlations between
variables. Positive correlations are labeled with cool colors,
whereas negatives are warm. Significant correlations are
indicated with asterisks. The exact P values are presented in
Table S1 in Multimedia Appendix 5.
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Figure 9. Comparison plot between UQ and TFQ scores, separated by etiology. TBI: traumatic brain injury; TFQ: Technology Familiarity Questionnaire;
UQ: Usability Questionnaire.

Figure 10. Correlations between sample’s demographic characteristics, number of tasks completed, session duration time, technology familiarity,
usability categories, and SSQ. *P<.05, **P<.01, and ***P<.001. SSQ: Simulator Sickness Questionnaire; TFQ: Technology Familiarity Questionnaire;
TSI: time since injury.

There were significant, strong correlations between some
variables included in the analysis. The data extracted from the
session performance were closely related, and therefore, the
intervention duration positively correlated with the number of
tasks performed (r=0.72, P<.001), as expected. Regarding
usability categories, the dimensions matching (u_dim) correlated
with the sense of presence (u_pres: r=0.56, P=.01) and with the
ability to see and differentiate objects (u_see: r=0.56, P=.01).
The task goal-specificity (u_goal) correlated positively with the
ability to interact with the environment (u_inter: r=0.55, P=.01).
The motivation prompted by the intervention (u_motiv)
correlated with the dimensions matching (u_dim: r=0.57,
P=.008) and with the ease in seeing and differentiating objects
(u_see: r=0.57, P=.008). Additionally, motivation correlated
with sex, considering that 0 corresponds to the male sex and 1
to the female sex. As the sign of the correlation is negative, a

strong correlation between male sex and motivation was
observed (r=–0.46, P=.04) [61]. Furthermore, the liking of VR
interventions (u_like) and the desire to conduct more VR in
rehabilitation programs (u_more) were correlated (r=0.56,
P<.001), and both were also correlated with the motivation
experienced (u_motiv) with similar results (r=0.55, P=.01). The
presence of errors that some participants had reported correlated
negatively with the ability to understand and achieve the goal
of the task (r=–0.56, P=.009).

Finally, concerning the SSQ symptoms analyzed, a strong
correlation between disorientation (ssq_d) and oculomotor
problems (ssq_o) was observed (r=0.71, P<.001). The
disorientation sickness symptoms also correlated with the nausea
sickness symptoms (ssq_n: r=0.50, P=.02). Additionally, the
nausea symptoms and oculomotor problems negatively
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correlated with the ease in seeing and differentiating objects
(r=–0.60, P=.005 and r=–0.54, P=.01, respectively).

Discussion

Support Tool Developed
The VR-based support tool proposed in this study comprised a
high-end new-generation commercial device, namely, the HTC
VIVE Pro Eye, along with a series of custom tasks designed to
rehabilitate cognitive functions (eg, attention, memory, and
executive functions) in patients with ABI. These patients were
undergoing neurorehabilitation treatment at a health care center.

The overall satisfaction percentage achieved by the sample of
20 patients, considering the usability score and the evaluation
of side effects, was 89.8% (431/480; 37/40 usability points,
subtracting 1.3 from 48 SSQ points). The system was developed
following recent recommendations [27,28] combined with our
approach to how VR applications should be designed for clinical
trials (Textbox 1). The results obtained from this study may
contribute to filling the gap in the literature related to the lack
of studies that follow a methodological process of best practices
to integrate VR technology as a neurorehabilitation support tool
for patients with ABI in the daily practice of real hospital
settings [24,25,62].

Textbox 1. Stepwise summarized approach to achieve a virtual reality–based neurorehabilitation support tool for inpatients with acquired brain injury.

1. Identification of virtual reality (VR)–based intervention needs and barriers for patients with acquired brain injury (ABI)

• A multidisciplinary meeting involving health professionals and researchers identified the need for a VR-based neurorehabilitation support
tool for patients with ABI.

• Difficulties and barriers were identified, and possible solutions were proposed, in collaboration with technologists and VR experts.

• The first approach to VR support tool features and treatment interventions was defined.

2. Selection and placement of technological device

• A high-end new-generation immersive system was selected and placed within the hospital setting.

• Device testing with available off-the-shelf VR games was conducted with clinical professionals and end users.

3. Co-design of VR-based neurorehabilitation support tool

• Physical medicine and rehabilitation physicians, neuropsychologists, therapists, and nurses targeted the patient population and desired
intervention.

• Ideas for new VR experiences were generated, addressing different cognitive or sensorimotor functions.

• Researchers and developers created the first sketches based on technology capabilities and current knowledge.

• Immersive serious games, rehabilitative principles, game mechanics, interactions, sound and effects, graphic environment, and measurable
data, among other features were discussed.

4. Prototyping

• Developers built prototypes, which were tested and redesigned by co-designers until desired behavior and appearance, maximum safety,
easy, and a quick set up were guaranteed.

• Input and output variables with configurable thresholds were determined.

• Approaches to minimize cybersickness symptoms, simplified interactions, and multisensory feedback incorporation were used.

• Use cases were performed involving treatment providers and end users.

• A set of immersive serious games, including neurorehabilitation principles, was achieved.

5. Usability and feasibility study

• A study protocol was defined, including participant characteristics (inclusion/exclusion criteria), intervention, and outcome measures.

• Target patients were recruited.

• Multiple proof-of-concept studies were conducted.

• Demographics, clinical data, in-game measures, and structured questionnaire responses were collected.

• Statistical analyses were performed, and results were discussed.

6. Basis for future research

• Requirements of the VR support tool for patients with ABI were elicited.

• The foundation was established for future large study designs to determine the efficacy of VR interventions.
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Principal Findings
Our systematic approach to developing a VR-based
neurorehabilitation support tool for inpatients with ABI has
resulted in a set of 7 cognitive tasks specifically designed to
address the needs of this population. The sample of 20 patients,
with a mean TSI of 4.7 (SD 1.5) months, volunteered to
participate in assessing the usability and feasibility of the
proposed intervention. Participants completed an average of 5
tasks during a single VR session lasting approximately 25
minutes. The set of cognitive tasks was well-received by
participants, irrespective of etiology, age, or tech familiarity.

What was significant in this study regarding the achievement
of the VR tool and subsequent intervention was the step-by-step
approach with the participation of stakeholders throughout the
entire process, from design to prototyping, and usability and
feasibility assessment. By applying this methodology, we have
demonstrated the potential of integrating VR into clinical
practice. This supports recent literature findings that also
describe detailed customized VR rehabilitation tools and have
conducted large-quality studies obtaining promising results
[36,39-41,63,64]. All participants from the multiple
proof-of-concept study completed the session without
experiencing adverse effects or encountering major issues. By
targeting multiple areas of functionality, patients can benefit
from a more comprehensive and personalized rehabilitation
program, which can promote neuroplasticity and potentially
improve overall functional outcomes [14,30].

The results demonstrated that when patients enjoyed the tasks,
their motivation increased; eventually, they expressed a desire
to participate in more VR sessions as part of their rehabilitation
programs. This engagement was correlated with a high sense
of presence, the ability to perceive and differentiate objects
within the virtual environment, and a perception of real-world
scale [32,65]. The study also demonstrated that when
interactions are customized to fit the abilities of individual
patients, their performance in completing the required tasks
improves, resulting in greater clarity and specificity of the
intended goal [20]. However, when tasks contain errors, it
becomes more challenging for patients to understand and
achieve the objectives. For example, one patient (code
2020342-2) reported difficulty in hitting the mark when shooting
stimuli. This issue will be addressed by incorporating a laser
pointer for future studies.

When evaluating cybersickness effects, a strong correlation was
observed between patients reporting disorientation and the
presence of oculomotor problems and nausea symptoms. This
indicates that an increase in one of these symptoms tends to
coincide with an increase in the others [49]. Furthermore, when
patients reported experiencing nausea symptoms or oculomotor
problems, their ability to see and differentiate objects within
the scene decreased. Despite the correlations found, the overall
average score for the SSQ does not exceed 1.3 points, with a
maximum of 1.5 points in the subgroup of young patients (up
to 39 years old). This score is still far from the threshold of 10
points, beyond which cybersickness symptoms can cause
problems.

There is a demographic correlation between sex and motivation,
indicating that men found the VR session more motivating than
women [61]. No significant correlation was observed with the
age variable. This finding, together with the comparisons of
descriptive statistics, may support the evidence that VR is a
useful and viable tool for different age groups, ranging from 16
to 63 years old. However, it is important to interpret these
findings with caution, as the sample size is not sufficiently large,
and only 1 session has been tested, rather than a long-term
intervention with a follow-up assessment.

The commercial device selected was suitable for inpatient
rehabilitation, in accordance with previous studies [44,66,67].
The headset ensures comfort, improved visual quality, and
exposure to graphics, along with selectable handheld controllers,
a precise tracking system, and portability. Moreover, the
headband and facial interface that come into contact with the
patient can be replaced to reduce the risk of spreading infection
among patients sharing the same device. The screen, other parts
of the headset, and controllers can be disinfected using
hydroalcoholic gel. Successful integration of the device within
hospital settings, without hindering the use of other rehabilitative
tools or treatment programs, is assured. As for the economic
feasibility of acquiring the proposed system, both SteamVR
and OpenVR software components are freely available for use.
The Unity3D game engine provides various licensing options,
including a free version. The necessary hardware comprises the
following: (1) a mid-range gaming personal computer equipped
with a VR-ready graphics card, priced between €1000 (US
$1081) and €3000 (US $3244); (2) a high-end VR input/output
device such as Valve Index or Oculus, typically priced around
€1200 (US $1297); and (3) potential expenses may arise from
hiring developers or subcontractors to create the virtual
environments.

Limitations
While our study offers valuable insights into the utilization of
VR-based tools for cognitive rehabilitation in patients with ABI,
it is important to acknowledge several limitations that warrant
attention. Primarily, there exists a discrepancy in the number
of tasks targeting each cognitive domain. Despite this variance,
it is crucial to emphasize that the obtained results were adequate
for identifying and delineating crucial aspects of feasibility and
usability. Future studies assessing efficacy should encompass
a balanced array of tasks targeting each cognitive domain. This
approach will facilitate more comprehensive and intensive
interventions, addressing the spectrum of cognitive impairments
observed in patients with ABI.

In line with this, it would be compelling to broaden our
intervention to encompass other realms of rehabilitation, such
as upper and lower limb function, gait analysis, mirror therapy,
and pain management, among others.

Another limitation is the absence of a centralized server for
gathering output variables generated by each task. For future
studies aiming to obtain efficacy results, ascertain which data
trigger changes during the neurorehabilitation process, and
develop predictive models to personalize treatments, having
such a server would be invaluable.
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Furthermore, certain patients’clinical records contained missing
data regarding the severity scales, potentially affecting the
analysis of results. The complete tables, encompassing all
collected variables including individual responses to
questionnaires, are available for reference in Multimedia
Appendices 3 and 4.

Finally, although the design and refinement of the VR
experiences were conducted by a multidisciplinary team
comprising health professionals and end users, structured
questionnaires were not administered to them during this
process. However, a log detailing meetings, tests conducted,
the primary themes explored, alterations made, error corrections,
and some feedback was prepared (see Table S1 in Multimedia
Appendix 1).

Conclusions
Based on our understanding, this study holds significance as it
lays the foundation for a VR-based neurorehabilitation support
tool applicable to a wide spectrum of patients with ABI within
the practical context of a hospital setting. The process of
requirement elicitation and iterative development was
meticulously conducted in collaboration with a multidisciplinary

team, aligning closely with the latest recommendations from
the literature.

This study provides evidence demonstrating the utility and
feasibility of VR-based treatments when tailored to meet the
specific needs of a targeted patient population. It underscores
the significance of collaborative intervention design involving
physicians, physiotherapists, neuropsychologists, occupational
therapists, nurses, researchers, technologists, and incorporating
patient perspectives. The intervention ought to encompass a
diverse range of immersive experiences, drawing upon
neurorehabilitation principles and serious games techniques
while ensuring ecological validity. By adhering to this approach,
VR-based interventions hold the potential to provide valuable
support in neurorehabilitation settings.

Future studies should aim to conduct rigorous research with
larger sample sizes and robust study designs to offer more
substantial evidence regarding the clinical value and
cost-effectiveness of VR-based interventions in the
neurorehabilitation of patients with ABI. For this purpose, a
clinical efficacy study is already in progress. The ultimate
objective is to develop a standard operating procedure that
facilitates reproducibility, comparison, and generalization of
findings.
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Abstract

Background: Natural language processing (NLP), a branch of artificial intelligence that analyzes unstructured language, is
being increasingly used in health care. However, the extent to which NLP has been formally studied in neurological disorders
remains unclear.

Objective: We sought to characterize studies that applied NLP to the diagnosis, prediction, or treatment of common neurological
disorders.

Methods: This review followed the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses
Extension for Scoping Reviews) standards. The search was conducted using MEDLINE and Embase on May 11, 2022. Studies
of NLP use in migraine, Parkinson disease, Alzheimer disease, stroke and transient ischemic attack, epilepsy, or multiple sclerosis
were included. We excluded conference abstracts, review papers, as well as studies involving heterogeneous clinical populations
or indirect clinical uses of NLP. Study characteristics were extracted and analyzed using descriptive statistics. We did not aggregate
measurements of performance in our review due to the high variability in study outcomes, which is the main limitation of the
study.

Results: In total, 916 studies were identified, of which 41 (4.5%) met all eligibility criteria and were included in the final review.
Of the 41 included studies, the most frequently represented disorders were stroke and transient ischemic attack (n=20, 49%),
followed by epilepsy (n=10, 24%), Alzheimer disease (n=6, 15%), and multiple sclerosis (n=5, 12%). We found no studies of
NLP use in migraine or Parkinson disease that met our eligibility criteria. The main objective of NLP was diagnosis (n=20, 49%),
followed by disease phenotyping (n=17, 41%), prognostication (n=9, 22%), and treatment (n=4, 10%). In total, 18 (44%) studies
used only machine learning approaches, 6 (15%) used only rule-based methods, and 17 (41%) used both.

Conclusions: We found that NLP was most commonly applied for diagnosis, implying a potential role for NLP in augmenting
diagnostic accuracy in settings with limited access to neurological expertise. We also found several gaps in neurological NLP
research, with few to no studies addressing certain disorders, which may suggest additional areas of inquiry.

Trial Registration: Prospective Register of Systematic Reviews (PROSPERO) CRD42021228703;
https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=228703

(JMIR Neurotech 2024;3:e51822)   doi:10.2196/51822
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Introduction

The implementation of the electronic medical record (EMR) in
health care systems has resulted in a remarkable increase in the
amount of digital patient data [1], much of which is text-based
and stored in an unstructured, narrative format [2-4]. While
unstructured text is a rich data source, analyses of these data
often require time- and cost-intensive manual processing [3].
Natural language processing (NLP), a type of artificial
intelligence that automatically derives meaning from
unstructured language, can significantly reduce costs and
enhance the quality of health care systems by converting
unstructured text into a structured form that can be processed
by computers [2,4,5].

Approaches to NLP can use rule-based techniques, machine
learning (ML), or a combination of both [6-8]. Between the
fifth and eighth decades of the 20th century, NLP approaches
were predominantly rule-based, using a set of rules defined by
human experts [7,9] to systematically extract meaning from
unstructured text. Rule-based methods are comprehensible by
humans but difficult to generalize [7,9]. Driven by recent
advances in computing power and access to computing
resources, contemporary approaches to NLP have increasingly
incorporated ML, which possesses greater scalability [7] than
rule-based methods despite the need for greater computational
power to construct ML-based NLP models. Most recently,
complex ML methods such as deep learning (DL), which are
based on neural networks and larger datasets than conventional
ML approaches, have become popular approaches to address
NLP tasks [9,10].

The high prevalence of unstructured text in EMR systems creates
an ideal use case for NLP in health care. However, the majority
of current NLP research remains focused on nonneurological
conditions such as mental health, cancer, and pneumonia [5].
The dearth of neurological NLP research is out of proportion
to the worldwide importance of neurological conditions, both
in terms of public health burden and cost. For instance,
cerebrovascular disease occupies the second leading cause of
death worldwide [11], and in the United States, neurological
and musculoskeletal disorders generate the greatest number of
years lost to disability [12]. Finally, the estimated annual cost
of the most prevalent neurological diseases in the United States
is nearly US $800 billion [12].

Neurology is a specialty that is uniquely well suited to benefit
from NLP approaches. The data used in the diagnosis and
management of neurological conditions, such as examination
findings or clinical impressions, are often recorded as narrative,
unstructured text in clinical documentation. Aside from clinical
notes containing the patient history and neurological
examination, reports from radiology [13,14], sonography, or
electrophysiology studies are integral to neurological practice
and often are crucial for detection, prognosis, and treatment.

Further, NLP analysis of spoken language may allow the
detection of certain neurodegenerative conditions such as
Alzheimer disease in their early stages [15]. Given the unique
position of neurology with respect to NLP and the relative lack
of research on the applications of NLP in neurology, we sought
to conduct a scoping review in order to quantify and characterize
studies that directly applied NLP for clinical use in common
neurological disorders.

Methods

Literature Search Strategy and Eligibility Criteria
This review was conducted using the PRISMA-ScR (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
Extension for Scoping Reviews) guidelines (Multimedia
Appendix 1) and was registered with the Prospective Register
of Systematic Reviews (PROSPERO CRD42021228703). Our
search was conducted using Ovid Embase and MEDLINE on
May 11, 2022 (Multimedia Appendix 2 [16-22]). Based on the
most globally prevalent and costly neurological disorders [11],
studies investigating the use of NLP in Alzheimer disease
(exclusive of Alzheimer disease–related disorders), Parkinson
disease, stroke and transient ischemic attack, epilepsy, multiple
sclerosis (MS), and migraine were included.

Studies that used NLP to analyze radiographic findings without
any clinical correlation (eg, silent brain infarcts) or for purposes
other than diagnosis, detection, phenotyping, subtyping,
prognostication, risk stratification, or therapy were excluded.
We excluded studies with populations comprised of patients
with heterogeneous diseases or ambiguously defined populations
(eg, we excluded studies that used a patient cohort consisting
of patients with both Alzheimer dementia and mild cognitive
impairment) as well as studies that did not use NLP for direct
clinical applications. Examples of indirect clinical applications
include the use of NLP to identify cohorts for subsequent model
development or conduct epidemiological associations between
cohorts without direct impact on clinical practice. We
additionally excluded abstracts, conference proceedings,
reviews, and editorials.

Data Extraction
A medical librarian (SW) with expertise in scoping reviews first
conducted a literature search (Multimedia Appendix 2) based
on our eligibility criteria to generate a list of abstracts, which
were then imported into a web application (Covidence Ltd) for
initial screening by 3 authors (BRK, LJB, and IL). After the
abstract screening was completed, full-text papers for screened
abstracts were reviewed by 2 authors (BRK and IL) to determine
eligibility for inclusion. Disagreements at both stages were
resolved by discussion and consensus.

Using the final list of full-text studies, study characteristics were
manually extracted by 1 author (IL) and charted in a REDCap
(Research Electronic Data Capture; REDCap Consortium) web
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database form, which was subsequently reviewed by a second
author (BRK) for accuracy. The data charting form was initially
tested by the data extractor (IL) and revised after feedback from
all coauthors (BRK, NJ, LJB, and SW). We extracted study
publication year, population size, country of origin, journal field
(eg, medical informatics, clinical neurology, nonclinical
neuroscience, clinical medicine, or other), neurological disorder,
and target of NLP (eg, diagnosis or detection, phenotyping or
subtyping and severity, prognostication or risk stratification, or
disease management or therapy). Each study could have multiple
targets whenever applicable.

For each study, the source language to which NLP techniques
were applied was also extracted. For studies conducted in or
authored by teams from non-English–speaking countries, the
source language was extrapolated directly as described from
the study methodology. If the source language was a publicly
available research dataset or ontology (eg, MetaMap ontology
or ADReSS dataset, both of which use English), the source
language was reported as English. Source of language for NLP
(eg, clinical notes, radiographic reports, speech audio, or other)
and type of study (eg, model derivation, validation, or both)
were also noted. Validation studies were defined as studies that
specifically investigated the validation of a derived model in a
population external to the original model derivation population.
Our definition of validation studies did not include validation
on held-out test sets as part of model derivation. If the NLP
model was both derived and externally validated in the same
study, the population size included the additional population
used for validation. Simulated patients, who were used as a
training set in one study, were included in the population size.
If no population size was mentioned in the studies, the number
of text instances (eg, clinical notes and radiographic reports)
was recorded.

We additionally extracted the study’s NLP approaches (ie,
rule-based methods, ML, or both). Rule-based NLP included
any approaches that used keyword searches, pattern matching,
regular expressions, or ontological systems for word-concept
mapping, text preprocessing, or classification. ML-based NLP
comprised both conventional ML and DL approaches and both
were distinguished as dichotomous study characteristic variables
but could co-occur in the studies. A study was characterized as
including any of these methods if either ML or DL was used at
any point in model development for the study.

Under the category of conventional ML methods, linear
regression, logistic regression, support vector machines (SVMs),
naïve Bayes classifiers, decision trees, random forest classifiers,
k-nearest neighbor algorithms, gradient boosting techniques
such as extreme gradient boosting, latent Dirichlet allocation,
and shallow neural networks were included. Under the definition
of shallow neural network, we included any approaches using
Word2vec or other “-2vec” word-embedding techniques that
use a neural network to construct word contexts and extract
semantic and syntactic meaning from text [23,24]. We also
included other types of regression, such as lasso regression,
which is often used for dimensionality reduction, in the
conventional ML category.

DL techniques included convolutional neural networks, recurrent
neural networks (RNNs), long- and short-term memory
networks, multilayer perceptrons, and transformers. Studies
using long- and short-term memory networks were also
categorized as using an RNN. We also note that neural networks
of unspecified type and number of layers, which were not clearly
referred to as DL in the study, were not included in this category.

Results

Included Studies
In total, 916 studies were identified from our search strategy,
of which 271 were duplicates and were excluded. We then
screened the resulting 645 abstracts, of which 565 were excluded
due to not meeting initial eligibility criteria. Of the remaining
80 studies, 39 (49%) were excluded. The 2 most common
reasons for exclusion were the use of NLP for nonclinical
applications (n=15, 38%) and heterogeneous clinical populations
(n=12, 31%). In total, 41 (4.5%) of the 916 studies from the
original search results were ultimately included for review
(Figure 1 and Table 1).

Of the 41 included studies, NLP was applied to stroke or
transient ischemic attack in 20 (49%) studies, epilepsy in 10
(24%) studies, Alzheimer dementia in 6 (15%) studies, and MS
in 5 (12%) studies. We found no studies applying NLP to
Parkinson disease or migraine that met our eligibility criteria.
Across all neurological conditions, NLP was most commonly
applied for the purposes of detection or diagnosis (n=20, 49%),
followed by clinical disease phenotyping or subtyping (n=17,
41%), prognostication or risk stratification (n=9, 22%), and
management or therapy (n=4, 10%; Table 2).
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Figure 1. Study PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) diagram. NLP: natural language processing.
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Table 1. Included studies.

Study outcomesAlgorithms usedDeep
learn-
ing

NLP
method

Purpose of

NLPa
Condition
being
studied

External
model
valida-
tion

Journal
field

Source
text

Coun-
try

Publica-
tion
date

Paper
authors

Radiographic com-
plications of is-

Random forest, lin-
ear regression,

YesRule-
based,

MLb

Detection
or diagno-
sis

StrokeYesClinical
neurolo-
gy

Radiolo-
gy re-
ports

United
States

May 9,
2022

Miller
et al
[19] chemic stroke (eg,

hemorrhagic trans-
formation)

KNNc, lasso regres-

sion, MLPd, trans-
former

Identifying themes
in medical records

Latent Dirichlet allo-
cation

NoMLDetection
or diagno-
sis

EpilepsyNoClinical
neurolo-
gy

Clinical
notes

Aus-
tralia

October
23,
2020

Lay et
al [25]

in patients with

PNESe, congruen-
cy of themes

Acute stroke diag-
nosis, stroke sever-
ity and subtypes

SVMf, logistic re-
gression

NoMLDetection
or diagno-
sis, clinical
disease

StrokeNoClinical
neurolo-
gy

Clinical
notes

United
States

June 24,
2021

Mayam-
purath
et al
[26]

phenotyp-
ing or
severity

Acute or subacute
ischemic stroke

Random forestNoRule-
based,
ML

Detection
or diagno-
sis

StrokeYesNeurora-
diology

Radiolo-
gy re-
ports

United
States

March
1, 2021

Li et al
[16]

cases before and
during COVID-19

30-day stroke read-
mission, 30-day

SVM, naïve Bayes,
random forest, logis-

NoMLPrognosis
or risk

StrokeNoClinical
neurolo-
gy

Clinical
notes

United
States

July 13,
2021

Lineback
et al
[27] all-cause readmis-

sion
tic regression, shal-
low neural network,
lasso regression, en-
semble, boosting

stratifica-
tion

Detection of
Alzheimer disease
from speech

SVM, random for-
est, logistic regres-
sion, boosting,

CNNg, transformer

YesMLDetection
or diagno-
sis

Alzheimer
disease

NoPublic
health

SpeechChinaApril
13,
2022

Liu et al
[28]

Detection of
Alzheimer disease
from speech

CNN, RNNh

(LSTMi)

YesMLDetection
or diagno-
sis

Alzheimer
disease

NoNonclin-
ical neu-
ro-
science

SpeechIndiaFebru-
ary 5,
2021

Maha-
jan and
Baths
[29]

Extraction of
stroke key perfor-
mance indicators

Random forest, deci-
sion tree, logistic re-
gression, neural net-
work with an unspec-

NoRule-
based,
ML

Clinical
disease
phenotyp-
ing or
severity

StrokeNoClinical
medicine

Clinical
notes

Aus-
tralia

Febru-
ary 20,
2022

Bacchi
et al
[30]

ified number of lay-
ers

Identification of
patients with PNES

Naïve BayesNoRule-
based,
ML

Detection
or diagno-
sis

EpilepsyNoClinical
neurolo-
gy

Clinical
notes

United
States

October
14,
2013

Hamid
et al
[31]

Identification of
the presence and

N/AjNoRule-
based

Detection
or diagno-
sis, clinical

StrokeNoMedical
infor-
matics

Radiolo-
gy re-
ports

Cana-
da

Septem-
ber 16,
2020

Yu et al
[13]

location of vascu-
lar occlusions anddisease
other stroke-related
attributes

phenotyp-
ing or
severity
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Study outcomesAlgorithms usedDeep
learn-
ing

NLP
method

Purpose of

NLPa
Condition
being
studied

External
model
valida-
tion

Journal
field

Source
text

Coun-
try

Publica-
tion
date

Paper
authors

Determining the

cause of TIAk-like
presentations
(cerebrovascular vs
noncerebrovascu-
lar)

Random forest, deci-
sion tree, CNN,
RNN (LSTM)

YesMLDetection
or diagno-
sis

StrokeNoClinical
neurolo-
gy

Clinical
notes
and radi-
ology
reports

Aus-
tralia

January
17,
2019

Bacchi
et al
[32]

Ischemic stroke
subtypes

SVM, random for-
est, logistic regres-
sion, KNN, boost-
ing, ensemble
(stacking logistic re-
gression, extra trees
classifier)

NoRule-
based,
ML

Clinical
disease
phenotyp-
ing or
severity

StrokeNoClinical
neurolo-
gy

Clinical
notes
and radi-
ology
reports

United
States

May 15,
2019

Garg et
al [33]

Incidence of
stroke, stroke sub-
types

Random forest, logis-
tic regression

NoRule-
based,
ML

Detection
or diagno-
sis, clinical
disease
phenotyp-
ing or
severity

StrokeYesMedical
infor-
matics

Clinical
notes

United
States

March
8, 2021

Zhao et
al [21]

Distinguishing be-
tween PNES and
epilepsy, hesita-
tions and repeti-
tions in descrip-
tions of epileptic
seizures versus
PNES

Random forestNoMLDetection
or diagno-
sis

EpilepsyNoClinical
neurolo-
gy

SpeechUnited
King-
dom

October
1, 2021

Pevy et
al [34]

Subtyping and
phenotyping car-
dioembolic stroke

SVM, random for-
est, decision tree, lo-
gistic regression,
KNN

NoRule-
based,
ML

Clinical
disease
phenotyp-
ing or
severity

StrokeNoClinical
neurolo-
gy

Echocar-
dio-
graphic
reports

United
States

Decem-
ber 10,
2020

Guan et
al [35]

Epilepsy pheno-
type extraction
with correlated
anatomic location

N/ANoRule-
based

Clinical
disease
phenotyp-
ing or
severity

EpilepsyNoMedical
infor-
matics

Clinical
notes

United
States

June 26,
2014

Cui et al
[36]

Prediction of poor
stroke outcome

SVM, random for-
est, decision tree,
shallow neural net-
work, lasso regres-
sion, CNN, RNN
(LSTM), MLP

YesMLPrognosis
or risk
stratifica-
tion

StrokeNoClinical
medicine

Radiolo-
gy re-
ports

South
Korea

Decem-
ber 16,
2020

Heo et
al [37]

Prediction of
stroke outcome
measurements and
extraction of pa-
tient characteristics

SVM, naïve Bayes,
random forest,
KNN, CNN, trans-
former

YesRule-
based,
ML

Prognosis
or risk
stratifica-
tion, clini-
cal disease
phenotyp-
ing or
severity

StrokeNoMedical
infor-
matics

Clinical
notes

BrazilNovem-
ber 1,
2021

Zanotto
et al
[38]

Risk factors for

SUDEPl
N/ANoRule-

based
Prognosis
or risk
stratifica-
tion

EpilepsyYesClinical
neurolo-
gy

Clinical
notes

United
States

May 21,
2019

Barbour
et al
[17]
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Study outcomesAlgorithms usedDeep
learn-
ing

NLP
method

Purpose of

NLPa
Condition
being
studied

External
model
valida-
tion

Journal
field

Source
text

Coun-
try

Publica-
tion
date

Paper
authors

Identification of
acute ischemic
stroke, features of
acute ischemic
stroke reports ver-
sus nonischemic
stroke reports

SVM, naïve Bayes,
decision tree, logis-
tic regression

NoMLDetection
or diagno-
sis

StrokeNoNonclin-
ical neu-
ro-
science

Radiolo-
gy re-
ports

United
States

Febru-
ary 28,
2019

Kim et
al [39]

Extraction of clini-
cal traits of pa-
tients with MS

N/ANoRule-
based

Clinical
disease
phenotyp-
ing or
severity

MSmNoMedical
infor-
matics

Clinical
notes,
letters,
and
problem
lists

United
States

October
22,
2013

Davis et
al [40]

Epilepsy psychi-
atric comorbidities

SVMNoRule-
based,
ML

Detection
or diagno-
sis

EpilepsyNoClinical
neurolo-
gy

SpeechUnited
States

January
22,
2020

Glauser
et al
[41]

Identification of
potential candi-
dates for surgical
intervention for pe-
diatric drug–resis-
tant epilepsy, per-
formance of classi-
fication algorithm
over time

SVM, naïve BayesNoMLPrognosis
or risk
stratifica-
tion, man-
agement or
therapy

EpilepsyNoMedical
infor-
matics

Clinical
notes

United
States

May 22,
2016

Cohen
et al
[42]

Localizing the
epileptogenic zone
(temporal vs extra-
temporal), postsur-
gical prognosis and
outcome

SVM, naïve Bayes,
random forest, logis-
tic regression, boost-
ing

NoRule-
based,
ML

Clinical
disease
phenotyp-
ing or
severity,
prognosis
or risk
stratifica-
tion

EpilepsyNoMedical
infor-
matics

Clinical
notes
and radi-
ology
reports

United
King-
dom

Febru-
ary 10,
2021

Alim-
Mar-
vasti et
al [43]

Detection of
Alzheimer disease
from speech, pre-

diction of MMSEn

SVM, naïve Bayes,
random forest, linear
regression, shallow
neural network,
ridge regression,
transformer

YesMLDetection
or diagno-
sis

Alzheimer
disease

NoNonclin-
ical neu-
ro-
science

SpeechCana-
da

April
27,
2021

Bal-
agopalan
et al
[44]

Detection of
Alzheimer disease
from speech

SVM, random for-
est, logistic regres-
sion, boosting, trans-
former

YesMLDetection
or diagno-
sis

Alzheimer
disease

NoNonclin-
ical neu-
ro-
science

SpeechSlove-
nia

June 14,
2021

Martinc
et al
[45]

Detection of
Alzheimer disease
from speech

Shallow neural net-
work, transformer

YesMLDetection
or diagno-
sis

Alzheimer
disease

NoClinical
neurolo-
gy

SpeechUnited
States

April 5,
2022

Liu et al
[46]

Identification of
MS phenotype,
percentages of
each phenotype

N/ANoRule-
based

Clinical
disease
phenotyp-
ing or
severity

MSNoPharma-
cy

Clinical
notes

United
States

Decem-
ber 22,
2016

Nelson
et al
[47]

Performance of
system to generate

ICHo treatment
plan

TransformerYesRule-
based,
ML

Manage-
ment or
therapy

StrokeYesNonclin-
ical neu-
ro-
science

Clinical
notes
and radi-
ology
reports

ChinaApril 8,
2022

Deng et
al [18]
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Study outcomesAlgorithms usedDeep
learn-
ing

NLP
method

Purpose of

NLPa
Condition
being
studied

External
model
valida-
tion

Journal
field

Source
text

Coun-
try

Publica-
tion
date

Paper
authors

Early detection of
MS

Naïve BayesNoRule-
based,
ML

Detection
or diagno-
sis

MSNoMedical
infor-
matics

Clinical
notes

United
States

Febru-
ary 28,
2017

Chase et
al [48]

Epilepsy surgery
candidacy score

SVMNoMLPrognosis
or risk
stratifica-
tion, man-
agement or
therapy

EpilepsyNoClinical
neurolo-
gy

Clinical
notes

United
States

Novem-
ber 29,
2019

Wissel
et al
[49]

Classification of
ischemic stroke
subtypes

SVM, random for-
est, decision tree, lo-
gistic regression,
KNN, ensemble

NoRule-
based,
ML

Clinical
disease
phenotyp-
ing or
severity

StrokeNoMedical
infor-
matics

Clinical
notes

Tai-
wan

Febru-
ary 28,
2020

Sung et
al [50]

Prediction of poor
functional outcome
after acute is-
chemic stroke

Random forest, logis-
tic regression, trans-
former

YesMLPrognosis
or risk
stratifica-
tion

StrokeYesClinical
neurolo-
gy

Clinical
notes
and radi-
ology
reports

Tai-
wan

Novem-
ber 19,
2021

Sung et
al [20]

Expanded disabili-
ty status scale
score, expanded
disability status
scale subscore

Shallow neural net-
work, CNN, RNN

YesRule-
based
ML

Clinical
disease
phenotyp-
ing or
severity

MSNoMedical
infor-
matics

Clinical
notes

Cana-
da

October
20,
2020

Yang et
al [51]

Seizure freedom,
seizure frequency,
date of last seizure

TransformerYesMLClinical
disease
phenotyp-
ing or
severity

EpilepsyNoMedical
infor-
matics

Clinical
notes

United
States

Febru-
ary 22,
2022

Xie et al
[52]

Performance of

EMRp interface
that determines eli-
gibility for intra-
venous thrombolyt-
ic therapy

N/ANoRule-
based

Manage-
ment or
therapy

StrokeNoMedical
infor-
matics

Clinical
notes

Tai-
wan

Febru-
ary 8,
2018

Sung et
al [53]

Prediction of poor
functional outcome
after acute is-
chemic stroke

Logistic regression,
boosting, unspeci-
fied penalized logis-
tic regression
method, ensemble
(extra trees classifi-
er)

NoRule-
based,
ML

Prognosis
or risk
stratifica-
tion

StrokeNoMedical
infor-
matics

Clinical
notes
and radi-
ology
reports

Tai-
wan

Febru-
ary 17,
2022

Sung et
al [54]

Identification of
patients with MS,
severity of MS

Lasso regression,
stepwise regression

NoRule-
based,
ML

Detection
or diagno-
sis, clinical
disease
phenotyp-
ing or
severity

MSNoNonclin-
ical neu-
ro-
science

Clinical
notes
and radi-
ology
reports

United
States

Novem-
ber 11,
2013

Xia et al
[55]

Ischemic stroke
presence, location,
and acuity

Random forest, deci-
sion tree, logistic re-
gression, KNN,
RNN (LSTM)

YesMLDetection
or diagno-
sis, clinical
disease
phenotyp-
ing or
severity

StrokeYesNonclin-
ical neu-
ro-
science

Radiolo-
gy re-
ports

United
States

June 19,
2020

Ong et
al [22]
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Study outcomesAlgorithms usedDeep
learn-
ing

NLP
method

Purpose of

NLPa
Condition
being
studied

External
model
valida-
tion

Journal
field

Source
text

Coun-
try

Publica-
tion
date

Paper
authors

Detection of
Alzheimer disease
from speech

Logistic regression,
shallow neural net-
work, CNN, RNN
(LSTM) transformer

YesMLDetection
or diagno-
sis

Alzheimer
disease

NoMedical
infor-
matics

SpeechIranMarch
9, 2021

Roshan-
zamir et
al [56]

Stroke subtypesRNNYesRule-
based,
ML

Clinical
disease
phenotyp-
ing or
severity

StrokeNoMedical
infor-
matics

Radiolo-
gy re-
ports

United
King-
dom

June 15,
2021

Ran-
nikmäe
et al
[57]

aNLP: natural language processing.
bML: machine learning.
cKNN: k-nearest neighbor.
dMLP: multilayer perceptron.
ePNES: psychogenic nonepileptic seizures.
fSVM: support vector machine.
gCNN: convolutional neural network.
hRNN: recurrent neural network.
iLSTM: long- and short-term memory network.
jN/A: Not applicable.
kTIA: transient ischemic attack.
lSUDEP: sudden unexpected death in epilepsy.
mMS: multiple sclerosis.
nMMSE: Mini-Mental Status Examination.
oICH: intracerebral hemorrhage.
pEMR: electronic medical record.

Table 2. Overall study characteristics: journal field, target of NLPa, and neurological condition.

Studies (n=41), n (%)Study characteristics

Condition

20 (49)Stroke

10 (24)Epilepsy

6 (15)Alzheimer disease

5 (12)Multiple sclerosis

Target of NLP

20 (49)Diagnosis

17 (42)Phenotyping

9 (22)Prognosis

4 (10)Therapy

Journal field

15 (37)Medical informatics

14 (34)Clinical neurology

7 (17)Nonclinical neuroscience

2 (5)Clinical medicine

3 (7)Otherb

aNLP: natural language processing.
bOther includes studies published in pharmacy, public health, and neuroradiology journals.
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Of the 41 studies, the language sources for NLP comprised
clinical notes (n=25, 61%); radiology reports (n=14, 34%);
speech (n=8, 20%); and other sources (n=2, 5%) that included
echocardiography reports, letters to referring providers, and
problem lists (Table 3). Of studies with speech as the language
source, half (4/8, 50%) analyzed transcripts only, whereas half

additionally incorporated acoustic features from the audio files
themselves. These transcripts and audio files were largely from
research datasets (eg, ADReSS and Pitt corpus). Two studies
analyzed transcripts from interviews with patients. In the study
including problem lists, it is unknown who reported the
problems.

Table 3. Overall study characteristics: NLPa methods and language sources.

Studies (n=41), n (%)Study characteristics

NLP method

23 (56)Rule-based

35 (85)Machine learning

Type of machine learning

31 (76)Conventional machine learning

16 (39)Deep learning

Source text

25 (61)Clinical notes

14 (34)Radiology reports

8 (20)Speech

2 (5)Otherb

aNLP: natural language processing.
bOther includes echocardiography reports, problem lists, and letters to referring providers.

Of the 41 studies, the most common source language for NLP
was English (n=39, 95%), Portuguese in 1 (2%) study, and
unspecified in the remaining 1 study (which was of Chinese
nationality, not multicentric). When patient population size was
recorded, the median was 1091 (IQR 188-4211). In studies that
did not specify a population size (n=4, 10%), the median number
of clinical or radiographic notes was 2172 (IQR
1155.5-22,018.0).

Papers were most commonly published in medical informatics
(n=15, 37%) journals, followed closely by clinical neurology

(n=14, 34%) journals. Seven (17%) studies were published in
nonclinical neuroscience journals; 2 (5%) in clinical medicine
journals; and 1 (2%) each in neuroradiology, public health, and
pharmacy journals. Studies were mostly conducted in the United
States (n=21, 51%), followed by Taiwan (n=4, 10%) and the
United Kingdom, Canada, and Australia (n=3, 7% each). Two
(5%) studies were conducted in China, and 1 (2%) study was
conducted in each of South Korea, Brazil, Iran, India, and
Slovenia (Figure 2).

Figure 2. Proportion of included studies (n=41), organized according to country of origin: the United States (n=21, 51%); Taiwan (n=4, 10%); the
United Kingdom, Canada, and Australia (n=3, 7% each); China (n=2, 5%); and South Korea, Brazil, Iran, India, and Slovenia (n=1, 2% each).
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Only 6 (15%) studies used strictly rule-based methods. The
majority of studies incorporated ML (n=35, 85%), either
exclusively (n=18, 44%) or in combination with rule-based
methods (n=17, 41%). Of the studies that used ML, most (n=31,
89%) used conventional ML methods, whereas 16 (46%) used
DL approaches (Table 3), and 12 (34%) used a combination of
both conventional ML and DL approaches.

As shown in Figure 3, the most frequently used conventional
ML algorithms were random forest (n=18, 58%), SVM (n=15,
48%), and logistic regression (n=15, 48%) models. Among

studies using DL approaches, transformers (n=10, 63%) were
the most commonly used algorithm, followed by convolutional
neural networks and RNNs (each n=7, 44%). The co-occurrence
of random forest and transformer algorithms was a prevalent
trend in research combining traditional ML with DL
methodologies (n=6, 15%). Studies that used DL only began to
appear in 2019 and later (Figure 4). The most often reported
performance metrics for ML models were precision or recall
(n=31, 76%), accuracy (n=22, 54%), area under the receiver
operating curve (n=20, 49%), and F1-score (n=19, 46%).

Figure 3. Relative proportions of machine learning algorithms used by the included NLP models. CNN: convolutional neural network; KNN: k-nearest
neighbor; LSTM: long- and short-term memory networks; MLP: multilayer perceptron; RNN: recurrent neural network; SVM: support vector machine.
*Other includes stepwise regression, ridge regression, an unspecified penalized regression method, latent Dirichlet allocation, and an unspecified neural
network with an unspecified number of layers.
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Figure 4. Number of studies applying natural language processing (NLP) to neurological conditions, stratified by NLP methodology and publication
year.

All 41 studies were model derivation studies, with only 7 (17%)
studies conducting additional external validation (Multimedia
Appendix 2). Furthermore, nearly all the study models were
developed retrospectively and were not applied in practice or
deployed in real-world environments, except for 3 studies. A
study by Li et al [16] developed a model for stroke detection
from imaging reports and then applied it to quantify the change
in stroke cases before and during the COVID-19 pandemic. A
second by Sung et al [53], also in the stroke category, evaluated
the deployment of a user-interface system to determine
intravenous thrombolysis eligibility built on the NLP model
devised. A third study by Wissel et al [49] created a model to
identify surgical resection candidates in adult patients with
epilepsy. The model was retrained prospectively to incorporate
new information.

Study Characteristics, Stratified by Condition
In studies focused on Alzheimer dementia, diagnosis and
detection was the only target of NLP (6/6, 100%). Disease
phenotyping and subtyping was the most common purpose of
NLP in stroke (10/20, 50%) and MS (4/5, 80%), whereas
prognostication was seen as often as diagnosis in epilepsy
studies (4/10, 40%; Figure S9 in Multimedia Appendix 2).
Studies that applied NLP for the purpose of disease treatment
or management were limited to stroke and epilepsy (Figure S9
in Multimedia Appendix 2).

Rule-based methods were used across all studies, except for
Alzheimer dementia, in which only ML approaches were used
(Figure S10 in Multimedia Appendix 2). Conventional ML
methods were used most often by Alzheimer dementia studies
(5/6, 83%), followed by stroke (16/20, 80%). Similarly, DL
methods were used predominantly by Alzheimer dementia (6/6,
100%) and stroke (8/20, 40%) studies (Figure S10 in Multimedia
Appendix 2). The transformer was the DL method used most
frequently in Alzheimer disease-related studies (5/6, 83%).

Discussion

Principal Findings
In this scoping review, 41 studies [13,16-22,25-57] that
investigated direct clinical applications of NLP to common
neurological disorders were identified. We found that the
majority of these studies focused on detection and diagnosis
and applied NLP to stroke, whereas we found no studies of NLP
that met our eligibility criteria in the clinical areas of migraine
or Parkinson disease. Methodologically, ML techniques were
used more often than rule-based methods, but a considerable
number of studies still relied on rule-based approaches in
combination with ML. While we observed that DL began to
emerge as a methodology for NLP in 2019, we found that the
transformer was the most commonly used DL algorithm overall.

At the time of writing, we believe our scoping review to be the
first to examine direct clinical NLP applications in common
neurological conditions. One prior review [58] investigated
NLP applications across the combined clinical specialties of
neurosurgery, spine surgery, and neurology, whereas another
evaluated the use of NLP in both psychiatry and clinical
neuroscience [59]. However, neither reviews analyzed studies
and NLP applications according to neurological condition. More
importantly, these reviews included many studies where NLP
was not applied for direct clinical use, instead aiming to perform
tasks such as characterizing patient cohorts [58], analyzing
information extraction, or determining causal inference between
concepts [59]. In contrast to this prior work, our review focused
on direct clinical applications of NLP.

Of note, we found no studies applying NLP to migraine or
Parkinson disease that met our eligibility criteria, thereby
highlighting a potential gap in NLP research focusing on these
disorders. This is perhaps unexpected, as the combined
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prevalence of migraine and Parkinson disease in the United
States exceeds that of both stroke and MS [12]. Two
explanations may account for this finding. One is that migraine
and Parkinson disease may rely less on radiographic imaging
studies and their reports to establish a diagnosis than stroke,
Alzheimer dementia, or MS. Given that many ML applications
in stroke have focused on neuroimaging [60], it is plausible that
stroke imaging reports could represent an important source of
data for NLP analyses. Indeed, the results of our review
demonstrate that stroke-related NLP studies made use of
radiographic reports as often as clinical notes for source text,
which could have resulted in a relatively higher number of NLP
studies within stroke than in other neurological conditions.

A second explanation may be that Alzheimer disease is a more
common cause of dementia worldwide than dementing
syndromes associated with Parkinson disease [61] and has in
turn garnered a larger proportion of research funding. National
Institutes of Health [62] research funding for Alzheimer
dementia was approximately US $3 billion in 2022, as compared
to US $259 million for Parkinson disease.

Our finding that NLP was most frequently applied to diagnostic
problems is expected, given that clinical decision support is a
common focus of artificial intelligence in medicine [63].
Historically, clinical decision support has also played an
important role in medical informatics by constituting the main
focus of archetypal systems such as MYCIN, INTERNIST-1,
and DXplain, which were first developed in the 1970s and 1980s
[64]. An alternative explanation is that the shortage of
neurologists that already exists worldwide [65] may have
potentially created a more urgent need for detection-oriented
NLP applications rather than NLP applications targeting
therapeutic management or prognostication.

Though diagnosis was the most common target of NLP overall,
we found that epilepsy-related studies focused as much on
prognostication as they did on diagnostic tasks. Given that
roughly one-third of all patients with epilepsy are drug resistant
[66], determining good surgical resection candidates as well as
predicting surgical outcomes are important objectives that have
been the focus of considerable research [67]. Consistent with
this, the epilepsy-related studies in the prognostication category
were directed toward identifying adult [49] and pediatric [42]
surgical candidates, predicting postsurgical outcomes [43], and
detecting risk factors for sudden unexpected death in epilepsy
[17].

With respect to the types of ML models we found in our review,
the relatively high proportion of conventional ML-based studies
using random forest and SVM (18/31, 58% and 15/31, 48%,
respectively) may have been related to the fact that SVM
together with random forest models generally represented the
dominant ML techniques prior to the advent of neural networks
[68] in diagnostic and clinical decision support applications
[63,69,70]. Despite its position as a potentially more basic
classification method than either SVM or random forest, logistic
regression was used as commonly as SVM in our analysis.

Furthermore, while we found that SVM and random forest
models were common in ML-based NLP approaches, the optimal
problems these models address are fundamentally different.

SVM generally works best as a binary classifier, whereas
random forest models are best used for classification tasks
involving multiple categories [71]. We found that the most
frequently used ML algorithms in stroke-related NLP studies
were random forest models. This matches the most frequent
target of NLP in stroke-related studies, which was disease
subtyping (a multiple classification problem).

Among DL algorithms, which are becoming increasingly
widespread in NLP [72], the transformer was the most
commonly used technique we identified. Unlike other word
embedding methods, a transformer processes a whole sequence
of text while preserving the context and meaning of words
[59,73]. Another significant advantage of transformers is that
they can use transfer learning, which first trains a model on a
learning task and then applies the model to a separate but closely
related task [58,74]. A prevalent example of transfer learning
in our results is Bidirectional Encoder Representations From
Transformers (BERT), a transformer model that was originally
trained using publicly available text from Wikipedia and
BookCorpus, a collection of free, unpublished novels consisting
of over 50 million sentences [75,76]. BERT can then be further
refined on a target training task and dataset before being passed
to a separate classification algorithm [28]. This is helpful in
situations where the target training set is small [28]. The high
frequency of Alzheimer disease–related NLP studies we found
using BERT is expected within this context, as these studies
often used the ADReSS speech dataset that consists of only 78
healthy controls and 78 patients with Alzheimer disease [28,45].

A particularly important finding of our review is that although
many of the NLP studies leveraged powerful and sophisticated
computational tools, most studies constitute research work rather
than reports of operationalization or evaluation in practical
settings. This is consistent with the current state of clinical NLP
outside of neurology, wherein real-world deployment of NLP
models continues to be limited [7,77,78].

One major obstacle to the implementation of NLP in clinical
practice is model generalizability [7]. Published NLP models
are usually internally validated rather than externally validated
[7,17], limiting the understanding of model accuracy beyond
the model’s original training environment [60]. We found this
to be true for the majority of studies identified in our review.
The lack of EMR standardization, including note formatting
[17,78], documentation styles, and radiographic report structures
across different medical institutions [7] and between clinicians,
may partly account for our observations. Furthermore, the
preponderance of English language as source text in NLP [79],
as demonstrated by the single study in our review using
non-English (Portuguese) text for analysis, suggests that the
generalizability of NLP within neurology is most likely limited
outside the English language.

Another major obstacle impeding the adoption of NLP tools is
the inherent lack of transparency of ML-based algorithms [60],
particularly artificial neural networks and other forms of DL
approaches [80]. These approaches have low transparency
because the computational methods they use to characterize
relationships between inputs and outputs are not readily
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intelligible to humans [7,78,80] acting as a black box that could
undermine clinicians’ trust in their performance.

The lack of well-defined regulatory guidelines and standards
overseeing the artificial intelligence space [81] has furthered
this mistrust. Compromise of personal health data, algorithmic
bias, and the question of how to attribute culpability when
diagnostic errors arise [82,83] are all ethical concerns that may
serve to explain the relative paucity of studies across all
neurological conditions that externally validated DL models.

Finally, the lack of portability of NLP applications into external
EMRs is another factor that has restricted the development of
NLP models to the research arena. External software modules
containing ML and DL models are challenging to integrate into
EMRs [1,84], as most implementations require a high level of
computing infrastructure and technical expertise that many
hospital information technology systems and personnel may
lack [84]. Recent work suggests few EMR-integrated
aggregative tools exist to display NLP findings to clinicians in
a digestible format [85]. To address these barriers, some authors
have advocated for collaborations between NLP researchers
and EMR companies [77].

Limitations and Future Work
Our scoping review has several limitations. First, we note that
the target of NLP was categorized according to author
experience and interpretation of the literature, which may have
underreported the application of the published NLP algorithms.
Second, due to the variable performance metrics and outcomes
across studies, we did not aggregate measurements of
performance in our review, and we therefore could not reliably
provide summary performance metrics for NLP models within
individual diseases, applications, or outcomes. Future work
should focus on individual outcomes within a clinical disorder

for a more exact appraisal of NLP model performance than this
review.

Third, this review only included studies based on common
neurological disorders, direct clinical applications of NLP, and
homogeneous clinical populations, which limited the number
of studies we identified. It is therefore important to note that
this review cannot be used to make definitive conclusions on
the state of NLP research across all neurological disorders.
Future efforts can be directed at characterizing the use of NLP
across less common neurological disorders as well as in
heterogeneous or ambiguously defined clinical populations. As
NLP technologies continue to advance, it will also be critically
important to evaluate studies that use newer transformers, such
as GPT3, which have better performance than BERT models
[59].

Conclusions
The abundance of unstructured text data in modern-day EMRs
as well as the emphasis in neurology on narrative history and
physical examination and heavy reliance on ancillary
information such as radiographic reports and speech, all create
an optimal use case for applying NLP for the diagnosis,
management, or prognostication of neurological disorders. To
our knowledge, this is the first attempt to systematically
characterize research efforts to investigate direct NLP
applications to common neurological conditions. Our review
reveals gaps in neurological NLP research, showing a relative
deficiency of NLP studies in subspecialties outside of stroke or
epilepsy, and underlines the need to actualize NLP models
outside of the research phase. Moreover, the current emphasis
of NLP on diagnostic tasks suggests that NLP may be
particularly useful in settings that lack access to neurological
expertise.
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Abstract

Background: Quantitative pupillometry is used in mild traumatic brain injury (mTBI) with changes in pupil reactivity noted
after blast injury, chronic mTBI, and sports-related concussion.

Objective: We evaluated the diagnostic capabilities of a smartphone-based digital pupillometer to differentiate patients with
mTBI in the emergency department from controls.

Methods: Adult patients diagnosed with acute mTBI with normal neuroimaging were evaluated in an emergency department
within 36 hours of injury (control group: healthy adults). The PupilScreen smartphone pupillometer was used to measure the
pupillary light reflex (PLR), and quantitative curve morphological parameters of the PLR were compared between mTBI and
healthy controls. To address the class imbalance in our sample, a synthetic minority oversampling technique was applied. All
possible combinations of PLR parameters produced by the smartphone pupillometer were then applied as features to 4 binary
classification machine learning algorithms: random forest, k-nearest neighbors, support vector machine, and logistic regression.
A 10-fold cross-validation technique stratified by cohort was used to produce accuracy, sensitivity, specificity, area under the
curve, and F1-score metrics for the classification of mTBI versus healthy participants.

Results: Of 12 patients with acute mTBI, 33% (4/12) were female (mean age 54.1, SD 22.2 years), and 58% (7/12) were White
with a median Glasgow Coma Scale (GCS) of 15. Of the 132 healthy patients, 67% (88/132) were female, with a mean age of
36 (SD 10.2) years and 64% (84/132) were White with a median GCS of 15. Significant differences were observed in PLR
recordings between healthy controls and patients with acute mTBI in the PLR parameters, that are (1) percent change (mean 34%,
SD 8.3% vs mean 26%, SD 7.9%; P<.001), (2) minimum pupillary diameter (mean 34.8, SD 6.1 pixels vs mean 29.7, SD 6.1
pixels; P=.004), (3) maximum pupillary diameter (mean 53.6, SD 12.4 pixels vs mean 40.9, SD 11.9 pixels; P<.001), and (4)
mean constriction velocity (mean 11.5, SD 5.0 pixels/second vs mean 6.8, SD 3.0 pixels/second; P<.001) between cohorts. After
the synthetic minority oversampling technique, both cohorts had a sample size of 132 recordings. The best-performing binary
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classification model was a random forest model using the PLR parameters of latency, percent change, maximum diameter,
minimum diameter, mean constriction velocity, and maximum constriction velocity as features. This model produced an overall
accuracy of 93.5%, sensitivity of 96.2%, specificity of 90.9%, area under the curve of 0.936, and F1-score of 93.7% for
differentiating between pupillary changes in mTBI and healthy participants. The absolute values are unable to be provided for
the performance percentages reported here due to the mechanism of 10-fold cross validation that was used to obtain them.

Conclusions: In this pilot study, quantitative smartphone pupillometry demonstrates the potential to be a useful tool in the future
diagnosis of acute mTBI.

(JMIR Neurotech 2024;3:e58398)   doi:10.2196/58398

KEYWORDS

smartphone pupillometry; pupillary light reflex; biomarkers; digital health; mild traumatic brain injury; concussion; machine
learning; artificial intelligence; AI; pupillary; pilot study; brain; brain injury; injury; diagnostic; pupillometer; neuroimaging;
diagnosis; artificial; mobile phone

Introduction

The pupillary light reflex (PLR) is a biomarker of neurological
disease demonstrated by the reaction of the pupil to a light
stimulus [1] that is commonly used in the management of
moderate to severe traumatic brain injury (TBI) [2,3]. The pupil
has both sympathetic and parasympathetic innervation that can
be affected by mild TBI (mTBI). Traditional PLR assessment
uses a manual penlight [4]; however, this method experiences
poor interrater reliability, is highly subjective, and is of little
use outside of moderate to severe TBI [4,5]. More recently,
quantitative measurement of the PLR has been used as a
biomarker for mTBI wherein the pupils are reactive but
abnormal in a manner that is not easily detectable to the human
eye [6]. Quantitative pupillometry is typically performed in the
intensive care unit or in neuro–intensive care unit settings with
United States Food and Drug Administration (FDA)–approved
equipment (NeurOptics). There has been recent interest in the
use of this same equipment for the diagnosis of concussion in
military personnel after the blast injury [7], to document
pupillary changes in those with chronic mTBI [8,9], and most
recently interest in the diagnosis of sports-related concussions
[10].

We developed a smartphone quantitative pupillometry app
(PupilScreen) that measures the PLR with greater accuracy and
higher interrater reliability than the manual penlight [11]. This
study aims to investigate the ability of the smartphone
pupillometry app to differentiate between participants with acute
mTBI (<36 hours after injury) and healthy controls.

Methods

Recruitment
We used a previously developed binocular smartphone
pupillometer (PupilScreen), which quantifies PLR curve
morphological parameters (Textbox 1) to examine differences
in pupillary reactivity between participants with acute mTBI
and healthy participants. The smartphone pupillometry app
requires a standard iPhone (Apple) camera without external
hardware and is connected to a cloud-based neural network
computer vision algorithm [11-15]. The app interface includes
an augmented reality screen overlay with eye holes that helps
to standardize the distance from the phone to the pupils for each
measurement [13]. Using this technique in previous studies, the
median error of pupil detection to the ground truth pupil
diameter in millimeters was 0.23 and the mean absolute relative
percent difference between sequential measurements was mean
5.8% (SD 3%) [12].

Patients with a clinical diagnosis of acute mTBI were enrolled
prospectively through availability sampling (as this was an
exploratory pilot study) in an emergency department after
presenting with head trauma and known mechanism of injury
less than 36 hours post injury from July 2022 to March 2023.
mTBI was defined according to the American College of
Rehabilitation Medicine (ACRM) criteria [16]. Participants
were excluded if they had any intracranial abnormalities on
neuroimaging. A separate cohort of healthy participants was
enrolled from hospital staff using availability sampling over the
same time period, which excluded those with self-reported
known neurological disease or recent history of TBI.

Textbox 1. Definitions of pupillary light reflex parameters.

Latency (seconds [s]): time from onset of light stimulus to initial pupillary constriction

Percent change (%): percent change in pupillary diameter from maximum to minimum

Minimum pupillary diameter (pixels [px]): minimum diameter after light stimulus

Maximum pupillary diameter (px): average resting diameter before light stimulus

Mean constriction velocity (px/s): the average speed at which the pupil constricts after the light stimulus until the minimum diameter is reached

Maximum constriction velocity (px/s): the maximum speed at which the pupil constricts after the light stimulus until the minimum diameter is reached

Mean dilation velocity (px/s): the average speed at which the pupil dilates after removal of the light stimulus

JMIR Neurotech 2024 | vol. 3 | e58398 | p.129https://neuro.jmir.org/2024/1/e58398
(page number not for citation purposes)

Maxin et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

http://dx.doi.org/10.2196/58398
http://www.w3.org/Style/XSL
http://www.renderx.com/


Statistical Analysis
The PLR parameters were averaged for each subject between
the left and right eyes before analysis. Differences in PLR
parameters between cohorts were examined using a one-tailed
t test for independent means. A P value of <.05 was considered
statistically significant and a post hoc Bonferroni correction
was implemented to control the probability of committing a
type I error in the results. In addition, an analysis was performed
to demonstrate the classification ability of the PLR parameters
as feature inputs to machine learning models in the task of
differentiating between the healthy and mTBI cohorts. Due to
the significant class imbalance present, a synthetic minority
oversampling technique (SMOTE) [17] was used to oversample
the mTBI cohort PLR parameters to match the sample size of
the healthy cohort. All PLR parameters were analyzed using 4
separate binary classification machine learning models: random
forest, k-nearest neighbors, logistic regression, and support
vector machine [18]. A 10-fold cross-validation stratified by
cohort (which respects the independence of the training and
testing sets) was used to produce the following model
performance metrics, that are overall accuracy, sensitivity,
specificity, area under the curve (AUC), and F1-score, on the

unseen test data sets. We report the best-performing feature
combinations for each model type, based on AUC value, in
differentiating PLR curves of patients with mTBI from healthy
controls.

Ethical Considerations
This study was approved by the University of Washington
institutional review board (#8009), and an informed consent
process was followed for all participants as approved by the
institutional review board.

Results

Cohort Characteristics
A total of 12 patients diagnosed with mTBI and 132 healthy
participants were enrolled. Subject demographics are listed in
Table 1 and characteristics of their injury are listed in
Multimedia Appendix 1. Participants with acute mTBI were
studied for an average of 6.8 (range 0.5-29) hours after injury.
A total of 10 out of 12 in this sample had a loss of consciousness
(<30 minutes) and 10 out of 12 had posttraumatic amnesia.
Mechanisms of injury included motor vehicle collisions (n=2),
motorcycle collisions (n=2), falls (n=6), and assaults (n=2).

Table 1. Demographic characteristics.

mTBIa (n=12)Healthy (n=132)

54.1 (22.3)36 (10.2)Age (years), mean (SD)

Sex, n (%)

4 (33)88 (67)Female

Race or ethnicity, n (%)

7 (58)84 (64)White

1 (8)24 (18)Asian

2 (17)12 (9)Black

2 (17)8 (6)Hispanic

0 (0)4 (3)Other

15c15GCSb, median

amTBI: mild traumatic brain injury.
bGCS: Glasgow Coma Scale.
cOne subject had a GCS of 14.

Results of Statistical Analysis
Sample healthy and mTBI PLR curves produced by the
smartphone app are shown in Multimedia Appendix 2.
Significant differences were observed in PLR parameters of
minimum diameter (P=.004), percent change, maximum
diameter, and mean constriction velocity (P<.001; Table 2).

In the binary classification analysis, the SMOTE [17] produced
a sample size of 132 mTBI PLR recordings and 132 healthy

PLR recordings. The best-performing feature combinations
based on AUC value across the 4 model types are listed in Table
3. The best-performing model overall was random forest, with
the latency, percent change, minimum diameter, maximum
diameter, mean constriction velocity, and maximum constriction
velocity PLR parameters used as features. After stratified 10-fold
cross-validation, this model produced an overall accuracy of
93.5%, sensitivity of 96.2%, specificity of 90.9%, AUC of 0.936,
and F1-score of 93.7% for differentiating between PLR curves
of mTBI and healthy cohorts.
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Table 2. Smartphone pupillometry PLRa parameters in healthy and participants with mTBIb.

P valueAcute mTBI, mean (SD)Healthy, mean (SD)PLR parameters

.170.19 (0.12)0.21 (0.075)Latency (s)

<.00126 (7.9)34 (8.3)Percent change (%)

.00429.7 (6.1)34.8 (6.1)Minimum pupillary diameter (pixels)

<.00140.9 (11.9)53.6 (12.4)Maximum pupillary diameter (pixels)

<.0016.8 (3.0)11.5 (5.0)Mean constriction velocity (pixels/s)

.0638.7 (28.8)48.9 (20.5)Max constriction velocity (pixels/s)

.023.9 (2.1)5.4 (2.3)Mean dilation velocity (pixels/s)

aPLR: pupillary light reflex.
bmTBI: mild traumatic brain injury.

Table 3. Best performing binary classification modelsa.

F1-score, %AUCcSpecificity, %Sensitivity, %Accuracy, %PLRb parameter combinationModel

93.70.93690.996.293.5Latency, percent change, maximum
diameter, minimum diameter, mean
constriction velocity, and maximum
constriction velocity

RFd

91.90.91888.894.791.7Percent change, maximum diameter,
and minimum diameter

KNNe

86.70.86819186Percent change, minimum diameter,
mean constriction velocity, and mean
dilation velocity

SVMf

87.70.86477.495.586.3Maximum diameter, mean constriction
velocity, and mean dilation velocity

LRg

aThe absolute values are unable to be provided for the performance percentages reported here due to the mechanism of 10-fold cross-validation that
was used to obtain them.
bPLR: pupillary light reflex.
cAUC: area under the curve.
dRF: random forest.
eKNN: k-nearest neighbors.
fSVM: support vector machine.
gLR: logistic regression.

Discussion

Principal Findings
We present data comparing PLR parameters (Textbox 1) in a
cohort of patients with acute mTBI compared with healthy
controls. Our results indicate that statistically significant
differences can be detected between the mean PLR parameters
of patients with acute mTBI and healthy controls using
smartphone quantitative pupillometry. The percent change,
minimum diameter, maximum diameter, and mean constriction
velocity PLR parameters were significantly lower in the acute
mTBI cohort (Table 2). This reflects the functional rather than
structural abnormalities in neuronal homeostasis that are the
basis of mTBI pathophysiology [19]. After using SMOTE [17]
to resolve the class imbalance in our sample, we observed the
performance of 4 binary classification models for differentiating
between acute mTBI and healthy controls (Table 3), the best of
which produced accuracy, sensitivity, specificity, AUC, and

F1-score all above 90%, suggesting useful diagnostic
discrimination.

Comparison With Previous Work
There has been increased interest in PLR as a physiologic
biomarker of mTBI and in automated pupillometry. One study
of the NPi-200 commercial pupillometry device in patients with
blast-induced mTBI 15-45 days post injury found that mean
constriction velocity, latency, and mean dilation velocity were
slower than controls [7]. A follow-up study of 100 soldiers with
a concussion compared with 100 controls without a concussion
<72 hours post injury had similar findings [20]. Pupillary
changes have also been demonstrated in those with chronic
mTBI compared with controls >45 days and >1 year post injury
using automated quantitative pupillometry [8,9]. Most recently,
changes in pupillary reactivity were demonstrated in 98 youths
with a concussion compared with 134 controls at a median of
12 days post injury [10]. Smartphone apps have also been
studied previously in the diagnosis and management of
concussion and mTBI based on subjective clinical findings
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[21-23], although before this study, only 1 used pupillometry
[24].

Detailed Discussion of This Work
The smartphone pupillometer used in this study (PupilScreen)
has several advantages over more traditional devices. It is more
affordable and would be more accessible and practical in clinical
care settings outside of the hospital. It also has demonstrated
improved performance when compared with a proprietary
pupillary reactivity index [25] in the setting of severe TBI [14],
without effects from opioid medication use [15]. The smartphone
pupillometer in this study has also shown potential use in the
diagnosis of other neurological conditions such as in the
detection of acute preintervention ischemic stroke while a
proprietary pupil index [25] remained within the normal and
reactive range for all participants who had stroke [13]. Other
quantitative pupillometry technologies have been studied with
varying hardware and software features and requirements
[25-29], yet these technologies have not been studied as
extensively, do not support simultaneous binocular recording
of the PLR for dynamic assessment, and do not incorporate
machine learning to uncover nuanced relationships between
PLR parameters that may not be easily summarized in a
proprietary reactivity index [25].

In this study, we observed alterations of the autonomic nervous
system in mTBI compared with healthy controls (reduction in
maximum and minimum pupil diameters) and direct effects of
mTBI functional pathophysiology on cranial nerve III or its
postganglionic short ciliary nerve derivatives [1] (difference in
percent change and mean constriction velocity parameters).
These results correlate with previous studies in acute mTBI [20]
on the importance of the mean constriction velocity but not on
that of the mean dilation velocity, which may be due to
mechanical differences in the method of capture between other
quantitative pupillometers and the smartphone quantitative
pupillometer used in this study. A report of patients with chronic
mTBI demonstrated findings similar to our study (despite
evaluating chronic, rather than acute mTBI), finding significant
differences seen in the maximum resting pupillary diameter,
mean constriction velocity, maximum constriction velocity,
mean dilation velocity, and percent change PLR parameters [8].
Our study is unique in that it includes only participants within
36 hours after injury, unlike others for which recruitment
occurred up to several weeks after mTBI [7-10], and in that it
uses smartphone pupillometry as an accessible and practical
alternative to traditional quantitative pupillometry.

Using Multimedia Appendix 2 as an example, PLR curves
between a healthy control and a patient with acute mTBI look
subjectively similar to the naked eye. Despite this, a statistically
significant difference was found in the structural curve
morphology parameters listed above, indicating that using these
quantitative PLR parameters in combination (rather than each
one alone) may be necessary to detect subtle changes that may
be present in acute mTBI. The results of our binary classification
models support this, as when the PLR parameters are used in
combination with one another as features in a machine learning

binary classification model, we see a reasonable capability of
the model to differentiate between healthy and participants with
acute mTBI with more than 90% on all model performance
metrics. In addition, the important PLR parameters mirror those
from the literature and our individual parameter comparison
results. While preliminary, our results show promise in the usage
of a mobile smartphone pupillometer with advanced PLR
analysis to detect mTBI, which could have major implications
in fields such as athletics, prehospital care, the military, and
digital health in general. Although we did not evaluate the
diagnostic spectrum of mild, moderate, and severe TBI in this
pilot study, such work is ongoing using the smartphone
pupillometer studied here. In addition, we believe that there is
value in studying an objective tool for acute mTBI
differentiation from healthy controls as it has been demonstrated
in the literature that cases of acute mTBI are missed in the acute
care setting (such as the emergency department setting where
this study was conducted) [30,31].

Limitations
This study is limited by multiple factors, the first of which is
the small sample size of 12 patients with acute mTBI. We have
addressed this limitation through our use of SMOTE [17] to
equalize the sample size of both cohorts to 132 recordings for
binary classification machine learning analysis, nonetheless,
larger studies are required for external validation and there is a
risk of overfitting in the machine learning models when using
this approach. Another limitation of this approach is the
possibility that the sample of patients with acute mTBI is not
representative of the broader acute mTBI population. Using the
case descriptions in Multimedia Appendix 1, a heterogeneous
distribution of case types is seen with a wide range in time after
injury, a variety of mechanisms (falls, assaults, and motor
vehicle collisions), and findings on examination that are
qualifying for the ACRM definition of acute mTBI. Thus, we
believe that despite the small sample size, we have captured a
somewhat representative group of the broader emergency
department population with acute mTBI using availability
sampling. Another limitation is the mechanism of injury, which
was entirely mechanically induced, which may limit the
application of our findings to participants with blast-induced
injury in military settings [7]. Finally, our healthy cohort was
younger than the acute mTBI cohort, and thus known changes
in the PLR along the spectrum of aging [32] may have affected
our results.

Conclusions
In this pilot study, mobile pupillometry using a smartphone app
detected significant differences in PLR parameters and
performed with greater than 90% accuracy, sensitivity,
specificity, AUC, and F1-score on binary classification between
acute mTBI and healthy cohort. The technology studied in this
pilot study may have potential future use in hospital or
nonhospital settings to detect acute mTBI and concussion after
future validation to test the generalizability and stability of its
predictions on prospectively collected external testing data sets.
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Multimedia Appendix 1
Table – Injury Characteristics.
[DOCX File , 15 KB - neuro_v3i1e58398_app1.docx ]

Multimedia Appendix 2
Acute mTBI (A) and healthy subject (B) pupillary light reflex (PLR) curves. Top panel: PLR curve of right (red) and left (blue)
eyes. Bottom panel: Brightness of the recording as detected by the smartphone camera. Although some motion artifact is present
in both curves, the mTBI and healthy subject curves appear qualitatively similar with pupillary constriction during increased
brightness (due to the light stimulus from the smartphone camera flash) and pupillary re-dilation towards baseline diameter after
cessation of light stimulus. Brightness is a unitless measurement of the ambient brightness detected by the built-in iPhone camera
during the entire recording of the PLR. It is reported in APEX (Additive System of Photographic Exposure) which is an
iPhone-specific measurement; more details can be found in iPhone software documentation.
[PNG File , 401 KB - neuro_v3i1e58398_app2.png ]
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Abstract

Background: Developing new clinical measures for degenerative cervical myelopathy (DCM) is an AO Spine RECODE-DCM
research priority. Difficulties detecting DCM, and changes in DCM, cause diagnostic and treatment delays in clinical settings
and heightened costs in clinical trials due to elevated recruitment targets. Digital outcome measures can tackle these challenges
due to their ability to measure disease remotely, repeatedly, and more economically.

Objective: The study aims to assess the validity of MoveMed, a battery of performance outcome measures performed using a
smartphone app, in the measurement of DCM.

Methods: A prospective observational study in decentralized secondary care was performed in England, United Kingdom.
Validity and risk of bias were assessed using criteria from the COSMIN (Consensus-Based Standards for the Selection of Health
Measurement Instruments) manual. Each MoveMed outcome was compared with 2 patient-reported comparators, with a priori
hypotheses of convergence or divergence tested against consensus thresholds. The primary outcome was the correlation coefficient
between the MoveMed outcome and the patient-reported comparators. The secondary outcome was the percentage of correlations
that aligned with the a priori hypotheses. The comparators used were the patient-derived modified Japanese Orthopaedic Association
score and the World Health Organization Quality of Life Brief Version questionnaire. Thresholds for convergence or divergence
were set at ≥0.3 for convergence, <0.3 for divergence, and >0/<0 for directionality.
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Results: A total of 27 adults aged 60 (SD 11) years who live with DCM and possess an approved smartphone were included in
a preliminary analysis. As expected, MoveMed tests of neuromuscular function correlated most with questionnaires of neuromuscular
function (≥0.3) and least with questionnaires of quality of life (<0.3). Furthermore, directly related constructs correlated positively
to each other (>0), while inversely related constructs correlated negatively (<0). Overall, 74% (67/90) and 47% (8/17) of correlations
(unidimensional and multidimensional, respectively) were in accordance with hypotheses. No risk-of-bias factors from the
COSMIN Risk of Bias checklist were recorded. Overall, this was equivalent to “very good” quality evidence of sufficient construct
validity in DCM.

Conclusions: MoveMed outcomes and patient-reported questionnaires converge and diverge in accordance with expectations.
These findings support the validity of the MoveMed tests in an adult population living with DCM. Criteria from COSMIN provide
“very good” quality evidence to support this.

(JMIR Neurotech 2024;3:e52832)   doi:10.2196/52832
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Introduction

Abnormal limb movement is a key phenotype of disease
affecting the nervous and musculoskeletal systems. Loss of
dexterity, for example, is a notable manifestation of conditions
such as Parkinson disease, degenerative cervical myelopathy
(DCM), peripheral neuropathy, and osteoarthritis [1,2]. The
significance of this phenotype can be seen in the physician’s
approach to examining the neuromuscular systems, the features
used to distinguish or measure its disease, or the information
sought to define its care and research. Collectively, diseases
affecting the nervous and musculoskeletal systems are estimated
to account for 1.1 to 4.9 million deaths and 165 to 357 million
disability-adjusted life year (DALYs) worldwide and are the
leading causes of global disability, reflecting their often chronic
nature [3-5].

While abnormal movement is a key component of diagnosis, it
is also a key component of longitudinal monitoring, as these
diseases typically lack responsive serological or imaging
biomarkers [6]. Such monitoring is key to adjusting or reviewing
treatment strategies over time and defining the success or failure
of research trials [7]. Today, monitoring relies on qualitative
outcome measures: classifications based on a hierarchy of
exemplar functions, such as questionnaires or item selection.
While qualitative tools can be robust, valid, and even performed
by the patient remotely, their limited granularity and intrinsic
subjectivity mean they lack accurate and responsive
discrimination of small but significant changes, particularly for
fluctuating diseases [8]. For clinical care, this means clinically
important change is seen late, often at the cost of increased
disability [9]. For clinical research, the low statistical power of
qualitative tools means far higher sample sizes are needed for
trials to mitigate type 2 errors.

This is exemplified within DCM, a slow-motion spinal cord
injury estimated to affect 1 in 50 adults [10-13]. Here, dexterity,
gait, and balance are key measurement constructs [14].
Currently, the gold-standard outcome measure is the modified
Japanese Orthopaedic Association (mJOA) score, but it is poorly
responsive [6]. Further, score variation, driven partly by the
disease and partly by reliability, is more than twice the minimal
clinically important difference. In practice, this demands sample

sizes greater than 300 patients for 1:1 comparison with at least
80% power [15,16]. Developing new approaches to functional
measurement is a recognized research priority [14].

Advances in our ability to assess limb performance can thus
greatly improve our understanding of the patient’s clinical
picture, lead to better decision-making and outcomes, as well
as accelerate knowledge discovery [17,18]. The sensors
contained within smartphones offer the potential to achieve this.
Smartphones are increasingly carried by all patient groups, with
far greater penetrance and priority than other wearable devices
such as smartwatches [19]. Current focus in portable technology
with respect to health has largely been on “background
monitoring,” but shortcomings remain, including accurate and
responsive insights at the individual patient level, as well as
between-device variation [20].

This study evaluates MoveMed, a smartphone app originally
developed by researchers from the University of Cambridge to
assess hand, arm, and leg function in real-time, in the user’s
natural environment, and under standardized conditions. This
approach is, therefore, different from background monitoring:
it harnesses the accuracy of mobile sensors to measure
movement but does so during prescribed activities or tasks,
designed by health care professionals and patients to target
critical markers of disease. It can therefore be considered a
patient-performed, performance-based outcome (PerfO) or
performance-based outcome measure (PerfOM). Since
MoveMed is being developed in accordance with ISO 13485
(Software as a Medical Device), testing of measurement
properties was timely given recent laboratory experience of
technological readiness (TRL4). In terms of V3 stages for
biometric monitoring technologies [21], the testing in this paper
corresponds to clinical validation.

MoveMed was originally developed for DCM. Therefore, the
focus of this report is on the validity of the MoveMed battery
of PerfOMs in DCM. However, recognizing that the
measurement constructs in this disease are shared across other
neuromuscular diseases, its validity is currently being explored
in other conditions. Formal methods and criteria from the US
Food and Drug Administration and COSMIN (Consensus-Based
Standards for the Selection of Health Measurement Instruments)
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guidelines were used to design a prospective and decentralized
observational study. Validity and risk of bias were principally
assessed via hypothesis testing of construct validity. Content
validity will be formally evaluated separately but is briefly
described in this work. This paper is the first of a series of
clinimetric studies about the measurement properties of
MoveMed battery of PerfOMs.

Methods

Participants
Between September 2022 and April 2023, a total of 27 people
with DCM were enrolled in the prospective and decentralized
EMPOWER study [22]. Prospective participants were recruited
via a web-based campaign and asked to complete consent and
registration forms (Figure 1) [23,24]. These were used to screen
participants for eligibility. Participants were deemed eligible if
they had a self-reported diagnosis of DCM, owned a smartphone,

and were able to stand and walk without the assistance of
another person. Eligible participants were invited to download
the MoveMed app to their smartphones and complete an
electronic, baseline questionnaire on neuromuscular function,
hand dominance, and quality of life. This included questions
from the patient-derived mJOA (P-mJOA) and the World Health
Organization Quality of Life Brief Version (WHOQOL-Bref).

All enrolled participants were asked to perform each task in the
MoveMed app once per week for a period of 12 weeks. Task
adherence was remotely monitored once a week using a bespoke
web-based dashboard. Participants were offered reminders and
help via email once a week if 14 days passed since the
completion of the latest task. These were offered a total of 2
consecutive times per participant, after which the participant
was considered lost to follow-up. At weeks 6 and 12,
participants were asked to complete the same electronic
questionnaire from week 1.

Figure 1. Study timeline. Data from the first 3 weeks of the study were included in this analysis due to the ongoing status of the trial. PerfO:
performance-based outcome.

MoveMed and Tasks
MoveMed is a smartphone app designed by academic
neurosurgeons and computer scientists from the University of
Cambridge to administer PerfOMs (Figure 2). These may be
administered by clinicians during in-person visits or
self-performed by individuals in the community. Version 1.0.0
of the app originally offered 3 performance tasks: a fast tap test,
a hold test, and a stand and walk test. Version 1.2.2 incorporated
an additional offering—a typing test—while making no changes
to the 3 original tasks. Versions 1.0.0 and 1.2.2 were available
in the Android Google Play Store and iOS App Store,
respectively, at the time of writing and were used in this study
by enrolled participants.

The fast tap test is a unidimensional PerfO task that assesses
finger dexterity through a 6-second smartphone touch-based
task. Users are shown a demonstrative cartoon (Figure 2A) and
instructed to “touch the center of the target with [each] hand as
many times as possible.” In-app video demonstration is also
available. The construct (finger dexterity) is assessed by
measuring the speed, accuracy, and efficiency of finger tapping

as continuous variables and analyzing them as a panel of
unidimensional measures. Content validity was assessed by
AYT, MRNK, and BMD through literature review and clinical
and patient input and deemed relevant, comprehensive, and
comprehensible at the time of development [25-27]. In this
study, tap latency was used as a reflective measure of finger
dexterity.

The typing test is another unidimensional PerfO task that
assesses finger dexterity through a 2-stage smartphone
touch-based task. Users are shown a demonstrative cartoon
(Figure 2B) and instructed to “type as correctly as they can,
without rushing.” In-app video demonstration is also available.
The construct (finger dexterity) is assessed by measuring the
speed, accuracy, and efficiency of typing as continuous variables
and analyzing them as a panel of unidimensional measures.
Content validity was assessed by AYT, MRNK, and BMD
through literature review and clinical and patient input and
deemed relevant, comprehensive, and comprehensible at the
time of development [25-27]. In this study, typing speed was
used as a reflective measure of finger dexterity.

JMIR Neurotech 2024 | vol. 3 | e52832 | p.138https://neuro.jmir.org/2024/1/e52832
(page number not for citation purposes)

Yanez Touzet et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Schematic illustrations of the MoveMed battery of performance outcome measures. (A) The 6-second fast tap test; (B) the 2-stage typing
test; (C) the 8-second hold test; and (D) the 15-second stand and walk test.

The hold test is a unidimensional PerfO task that assesses upper
limb stability through an 8-second in-hand smartphone task.
Users are shown a demonstrative cartoon (Figure 2C) and
instructed to “hold the phone, screen up in the palm of [their]
outstretched hand.” In-app video demonstration is also available.
The construct (upper limb stability) is assessed by measuring
the involuntariness, rhythmicity, and oscillation of the upper
limbs as continuous variables and analyzing them as a
multidimensional Stability Score. Content validity was assessed
by AYT, MRNK, and BMD through literature review and
clinical and patient input and deemed relevant, comprehensive,
and comprehensible at the time of development [25-27]. In this
study, the Stability Score was used as a reflective measure of
upper limb stability.

The stand and walk test is a multidimensional PerfO task that
assesses gait through a 2-stage in-hand smartphone task. During
the first stage, users are instructed to “sit upright on the edge
of a chair [and to] press the green button [when they are ready
to] stand and remain still.” During the second stage, users are
instructed to “walk [in] any direction.” In-app cartoons and
video demonstrations are also available (Figure 2D). The
construct (gait) may then be assessed by measuring standing or
walking as continuous variables and analyzing them as
multidimensional measures. Content validity was assessed by
AYT, MRNK, and BMD through literature review and clinical
and patient input and deemed relevant, comprehensive, and
comprehensible at the time of development [25-27]. In this
study, cadence was used as a reflective measure of gait.

Patient-Reported Comparators
The 2 patient-reported outcomes (PROs) or PRO measures
(PROMs) were used as comparators for DCM: the P-mJOA and
the WHOQOL-Bref.

The P-mJOA score is a multidimensional, patient-reported
questionnaire that assesses neuromuscular function in DCM
across 4 items: motor dysfunction of the upper extremities
(MDUE), motor dysfunction of the lower extremities (MDLE),
sensory function of the upper extremities, and sphincter
dysfunction [28]. Responses are scored on an ordinal scale per
item and presented as both a panel of unidimensional scores
and an unweighted sum-total, multidimensional score. The
P-mJOA score was selected due to the existence of a systematic
assessment of construct validity (r>0.5) and feasibility in DCM
[6] and due to the use of its clinically reported analog (the
mJOA) as the current gold standard. The P-mJOA score was
favored over the mJOA score since it is intended to be a truly
patient-reported equivalent of the mJOA score, which can be
understood by individuals with no medical knowledge or
training [29].

The WHOQOL-Bref is a multidimensional, patient-reported
questionnaire that assesses quality of life across 26 items
grouped into 4 domains: physical health, psychological health,
social relationships, and environmental health [30]. Responses
are scored on a 5-point ordinal scale per item and presented as
a panel of sum-total, multidimensional scores. Responses to 2
items may, furthermore, be presented individually to give insight
into the respondent’s global perception of their quality of life
and their quality of health. These were presented in writing to
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describe the population’s characteristics but were not considered
robust enough to warrant correlation analysis. The
WHOQOL-Bref was selected due to the existence of systematic
assessments of validity, reliability, and responsiveness in
traumatic brain injury [31], Parkinson disease [32], and DCM
[6]. It was also favored over the 36-Item Short Form Health
Survey due to its relative brevity and over the EuroQOL Five
Dimensions Questionnaire due to licensing restrictions.

Statistical Analysis
The COSMIN manual defines validity as “the degree to which
[an instrument] measures the construct it purports to measure”
[33]. In the absence of a gold standard, validity may be assessed
formally through hypotheses testing of correlations to known
standards. These may then be judged both as a panel of
stand-alone ratings [34].

In this study, we assessed validity by correlating the MoveMed
PerfOs to their corresponding patient-reported comparators.
This was achieved by comparing it to the P-mJOA and
WHOQOL-Bref PROMs. Due to the ongoing status of the trial,
data from the first 3 weeks of the study were included (Figure
1). All available tests within this period were included.
Longitudinal replicates of MoveMed tasks were averaged before
comparing their mean scores to the mean scores of the PROMs.
Responses from the baseline questionnaire were used and results
were subgrouped by diagnosis. Missing data were not imputed,
and all analyses were done using Python (version 3.10.12;
Python Software Foundation).

The goal of the analysis was to determine “whether the direction
and magnitude of a correlation is similar to what could be
expected based on the constructs that are being measured”
[33,35]. Spearman rank correlation coefficients (ρ) were thus
computed due to their suitability for ordinal scales. In
accordance with COSMIN, P values were not used “because it
is not relevant to examine whether correlations statistically
differ from zero” [33,35]. Hypotheses about the direction and
magnitude of correlations were instead drawn and adapted from
COSMIN [33] and de Vet et al [36]. We hypothesized that the
magnitude of correlations between outcomes measuring similar
constructs should be ≥0.5; the magnitude of correlations between
outcomes measuring related, but dissimilar, constructs should
be ≥0.3, and ideally <0.5; the magnitude of correlations between
outcomes measuring unrelated constructs should be <0.3; and
the direction of correlations between outcomes measuring
directly related constructs should be positive (>0) and negative
(<0) between outcomes measuring inversely related constructs.

As reported in Yanez Touzet et al [6], constructs were defined
as “similar” if they both measured the same domain with a
unidimensional instrument. If they measured the same domain,
but at least 1 of the instruments was multidimensional, the
constructs were defined as “related but dissimilar.” Constructs
measuring different domains were otherwise defined as
“unrelated.”

Risk-of-Bias Assessment
The COSMIN Risk of Bias checklist 9a [33] was used to assess
the methodological quality of hypotheses testing.

Overall Assessment
Overall assessments of construct validity were made using a
panel of ratings and prior knowledge of content validity. These
were appraised qualitatively and presented in writing due to the
relatively higher importance of some comparators over others.
As in COSMIN [33], correlations were converted into ratings
by comparing results to hypotheses. Correlations in accordance
with hypotheses were rated “sufficient.” Correlations in
opposition were rated “insufficient.” Correlations in between
boundaries (eg, ρ=0) and statistical artifacts (eg, nonmonotonic
data) were rated “indeterminate.”

Ethical Considerations
This study was independently assessed and approved by the
University of Cambridge (HBREC.2022.13). All study
participants provided informed consent before enrolling in the
study and were able to opt out at any point. Study data were
anonymized. None of the participants received any form of
compensation for enrolling in or completing the trial.

Results

Participants
A total of 27 participants with DCM enrolled in the prospective
and decentralized EMPOWER study (Figure 3), principally via
advertisement through Myelopathy.org, a DCM charity [23,24].
On average, participants were aged 60 (SD 11) years (Table 1).
DCM severity ranged from mild to severe (P-mJOA total score
range 8-18). The impact on upper limb motor function ranged
from none to “unable to eat with spoon but able to move hands”
(P-mJOA MDUE subscore range 2-5) and the impact on lower
limb motor function ranged from none to “able to move legs
but unable to walk” (P-mJOA MDLE subscore range 2-7).
Overall health perception ranged from “satisfied” to “very
dissatisfied” (WHOQOL overall health range 1-4), and overall
quality of life perception ranged from “very good” to “very
poor” (WHOQOL overall quality of life range 1-5). In terms of
the MoveMed PerfOs, participants paused for 80-2600 ms in
between taps and typed approximately 0.6-2.5 keys per second.
Arm stability ranged from 39% to 100% and cadence ranged
from 14 to 112 steps per minute.

Differential app use was noted throughout the studied period
(Table 2). More participants used the stand and walk and typing
tests (n≥20) than the fast tap and hold tests (n≥12). However,
mean adherence was higher with the fast tap and hold tests
(100% and 90%, respectively) than with the stand and walk and
typing tests (77% and 72%, respectively). Crucially, median
adherence was satisfactory: 100% for the fast tap, hold, and
stand and walk tests, and 80% for the typing test. Differential
use was thus attributed to individual test preferences.
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Figure 3. STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) diagram. DCM: degenerative cervical myelopathy.
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Table 1. Characteristics of study participants (N=27).

ValueFeature

27 (100)Participants, n (%)

60.7 (10.8)Age (years), mean (SD)

11.4 (2.9)P-mJOAa score (reference range 0-18), mean (SD)

3.4 (1.1)MDUEb (reference range 0-5)

4.1 (1.3)MDLEc (reference range 0-7)

1.6 (0.8)SDUEd (reference range 0-3)

2.3 (0.7)SDe (reference range 0-3)

WHOQOL-Breff score, mean (SD)

2.9 (1.1)Overall QOLg (reference range 1-5)

2.6 (0.8)Overall health (reference range 1-5)

25.5 (5.5)EHh (reference range 8-40)

18.6 (5.6)PHi (reference range 7-35)

18.6 (4.1)PSj (reference range 6-30)

9.2 (2.1)SRk (reference range 3-15)

0.24 (0.13), 0.36 (0.52)MoveMed fast tap test intertap durationl (s), mean (SD)

78.6 (16.0), 75.8 (15.1)MoveMed hold test Stability Scorel (%), mean (SD)

1.39 (0.42)MoveMed typing test speed (keys per second), mean (SD)

58.8 (26.9)MoveMed stand and walk test cadence (steps per minute), mean (SD)

aP-mJOA: patient-derived modified Japanese Orthopaedic Association.
bMDUE: motor dysfunction of the upper extremity.
cMDLE: motor dysfunction of the lower extremity.
dSDUE: sensory dysfunction of the upper extremity.
eSD: sphincter dysfunction.
fWHOQOL-Bref: World Health Organization Quality of Life Brief Version
gQOL: quality of life.
hEH: environmental health,
iPH: physical health.
jPS: psychological health.
kSR: Social relationships.
lData reported as “dominant hand, nondominant hand” mean (SD) pairs. Ranges are reported elsewhere in the paper.
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Table 2. Correlations, ratings, and hypotheses for construct validity testing.

ROBcRatingbTotalResultaHypothesesMoveMed outcome measure and

comparator

MagnitudeDirectionMagnitudeDirection

MoveMed fast tap test (rating proportion in correspondence: Direction 9/9, 8/9; Magnitude 4/9, 4/9)

No+, ++, +12–0.47, –0.420.3 ≤ |r| (< 0.5)r < 0P-mJOAd total score

No–, –+, +12–0.28, –0.40|r|≥ 0.5r < 0P-mJOA MDUEe subscore

No–, ++, +12–0.42, –0.18|r|< 0.3r < 0P-mJOA MDLEf subscore

No+, –+, +12–0.28, –0.36|r|< 0.3r < 0P-mJOA SDUEg subscore

No–, –+, +12–0.54, –0.44|r|< 0.3r < 0P-mJOA SDh subscore

No+, ++, –12+0.21, –0.05|r|< 0.3r < 0WHOQOLi-Bref EHj subscore

No–, –+, +12–0.39, –0.38|r|< 0.3r < 0WHOQOL-Bref PHk subscore

No–, –+, +12–0.64, –0.43|r|< 0.3r < 0WHOQOL-Bref PSl subscore

No+, ++, +12–0.15, –0.20|r|< 0.3r < 0WHOQOL-Bref SRm subscore

MoveMed hold test (rating proportion in correspondence: Direction 8/9, 9/9; Magnitude 5/9, 4/9)

No–, ++, +13+0.02, +0.550.3 ≤ |r| (< 0.5)r > 0P-mJOA total score

No–, ++, +13+0.14, +0.64|r|≥ 0.5r > 0P-mJOA MDUE subscore

No+, –+, +13+0.13, +0.36|r|< 0.3r > 0P-mJOA MDLE subscore

No+, –+, +13+0.21, +0.47|r|< 0.3r > 0P-mJOA SDUE subscore

No–, ++, +13–0.45, +0.14|r|< 0.3r > 0P-mJOA SD subscore

No+, –+, +21+0.14, +0.31|r|< 0.3r > 0WHOQOL-Bref EH subscore

No+, –+, +21+0.16, +0.43|r|< 0.3r > 0WHOQOL-Bref PH subscore

No+, +–, +21–0.18, +0.02|r|< 0.3r > 0WHOQOL-Bref PS subscore

No–, –+, +21+0.31, +0.47|r|< 0.3r > 0WHOQOL-Bref SR subscore

MoveMed typing test (rating proportion in correspondence: Direction 9/9; Magnitude 7/9)

No++20+0.380.3 ≤ |r| (< 0.5)r > 0P-mJOA total score

No–+20+0.37|r|≥ 0.5r > 0P-mJOA MDUE subscore

No++20+0.21|r|< 0.3r > 0P-mJOA MDLE subscore

No–+20+0.32|r| < 0.3r > 0P-mJOA SDUE subscore

No++20+0.07|r| < 0.3r > 0P-mJOA SD subscore

No++20+0.08|r| < 0.3r > 0WHOQOL-Bref EH subscore

No++20+0.17|r| < 0.3r > 0WHOQOL-Bref PH subscore

No++20+0.15|r| < 0.3r > 0WHOQOL-Bref PS subscore

No++20+0.10|r| < 0.3r > 0WHOQOL-Bref SR subscore

MoveMed stand and walk test (rating proportion in correspondence: Direction 1/9; Magnitude 7/9)

No––21–0.040.3 ≤ |r| (< 0.5)r > 0P-mJOA total score

No+–21–0.17|r|< 0.3r > 0P-mJOA MDUE subscore

No++22+0.350.3 ≤ r (< 0.5)r > 0P-mJOA MDLE subscore

No+–21–0.18|r|< 0.3r > 0P-mJOA SDUE subscore

No+–21–0.14|r|< 0.3r > 0P-mJOA SD subscore

No+–21–0.28|r|< 0.3r > 0WHOQOL-Bref EH subscore

No+–21–0.12|r|< 0.3r > 0WHOQOL-Bref PH subscore
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ROBcRatingbTotalResultaHypothesesMoveMed outcome measure and

comparator

MagnitudeDirectionMagnitudeDirection

No+?210.00|r|< 0.3r > 0WHOQOL-Bref PS subscore

No––21–0.31|r|< 0.3r > 0WHOQOL-Bref SR subscore

aData reported as single “ρ” values or “dominant hand, nondominant hand” ρ pairs.
b“+”=Sufficient; “?”=Indeterminate. Data reported as single ratings or “dominant hand, nondominant hand” rating pairs; “–”=Insufficient.
cROB: risk of bias.
dP-mJOA: patient-derived modified Japanese Orthopaedic Association.
eMDUE: motor dysfunction of the upper extremity.
fMDLE: motor dysfunction of the lower extremity.
gSDUE: sensory dysfunction of the upper extremity.
hSD: sphincter dysfunction.
iWHOQOL-Bref: World Health Organization Quality of Life Brief Version
jEH: environmental health.
kPH: physical health.
lPS: psychological health.
mSR: social relationships.

Patient-Reported Comparators
Spearman rank correlation coefficients are reported in Table 2.
As expected, correlations were positive between PerfOs and
PROs measuring directly related constructs (eg, hold and typing
tests vs P-mJOA and WHOQOL-Bref) and negative between
PerfOs and PROs measuring inversely related constructs (eg,
fast tap test vs P-mJOA and WHOQOL-Bref). This was most
pronounced in the fast tap, hold, and typing tests.

Correlation magnitudes were, furthermore, highest between
PerfOMs and PROMs of neuromuscular function (eg, fast tap
test vs P-mJOA≥0.3) and lowest between PerfOMs and PROMs
of quality of life (eg, fast tap test vs WHOQOL-Bref<0.3).

This was also in accordance with expectation and was most
pronounced in the fast tap, hold, and typing tests.

Correlation magnitudes were notably low (<0.3) in the stand
and walk test. This could be due to it being the only
multidimensional PerfOM in the battery. Importantly, correlation
with the lower limb comparator domain (ie, the P-mJOA MDLE
subscore) was the highest, in accordance with expectation.

Risk-of-Bias Assessment
No risk of bias factors from the COSMIN Risk of Bias checklist
were recorded (Multimedia Appendix 1). This was equivalent
to a “very good” rating for methodological quality [33].

Overall Assessment
Hypotheses and result ratings are also reported in Table 2. These
are appraised in writing due to the relatively higher weight of
some comparators over others.

Overall, 74% (67/90) of correlations for the fast tap, hold, and
typing tests were in correspondence with hypotheses (Table 2).
This provides robust evidence for the validity of these PerfOMs
in the assessment of DCM: particularly due to the relatively
higher importance of the correlations to the upper limb
comparator (ie, the P-mJOA MDUE subscore), which were

concordant. For the stand and walk test, 47% (8/17) of the
correlations were in correspondence with the hypotheses. This
also provides preliminary evidence for the validity of this
PerfOM in the assessment of DCM: particularly due to the
relatively higher importance of the correlation to the lower limb
comparator (ie, the P-mJOA MDLE subscore), which was
concordant. Taken together, these data provide “very good”
quality evidence for the overall validity of the PerfOMs in the
assessment of DCM.

Discussion

Principal Findings
Smartphone apps are increasingly being used to administer
clinical outcome measures in medicine. This study used
consensus-based standards to assess the validity of an app
designed by neurosurgeons and computer scientists from the
University of Cambridge. A total of 2 lines of evidence were
produced: first, a panel of correlations between the app’s tasks
and established clinical comparators, and second, a panel of
ratings made in accordance with prespecified hypotheses. The
former produced modular evidence of construct validity and
the latter a means for its overall appraisal. This type of evidence
corresponds to clinical validation under the V3 framework for
biometric monitoring technologies and succeeds in
laboratory-based verification and analytical validation [21].

Construct validity uses comparison to other measures to assess
validity. Where comparators take different approaches or contain
their own limitations, validity should not be defined by
traditional correlation thresholds [37]. This is applicable to
DCM, where we are trying to improve disease measurement.
For example, we recognize the mJOA score as a gold standard
measure of disease severity, but it measures multiple constructs
with limited discrimination, particularly of milder diseases. If
a new measure has a correlation of 1.0 with an existing measure,
it indicates that the 2 instruments are equivalent, which suggests
it is unlikely to offer any improvement. For assessing construct
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validity, it is therefore preferable to explore expected
relationships through hypothesis testing. As expected, the
direction and magnitude of MoveMed correlations were most
convergent between tasks and questionnaires measuring similar
constructs than tasks and questionnaires measuring dissimilar
constructs (eg, fast tap test vs P-mJOA > fast tap test vs
WHOQOL-Bref). This is because neuromuscular tasks should
correlate more with neuromuscular constructs than with
non-neuromuscular ones (eg, finger dexterity vs upper extremity
neuromuscular function > finger dexterity vs quality of life)
and because unidimensional tasks should correlate more with
other unidimensional measures than with multidimensional ones
(eg, unidimensional vs unidimensional>unidimensional vs
multidimensional).

To enable performance across correlations to be judged, a
proportion of overall hypothesis agreement may be used [34].
After rating, 74% (67/90) and 47% (8/17) of unidimensional
and multidimensional results, respectively, were deemed
sufficient for construct validity in the DCM subgroup. In the
absence of risk of bias factors, these data provide “very good”
quality evidence for the validity of MoveMed tasks in DCM.

The standards adopted by this study have been previously used
in the assessment of PerfOMs by authors of the COSMIN
guidance [33]. While not originally designed for this purpose,
these standards are considered to be a cornerstone in clinimetric
validation and, importantly, overlap with industry guidance
from the US Food and Drug Administration [17,38]. This study
thus made a point to conduct and report the COSMIN Risk of
Bias assessment to aid the reader in their interpretation of the
rating panels (Table 2).

While construct validity testing (often criterion validity) is more
commonly used by investigators, correlation coefficients require
interpretation, as outlined. For similar reasons, the relative
performance of instruments should not be judged solely based
on the magnitude of correlation coefficients. This is reflected
in clinimetric standards which instead recognize content validity
as the most important arbitrator of validity and wider
performance. Content validity uses stakeholder judgment and
feedback to determine validity and will be further reported
separately for MoveMed, following study completion. When
developing and reviewing measurement instruments,
understanding clinimetrics is therefore critical.

In this cohort, the impact that DCM would be expected to have
on the P-mJOA and WHOQOL-Bref was similarly seen on the
fast tap, hold, typing, and stand and walk MoveMed Tests.
Correlations with total scores and limb-specific subscores were
recorded, in accordance with prespecified expectations. The
most interesting finding was the strong correlation between the
P-mJOA MDUE subscore and the hold test Stability Score. This

is because upper limb stability is not classically thought to be
a marker of DCM. The authors attribute this finding to the
composite nature of the upper limb stability construct, which
includes elements of arm strength, muscle fatigue, and balance.
Further studies will follow-up with more data on the subject
(eg, content validity). This may very well be an example of a
subclinical phenomenon that the human eye cannot catch but
that mobile sensors can.

An important strength of this study is its design by individuals
with formal training in clinimetrics. This is reflected in the
absence of risk-of-bias factors from the COSMIN checklist in
Table 2 and the study’s reporting. There is, unfortunately, a
general paucity of well-designed clinimetric studies in the
literature [33,34,39-41]. The use of the COSMIN manual is thus
strongly encouraged by the authors. Another strength of this
study was the use of PerfOMs that can collect several
measurements quickly, ecologically, and longitudinally. This
means that the construct should be captured more precisely,
more reflective of pathology in the patient’s natural
environment, and potentially more responsive to intervention.
In the future, these hypotheses will be formally assessed via
further clinimetric studies.

Despite its conscientious design, this study has limitations. First,
standards for patient-reported methods were adapted to assess
performance-based methods. This was done to overcome the
absence of standardized criteria in this field and because there
is precedent for it in Terwee et al [34] and the COSMIN manual
[33]. Second, this study reports on 27 individuals (7 months of
recruitment). The COSMIN standards are known for being
rigorous (or stringent) and, ideally, at least 50 participants should
be included to earn a modified Grading Of Recommendations,
Assessment, Development, and Evaluations (GRADE) score
of “high” [33,34,39-41]. Third, we assumed that the constructs
of all WHOQOL-Bref domains would be dissimilar to the
PerfOMs but this may not be the case. The WHOQOL-Bref,
ultimately, contains questions on physical activity, and the
relatedness of this construct to the fast tap tests and the typing
tests may have been observed in Table 2. Fourth, people with
a severe form of the disease may have been excluded from
enrollment. This would be due to the exclusion of individuals
who were unable to stand and walk without the assistance of
another person. The potential risks of remote participation in
this subset of individuals, however, were deemed to outweigh
the benefits by the ethical committee. Further in-person research
could address this limitation in the future.

Conclusions
This study provides initial evidence for the validity of the
MoveMed PerfOMs in the context of adults with DCM in the
community.
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Abstract

Invasive brain-computer interfaces (BCIs) are gaining attention for their transformative potential in human-machine interaction.
These devices, which connect directly to the brain, could revolutionize medical therapies and augmentative technologies. This
viewpoint examines recent advancements, weighs benefits against risks, and explores ethical and regulatory considerations for
the future of invasive BCIs.
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Perspective

Invasive brain-computer interfaces (BCIs) have recently
attracted significant attention due to their potential to
revolutionize the interaction between humans and machines.
By directly interfacing with the brain, these devices offer
profound implications for medical therapies and augmentative
technologies. This viewpoint discusses the latest advancements,
evaluates the benefits against the potential risks, and considers
the ethical and regulatory landscapes shaping the future of
invasive BCIs.

BCIs that involve invasive techniques, such as surgically
implanted electrodes, are not new concepts but have seen rapid
development in recent years. These devices provide a direct
pathway for decoding and modulating neural activity, thereby
offering unprecedented opportunities for patients with severe
neurological deficits to interact with their environments in ways
previously deemed unfeasible.

The progress in microfabrication technology, neural decoding
algorithms, and materials science has substantially increased
the capabilities of invasive BCIs. Modern electrodes can now
be manufactured at scales small enough to minimize damage

while maintaining high fidelity in signal recording. Techniques
like endovascular BCI approaches propose minimally invasive
methods to place electrodes closer to relevant neural tissues
without traditional open-brain surgery [1]. Their clinical
potential still has to be demonstrated.

Invasive BCIs are primarily aimed at restoring lost functions
such as mobility, speech, and even cognitive faculties in patients
with disabilities resulting from conditions like stroke, spinal
cord injuries, and neurodegenerative diseases. For example,
devices have been developed to enable individuals with paralysis
to control robotic limbs or computer cursors with their thoughts
alone [2,3]. Beyond therapeutic applications, there is also
exploratory research into the use of BCIs for enhancing human
memory and cognitive speed, suggesting a potential expansion
into augmentation uses in the future [4].

The capability of BCIs to read and potentially write to the human
brain raises significant ethical questions. Issues such as consent,
autonomy, and the potential for influencing voluntary choices
or privacy violations are of paramount concern. The privacy of
neural data, akin to digital and genetic information, requires
stringent safeguards to prevent unauthorized access and misuse
[4-6]. To some extent, such concerns are already applicable to,
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for example, deep brain stimulation devices, but BCIs will take
them to the next level.

The implantation of BCI devices involves invasive procedures
that carry inherent risks such as infection, inflammation, and
the potential for long-term immune responses. Moreover, the
permanency of these implants poses challenges in device
maintenance and updates, complicating their management over
a patient’s lifetime [5,7]. Regulatory bodies are currently
grappling with these issues, striving to develop guidelines that
ensure patient safety without stifling innovation. Another area
of concern is postexplantation care, in particular in research
settings. For example, when study participation results in
improved functioning, ethical concerns will arise when the study
concludes and participation must stop.

As BCIs advance, they could significantly alter many aspects
of society, from health care to employment, potentially leading
to new forms of inequality. Access to and control of such
powerful technologies could exacerbate social divides if not
carefully managed. Public discussion and policy development
must therefore keep pace with technological advancements to
address these societal impacts comprehensively.

Conclusion

Invasive BCIs hold tremendous promise for transforming lives,
particularly for those with severe disabilities. However, the
rapid pace of development in this field necessitates careful
consideration of the ethical, safety, and societal issues that
accompany such transformative technologies. Balancing
innovation with responsible development will be key to realizing
the full potential of BCIs while minimizing potential harms.
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