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Abstract

Background: Low sleep quality is a common symptom of multiple sclerosis (MS) and substantially decreases patients’ quality
of life. The autonomic nervous system (ANS) is crucial to healthy sleep, and the transition from wake to sleep produces the largest
shift in autonomic activity we experience every day. For patients with MS, the ANS is often impaired. The relationship between
the ANS and perceived sleep quality in patients with MS remains elusive.

Objective: In this study, we aim to quantify the impact of the ANS and MS on perceived sleep quality.

Methods: We monitored 77 participants over 2 weeks using an arm-worn wearable sensor and a custom smartphone app. Besides
recording daily perceived sleep quality, we continuously recorded participants’heart rate (HR) and HR variability on a per-second
basis, as well as stress, activity, and the weather (20,700 hours of sensor data).

Results: During sleep, we found that reduced HR variability and increased motion led to lower perceived sleep quality in patients
with MS (n=53) as well as the age- and gender-matched control group (n=24). An activated stress response (high sympathetic
activity and low parasympathetic activity) while asleep resulted in lower perceived sleep quality. For patients with MS, an activated
stress response while asleep reduced perceived sleep quality more heavily than in the control group. Similarly, the effect of
increased stress levels throughout the day is particularly severe for patients with MS. For patients with MS, we found that stress
correlated negatively with minimal observed HR while asleep and might even affect their daily routine. We found that patients
with MS with more severe impairments generally recorded lower perceived sleep quality than patients with MS with less severe
disease progression.

Conclusions: For patients with MS, stress throughout the day and an activated stress response while asleep play a crucial role
in determining sleep quality, whereas this is less important for healthy individuals. Besides ensuring an adequate sleep duration,
patients with MS might thus work to reduce stressors, which seem to have a particularly negative effect on sleep quality. Generally,
however, sleep quality decreases with MS disease progression.

(JMIR Neurotech 2024;3:e48148) doi: 10.2196/48148
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Introduction

Low sleep quality can lead to decreased mental and physical
performance [1,2] and thus impacts quality of life. The
autonomic nervous system (ANS) indirectly affects sleep
because it regulates different physiological processes within
the human body that affect the way we sleep, for example,
respiration and heart rate (HR). The relation of the ANS to sleep
quality is not well studied for diseases that are explicitly known
to affect the ANS, such as multiple sclerosis (MS) [3], Parkinson
disease [4,5], or Alzheimer disease [6,7].

For patients with MS, sleep quality is one of the main drivers
for quality of life [8-11] besides disability, depressive mood,
and fatigue. Sleep quality is often reduced in patients with MS
due to cramps, pain, reduced mobility, spasticity, mucus
retention, and restless leg syndrome [12]. Reduced sleep quality
has been shown to increase the level of proinflammatory
cytokines, which can result in a general worsening of symptoms
(eg, fatigue or pain) [11]. Higher sleep quality has been linked
to reductions in MS-related (secondary) fatigue [13,14].

Patients with MS are often affected by a dysfunction of the ANS
[15]. Patients with MS have increased chances of observing
symptoms of a dysfunctional ANS as early as 10 years before
their diagnosis, indicating an early involvement of the ANS in
disease progression [16].

HR variability (HRV) is considered a noninvasive measure for
the activity of the ANS, for which it is one of the main
biomarkers [17]. Owing to the evolution of mobile devices,
such as smartwatches and fitness wristbands, their users can
now reliably and continuously track HRV as well as other vital
signs [18]. It is, therefore, possible to assess sleep quality using
continuous data streams in real-life settings outside of sleep
laboratories [19,20].

While laboratory-based polysomnography is still the gold
standard of analyzing how humans behave while asleep [21,22],
assessing sleep quality using continuous data streams in a
real-life setting has many advantages. Using a vital tracker worn
on the wrist, for instance, data can be recorded without great
effort from the participants [21]. Studies can, thus, run for longer
periods and unlock new data sources recorded outside sleep
laboratories (eg, HR or step count during the day). The
information acquired outside sleep laboratories using wearable
sensors is more precise at a more granular level [23] than what
can be assessed through questionnaires such as the Pittsburgh
Sleep Quality Index [24].

In this study, we investigate how the activity of the ANS affects
perceived sleep quality for patients with MS as well as a control
group by constructing predictive models for subjective sleep
quality based on continuous data streams collected over 2 weeks
using a wearable sensor and a smartphone app. We thereby
extend past studies that have investigated how HRV changes
during sleep [18-20,25], how sleep quality (subjective and
objective) is affected by factors such as stress [26-28], and how
the ANS and HRV are affected by sleep disorders [29,30] and
diseases such as MS [3,18,31]. In addition, we analyze the
trade-off in performance between explainable and interpretable

modeling techniques such as logistic regression and less easily
interpretable techniques when modeling subjective response
data. Techniques that are harder to interpret than logistic
regression (eg, support vector machines, neural networks, or
boosted decision trees) have been found to often outperform
generalized linear models (GLMs) on medical data [32-34].
However, these methods are closer to so-called black box
methods that are neither easily interpreted nor explained and
have to be treated carefully when used for medical application
[35].

Methods

Participants
For this study, patients diagnosed with MS aged between 18
and 65 years without concomitant diseases were recruited by
convenience sampling at the neuroimmunology department
outpatient clinic of the University Hospital Zurich, Switzerland.
Patients with MS (n=53) and a control group (n=24) were
recruited between November 29, 2019, and July 29, 2021. On
average, participants were aged 35.8 (SD 10.1) years, and 48
participants were female. We ensured that for each patient with
MS, there was at least 1 member of the control group with the
same sex and within –5 to + 5 years of age. Overall, we tried
to ensure a similar age distribution and sex ratio between the
control group and patients with MS. As confirmed by Wilcoxon
signed rank tests (Mann-Whitney U tests) post hoc, there is no
significant difference in age or sex ratio between the 2 groups.
With an average age of 36.8 years patients with MS are on
average more than 3 years older than participants of the control
group (33.5 years) corresponding to a P value of .11. In total,
35 out of 53 patients with MS are female compared to 13 out
of 22 participants of the control group. The P value for
differences in the sex ratio is 0.33.

In total, 2 patients with MS (not included in the count of 53)
aborted the study. One patient aborted the study because of a
medical emergency requiring stationary medical treatment. The
other patient aborted the study because of feeling overwhelmed
by the study procedure. Otherwise, all participants adhered to
the study protocol.

We based our study size on the general recommendations for
feasibility studies, which recommend numbers of 24 to 50
patients with MS [36-38]. We confirmed these estimates when
determining the study size based on the precision of compliance
rate estimates. Given the short duration of the study, we
expected high compliance rates of >85%. We calculated that
we would be able to estimate a participation rate as low as 85%
to within –10% to +10% at a 95% CI based on a sample size as
small as 49. Hence, we recruited via convenience sampling and
aimed for at least 49 patients with MS. The high compliance
rate was later confirmed with only 2 patients with MS aborting
the study.

We included information about the medication of patients with
MS in Multimedia Appendices 1 and 2. In particular, we listed
medication that is known to affect HRV metrics and
disease-modifying treatment (DMT).
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Ethical Considerations
The study protocol was reviewed and approved by the Cantonal
Ethics Committee of Zurich (SNCTP000003494). All
participants gave written informed consent, and procedures were
in compliance with the Declaration of Helsinki.

Data Set Description
For 2 weeks, the participants wore a wearable sensor on the arm
(Everion, Biofourmis AG) to continuously record their HR,
HRV, step count, and motion data from the arm. To ensure
continuous data recording, participants were equipped with 2
Everion sensors. The Everion records HR and the total
magnitude from a 3-axis accelerometer at 1 Hz as well as
interbeat intervals (IBIs). We processed the raw IBIs identifying
artifacts as proposed by Berntson et al [39]. We linearly
interpolated all missing IBIs and chunked the continuous data
stream into nonoverlapping 5-minute windows. We removed
any 5-minute window with ≥5 interpolated IBIs. For all
remaining 5-minute windows, we calculated the SD of the
distance from the 45° line of the Poincaré plot of consecutive
IBIs (SD1), the SD of the distance from the –45° line of the
Poincaré plot of consecutive IBIs (SD2), and the SD of IBIs
(SDNN).

Through a custom-developed smartphone app, participants
logged their sleep quality each morning after waking up

(Textbox 1) and stress levels continually during the day over
the course of the 2 weeks. Participants logged their level of
stress on a scale from 1 to 10. Participants received daily
reminders to rate their quality of sleep and stress levels. We
collected information about outside temperatures using an
application programming interface service [40]. We equipped
participants with a Google Pixel 3 (Google LLC) for the duration
of the study in case their phone was not suitable to install our
smartphone app (eg, they had an iPhone).

The continuous data streams (HR, HRV, motion, and step count)
were aggregated per day depending on whether the participants
were awake or asleep, extracting the average, minimum, and
maximum (Table 1). In addition to these resulting nonstatic
variables, which change on a day-to-day basis, we collected
demographic information of each participant. For patients with
MS, information about disease state, severity of MS-related
disability, functionality of the ANS, and affection of the spinal
cord was also collected. We modeled daily perceived sleep
quality recorded each morning using nonstatic variables
collected since the participants last woke up the previous day.

After the completion of the study, deidentifiable data were stored
on secure, password-protected servers. The data are only shared
with bona fide researchers upon reasonable request and after
signing a data sharing agreement ensuring that the data privacy
of all participants is protected and all data are stored securely.

Textbox 1. Explanation of self-reported sleep quality score.

Score and description

• 5: Very refreshing

• 4: Rather refreshing

• 3: Moderately refreshing

• 2: Hardly refreshing

• 1: Not refreshing
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Table 1. Collected data.

Day or nightDefinitionSource and name

Wearable sensor: Everion (Biofourmis AG)

Day and nightHeart rateHR

Day and nightSD of IBIsaSDNN

Day and nightSD of distance from 45° line of Poincaré plot of consecutive IBIsSD1

Day and nightSD of distance from –45° line of Poincaré plot of consecutive IBIsSD2

Day and nightStep count based on arm motionStep count

NightEstimated based on acceleration and HR dataSleep duration

NightEstimated based on acceleration and HR dataAwake duration

Visual crossing [40] APIb service

DayExtracted via API using location recorded through smartphone appTemperature

Prestudy questionnaires and medical assessments

—cExpanded Disability Status ScaleEDSS [41]

—Multiple Sclerosis Severity ScoreMSSS [42]

—Age Related Multiple Sclerosis Severity ScoreARMSS [43]

—Assessed using COMPASSe [44] questionnaireANSd dysfunction

—Patient with MS or control groupMSf diagnosis

—None, progressive MS disease state, or relapse remitting MS disease
state

MS type

Custom smartphone app

NightScale from 1 to 5 as outlined in Textbox 1Sleep quality

DaySelf-reported multiple times a day a scale from 1 to 10Stress

Night—Awake at night

Night—Sleep medication

aIBI: interbeat interval.
bAPI: application programming interface.
cNot applicable.
dANS: autonomic nervous system.
eCOMPASS: Computerized Pilot Aptitude Screening System.
fMS: multiple sclerosis.

Data
A summary of all collected data can be found in Table 1.

We collected data mainly from 3 different sources: a wearable
sensor, a custom smartphone app, and prestudy questionnaires
or medical assessments. Nonstatic data were aggregated every
day separately for when the participants were awake and asleep.
For nonstatic variables, we calculated the minimum, mean,
maximum, ratio of minimum to mean, and ratio of maximum
to mean. For the static variables Expanded Disability Status
Scale (EDSS), MS Severity Score (MSSS), Age-Related
Multiple Sclerosis Severity Score (ARMSS), and ANS
dysfunction, we used 3, 3, 4, and 17 as cutoff points,
respectively, to transform them into binary variables. For the
control group, we set these values to 0 before applying the cutoff
rule. The custom smartphone app was distributed through the
Google Play Store in Switzerland. Participants who did not own

an Android phone were equipped with the Google Pixel 3 for
the duration of the study.

Data Processing
For the analysis of HR and HRV, we only included periods
where participants were resting as recommended for
photoplethysmography-based HRV measurements [45].
Participants were classified as resting during 5-minute windows
if their HR (measured in bpm) was <0.55 × (220 bpm – age)
[46].

Furthermore, we transformed HRV recordings to normative
values considering age, sex, and time of day [47]. The recorded
data per participant was split into daily intervals based on when
the participants woke up and aggregated as outlined in Table
1.

JMIR Neurotech 2024 | vol. 3 | e48148 | p. 4https://neuro.jmir.org/2024/1/e48148
(page number not for citation purposes)

Moebus et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


The times when participants went to bed and woke up were
estimated manually based on HR, acceleration data from the
wearable sensor, and step count. To remove periods where the
participants were in a transitional state between awake and
asleep, we excluded 1 hour of data before and after the estimated
going-to-bed and wake-up times.

All analysis was done in Python (version 3.8, Python Software
Foundation). For modeling, we made use of the scikit-learn,
keras, and XGBoost libraries [48-50].

Results

Overview
In this study, we analyzed the drivers of perceived sleep quality
via predictive modeling. We first looked at significant
differences in average perceived sleep quality between different
subgroups of the participants. Subsequently, we compared the
performance of different models for perceived sleep quality
normalized per participant. Finally, we analyzed the variables
where relative changes are calculated to significantly affect
participants’ sleep quality compared to their personal average
over the 2 weeks.

For the analysis, data were available on average for 19.7 hours
per day per participant (ie, approximately 82% of the time, SD
2.64 hours). This was consistent across patients with MS and
healthy controls. Besides nonwear, reasons for data not being
available at all times include participants switching between
the 2 devices they had been equipped with for charging and
subsequent synchronization issues.

Differences in Sleep Quality Across Subgroups
The average self-reported sleep score was 3.72 (scale from 1 to
5; Textbox 1). The distribution of responses is shown in

Multimedia Appendix 3. Table 2 lists the observed mean
differences and significances according to Wilcoxon rank sum
tests for subgroups defined by sex, patient status, type of MS,
dysfunction of the ANS, affection of the spinal cord, and
severity of MS in terms of scores on the EDSS [41] and
variations thereof (MSSS [42] and ARMSS [43]) measuring
MS-related disability. We chose Wilcoxon signed rank tests
(aka Mann-Whitney U test) over alternative methods, such as
t tests, because they are rank based and distribution-free.
Therefore, they are a natural choice for ordinal data (such as
items on a Likert scale) as well as nonnormally distributed or
binary data.

Table 2 shows the outcome of distribution-free 2-sided
Wilcoxon signed rank tests for mean shifts in self-reported sleep
quality between subgroups defined based on demographic
information, patient status, and disease state. A higher reported
sleep quality score corresponds to higher perceived sleep quality
(Textbox 1). P values are calculated based on distribution-free
2-sided Wilcoxon signed rank tests for mean shifts in
self-reported sleep quality between two groups of participants.

The perceived sleep quality score of female participants was
significantly lower, indicating that their perceived sleep quality
was higher than that for male participants. Participants with
different types of MS did not report sleeping significantly
differently. However, participants whose spinal cord was
affected by lesions or with ANS dysfunction reported
significantly lower perceived sleep quality—similar to
participants scoring high on the MSSS, ARMSS, and EDSS
scales. Apart from ANS dysfunction, the differences were not
(as) significant when including the control group. However, for
patients with MS, the severity of MS led to significant
differences in perceived sleep quality.
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Table 2. Mean comparison of the self-reported sleep quality score between different subgroups.

P valueGroup 2Group 1

Sleep quality
score, mean (SD)

Description, n (%)Sleep quality
score, mean (SD)

Description, n (%)

Sex

.013.54 (0.62)Male, 29 (38)3.84 (0.60)Female, 48 (62)

Disease status

.563.73 (0.68)Patients with MS, 53 (69)3.71 (0.48)No MSa, 24 (31)

.733.64 (0.57)MS type PMSb, 9 (12)3.71 (0.48)No MS, 24 (31)

.433.75 (0.70)MS type RRMSc, 44 (57)3.71 (0.48)No MS, 24 (31)

.643.75 (0.70)MS type RRMSc, 44 (57)3.64 (0.57)MS type PMS, 9 (12)

ANSd dysfunction

<.0013.42 (0.73)Dysfunction of ANSf, 24 (31)3.86 (0.52)No dysfunction of ANS: alle, 53 (69)

<.0013.42 (0.73)Dysfunction of ANSf, 24 (31)3.99 (0.52)No dysfunction of ANS: MSe, 29 (38)

Spinal cord status

.103.51 (0.77)Spinal cord affectedf, 24 (31)3.82 (0.53)Spinal cord unaffected: alle, 53 (69)

.063.51 (0.77)Spinal cord affectedf, 24 (31)3.91 (0.55)Spinal cord unaffected: MSe, 29 (38)

MS-related disability

.143.55 (0.69)MSSS≥3f, 23 (30)3.80 (0.58)MSSSg<3: alle, 54 (70)

.073.55 (0.69)MSSS≥3f, 23 (30)3.87 (0.64)MSSSg<3: MSe, 30 (39)

.173.59 (0.70)ARMSS≥6f, 6 (8)3.84 (0.53)ARMSSh<5: alle, 42 (55)

.053.59 (0.70)ARMSS≥6f, 6 (8)4.00 (0.55)ARMSSh<5: MSe, 18 (23)

.093.58 (0.79)EDSS≥3f, 18 (23)3.77 (0.56)EDSSi<3: alle, 59 (77)

.043.58 (0.79)EDSS≥3f, 18 (23)3.81 (0.61)EDSSi<3: MSe, 35 (45)

aMS: multiple sclerosis.
bMS type PMS: progressive MS disease state.
cMS type RRMS: relapse remitting MS disease state.
dANS: autonomic nervous system.
eA group called “condition: all” refers to all participants for whom the condition is true (patients with MS as well as control group). A group called
“condition: MS” refers only to participants diagnosed with MS for whom the condition is true (ie, no control group).
fAll participants for whom this condition is true were diagnosed with MS.
gMSSS: Multiple Sclerosis Severity Score [42]. Per definition of the MSSS, the chosen cutoff point distinguishes between light to no disability (≤3)
and more severe implications (>3).
hARMSS: age-related multiple sclerosis severity score [43]. Per definition of the ARMSS, the chosen cutoff point distinguishes between light to no
disability (≤4) and more severe implications (>4).
iEDSS: Extensive Disability Status Scale [41]. Per definition of the EDSS, the chosen cutoff point distinguishes between light to no disability (≤3) and
more severe implications (>3).

Comparison of Different Modeling Techniques for
Normalized Perceived Sleep Quality
Higher-dimensional “black box” methods have outperformed
clearly explainable and interpretable techniques such as GLMs
and thus have gained more and more popularity for medical
applications. For binary classification, neural networks [33] and
tree ensemble methods [51] tend to outperform logistic
regression in recent literature. However, logistic regression
naturally models the changes in odds for a binary outcome,

allowing for very easy and clear interpretation. The following
is a comparison of these modeling techniques as well as a
generalized additive model (GAM) and support vector machine
applied to model perceived sleep quality as part of our study.

To analyze how relative changes in input features affect
perceived sleep quality compared to participants’ average
responses, we normalized input features and the perceived sleep
quality response. We subtracted the mean value per participant
across the 2 weeks and divided by the respective SD for each
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participant. As the normalized sleep quality response failed the
Shapiro-Wilk normality test (P<.001), thus violating one of the
assumptions of linear regression, we transformed the problem
into the binary setting. We split the data into high-quality and
low-quality sleep based on whether a participant slept better
than their personal average recorded during the study. The
performances of the different models listed in Table 3 are similar
(63%-67% accuracy). For all models, we used 0.5 as a cutoff
point to classify between high- and low-quality sleep. The best
performing model is the GAM, achieving an accuracy of 67%
with an area under the curve (AUC) of 0.71. The support vector
machine, logistic regression (GLM), and symmetric boosted
trees achieve the same accuracy (65%). Of the 3, the support

vector machine achieves the highest AUC with 0.70. Adding
interaction terms to the logistic regression models (GLM of
order 2 and 3) does not improve accuracy but only decreases
AUC (from 0.69 to 0.66). In terms of accuracy, the neural
network performs the worst out of the selected models with
63%. In terms of AUC, however, neural networks outperform
boosted tree ensemble methods and GLMs with interaction
terms.

While boosted trees and neural networks perform feature
selection themselves, we constructed a sequential feature
selection procedure for GLMs, the GAM, and the support vector
machine.

Table 3. Model performances for predicting normalized perceived sleep quality using all available information recorded while participants were awake
and asleep.

AUCcRecallb (%)Precisionb (%)Accuracyb (%)Modela comparison

0.70646665Support vector machine

0.66656765Symmetrical boosted treesd

0.68636363Neural networke

0.69656665GLMf

0.68656565GLM order 2g

0.66656565GLM order 3h

0.71676767Generalized additive model

aThe models were evaluated on 50 perfectly balanced test sets, each consisting of randomly selected 20% of participants who were removed from the
training set.
bUsing a cutoff point of 0.5 for the calculated probabilities.
cAUC: area under the curve.
dArchitecture chosen based on Bayesian optimization [52]: depth of 5 and 600 boosting rounds.
eArchitecture chosen based on Bayesian optimization [52]: 2 hidden layers containing 16 neurons with hyperbolic tangent activation functions and
dropout rates of 0.7 and 0.5, respectively.
fGLM: generalized linear model.
gIn addition to the untransformed features, this model includes interactions between 2 variables.
hIn addition to the untransformed features, this model includes interactions between up to 3 variables.

Modeling Normalized Perceived Sleep Quality
In this subsection, we analyze logistic regression models for
normalized perceived sleep quality without interaction terms.
Although GAMs outperformed GLMs, they fit effects as
smoothing splines, making model comparison harder than in
the generalized linear setting where effects on the modeled OR
are assumed to be linear. Per participant, perceived sleep quality
and input features were normalized by subtracting the average
per participant and dividing by the respective SD per participant.
We constructed 3 models with different input features to
compare the consistency of effects depending on what
information is available to the model. The first model (M1.1:
night and day) uses all available data recorded during the night
and the previous day to model normalized perceived sleep
quality. The second model only uses data recorded, while the
participants were asleep (M1.2: night), such as HR while asleep.
The third model (M1.3: day) exclusively uses information
recorded when the participants were awake, such as HR while
awake. All 3 models include an L1 penalty to shrink the

coefficient values of features without great explanatory power
to 0. Table 4 lists variables that are statistically significant in
at least 1 of the 3 models. As outlined in the previous section,
logistic regression achieved an accuracy of 65% on a perfectly
balanced test set when including features collected while
participants were awake and asleep (M1.1).

Across M1.1 to M1.3 in Table 4, observed effects have a
constant sign across all models that they are included in,
indicating general consistency of calculated effects independent
of included input features. In addition to whether a participant
woke up during the night, the levels of stress they were exposed
to the previous day, the duration of their sleep, and recorded
motion while asleep, 8 HR- or HRV-related features
significantly affected perceived sleep quality in 1 of the 3
models M1.1-M1.3. In M1.1-M1.3, increased sleep duration
and decreased motion while asleep are calculated to affect sleep
quality positively—so are increases in HRV while asleep in
terms of average SD1, maximum SD2, and maximum SDNN
and increases in minimal HR while asleep. In contrast, increases
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in average SD2 while asleep as well as increases in the ratio of
maximum SDNN while asleep to average SDNN while asleep
are calculated to affect perceived sleep quality negatively. We
found higher levels of stress throughout the previous day and
if a participant woke up during the night to affect perceived
sleep quality negatively.

Table 4 shows variables that are statistically significant (P<.10)
in at least 1 logistic regression model for normalized
self-reported sleep quality without interaction terms where
feature selection was performed for both groups simultaneously
but the models were calculated for participants with MS and
the control group separately. Positive values increase the chances
of better self-reported sleep quality according to the fitted
logistic regression model.

Table 4. Statistically significant variables for normalized perceived sleep quality for patients with multiple sclerosis and the control group.

M1.3: day as input only, model coef-
ficient (P value)

M1.2: night as input only, model
coefficient (P value)

M1.1: night and day as input,
model coefficient (P value)

–0.14 (.04)——aMean stress awake

——0.16 (.03)HRb minimum ratio awake

—0.46 (<.001)0.47 (<.001)Sleep duration

—–0.58 (<.001)–0.58 (<.001)Awake at night

—–0.29 (.02)–0.29 (.02)Motion asleep

—0.13 (.04)—Minimum HR asleep

—0.26 (.01)0.30 (.004)Mean SD1c asleep

—–0.18 (.06)—Minimum SD2d asleep

—–0.43 (.02)–0.47 (.01)Mean SD2 asleep

—0.06 (.04)0.08 (.03)Maximum SD2 asleep

—0.47 (<.001)0.51 (<.001)Maximum SDNNe asleep

—–0.52 (.01)–0.54 (.01)SDNN maximum ratio asleep

a—: The variable was not included in that respective model (ie, removed during iterative feature selection process).
bHR: heart rate.
cSD1: SD of distance from the 45° line of the Poincaré plot of consecutive interbeat intervals.
dSD2: SD of distance from the –45° line of the Poincaré plot of consecutive interbeat intervals.
eSDNN: SD of interbeat intervals.

Differences Between Patients With MS and the Control
Group
We analyze differences in effects between the control group
and participants with MS by computing the 3 logistic regression
models M1.1-M1.3 for normalized perceived sleep quality
separately for the 2 groups (Table 5). We refer to these models
as M2.1-M2.3. They are based on the feature selection
performed for M1.1-M1.3, but the statistical significance of
effects are calculated for the 2 groups separately, thus analyzing
the stability of the calculated effects across the 2 groups. The
performance of M2.1 dropped from an accuracy of 65% for
M1.1 to 60% accuracy for the control group and 64% for
participants with MS. Furthermore, we constructed 3 more
logistic regression models, M3.1-M3.3, where the included
features are optimized for the control group and the patient
group separately (Table 6). Figure 1 visually summarizes Table
6. For the models M2.1-M2.3, the calculated effects for the
same variables have the same sign in all cases apart from 2,
indicating largely agreeing effects across the subgroups. When
optimizing the feature selection for each subgroup, we observe

divergence in the included features and an improvement in
performance (accuracy increases to 68% for the control group
and remains at 64% for participants with MS).

The effect of increases in minimal HR while asleep is calculated
to be positive and statistically significant at α=1% in M2.1 and
M2.2 for participants with MS but not statistically significant
and negative for the control group. The effect of increases in
reported stress levels in M2.3 is statistically significant (P<.01)
for patients with MS and the control group, yet <0.005 in
absolute terms for the control group.

In M3.1 and M3.2, sleep duration and being awake at night are
selected for both subgroups. For both effects, sign, statistical
significance, and general magnitude were the same. We find
stress, motion while asleep, minimal HR while asleep, and
maximum SD1 while asleep to only significantly affect
perceived sleep quality for participants with MS. In contrast,
the amount of time spent awake before going to bed and minimal
SD1 while awake only affected perceived sleep quality for
participants of the control group.
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Table 5. Differences in statistically significant variables for perceived sleep quality between patients with multiple sclerosis and the control group:
simultaneous feature selection.

M2.3: day as input only, model coef-
ficient (P value)

2.2: Night as input only, model coef-
ficient (P value)

2.1: Night and day as input, model
coefficient (P value)

Control groupPatients with
multiple sclerosis

Control groupPatients with
multiple sclerosis

Control groupPatients with
multiple sclerosis

–0.00 (.001)–0.19 (.01)————aMean stress awake

————0.13 (.39)0.20 (.01)HRb minimum ratio awake

——0.72 (<.001)0.40 (<.001)1.21 (.002)0.37 (<.001)Sleep duration

——–0.66 (.07)–0.57 (.001)–1.01 (.06)–0.56 (.001)Awake at night

——–0.24 (.23)–0.29 (.02)–0.40 (.21)–0.28 (.03)Motion asleep

——–0.21 (.19)0.25 (.004)——Minimum HR asleep

——0.40 (.004)0.21 (.08)0.47 (.10)0.28 (.01)Mean SD1c asleep

——–0.09 (.27)–0.27 (.02)——Minimum SD2d asleep

——–0.24 (.19)–0.47 (.02)–1.37 (.09)–0.32 (.06)Mean SD2 asleep

——0.08 (.03)−0.31 (.32)0.25 (.21)0.08 (.04)Maximum SD2 asleep

——0.17 (.007)0.99 (.06)1.25 (.07)0.39 (.001)Maximum SDNNe asleep

——–0.17 (.22)–0.67 (.01)–1.41 (.10)–0.47 (.03)SDNN maximum ratio asleep

a—: The variable was not included in that respective model (ie, removed during iterative feature selection process).
bHR: heart rate.
cSD1: SD of distance from the 45° line of the Poincaré plot of consecutive interbeat intervals.
dSD2: SD of distance from the –45° line of the Poincaré plot of consecutive interbeat intervals.
eSDNN: SD of interbeat intervals.

Table 6. Differences in statistically significant variables for perceived sleep quality between patients with multiple sclerosis and the control group:
separate feature selection.

M3.3: day, model coefficient (P val-
ue)

M3.2: night, model coefficient (P
value)

M3.1: night and day, model coeffi-
cient (P value)

Control groupPatients with
multiple sclerosis

Control groupPatients with
multiple sclerosis

Control groupPatients with
multiple sclerosis

—–0.19 (.02)————aMean stress awake

————0.43 (.05)—Awake duration

0.48 (.05)—————Minimum SD1b awake

——0.82 (<.001)0.42 (<.001)0.93 (<.001)0.39 (<.001)Sleep duration

——–0.86 (.06)–0.56 (.002)—–0.53 (.001)Awake at night

———–0.28 (.02)—–0.26 (.02)Motion asleep

———0.27 (.002)—0.08 (<.001)Minimum HRc asleep

———0.18 (.04)—0.17 (.02)Maximum SD1 asleep

a—: The variable was not included in that respective model (ie, removed during iterative feature selection process).
bSD1: SD of distance from 45° line of Poincaré plot of consecutive interbeat intervals.
cHR: heart rate.
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Figure 1. Approximate visualization of the statistically significant effects of M3.1-M3.3 for patients with multiple sclerosis (MS; upper half) and the
control group (lower half), as displayed in Table 6. In this visualization, only the order of the effects for each of the 2 groups separately is correct. The
distances are not proportional to the calculated effects (Table 6). Sleep continuity refers to “awake at night” in Tables 4-6, that is, whether participants
woke up at night normalized across the duration of the study. HR: heart rate; max: maximum; min: minimum; SD1: SD of distance from 45° line of
Poincaré plot of consecutive interbeat intervals.

Table 5 shows variables that are statistically significant (P<.10)
in at least 1 logistic regression model for normalized
self-reported sleep quality without interaction terms where
feature selection was performed for both groups simultaneously,
but the models were calculated for participants with MS and
the control group separately. Positive values increase the chances
of better self-reported sleep quality according to the fitted
logistic regression model.

Table 6 shows variables that are statistically significant (P<.10)
in at least 1 logistic regression model for normalized
self-reported sleep quality without interaction terms where
feature selection was performed for participants with MS and
the control group separately. Positive values increase the chances
of better self-reported sleep quality according to the fitted
logistic regression model.

Correlating Input Factors of the Logistic Regression
Models
Multiple input factors of the different models for normalized
perceived sleep quality (M3.1-M.3.3) correlated statistically
significantly (Multimedia Appendix 3). To highlight shared
information content between multiple models, Multimedia
Appendix 4 displays Pearson correlations for features selected
for M3.1-M3.3, where the feature selection and computation of
the statistical significance of effects were performed separately
for participants with MS and the control group. The correlations
are calculated separately for participants with MS and the control
group, allowing for comparison of the relation between the 2
groups. In total, 2 pairs of input variables for M3.1-M3.3
correlated particularly strongly with a correlation coefficient of
–0.41 to –0.49 (P<.001): the pair of duration of sleep and the
duration participants spent awake before going to bed and the
pair of average SD1 while asleep and minimal HR while asleep.
Interestingly, there are also 3 pairs where the difference in
correlation between the control group and the participants with
MS was particularly high. First, minimal HR while asleep and
motion while asleep correlated with a coefficient of .11 for
participants with MS but with a coefficient of –0.09 for the
control group. Second, minimal HR while asleep and recorded
stress levels correlated with a correlation coefficient of –0.17

for participants with MS but with a coefficient 0.06 for the
control group, indicating a difference in response to stress.
Third, the duration participants spent awake before going to
bed and the recorded levels of stress correlated with a coefficient
of –0.12 for participants with MS but 0.09 for the control group,
further indicating a potential difference in behavior as a reaction
to stress.

Discussion

Principal Findings
In this study, we analyzed how the ANS, the cardiovascular
system, stress, activity, and demographic information affect
perceived sleep quality for patients with MS and a control group.
Model performances suggest that relative changes in perceived
sleep quality per participant can indeed predict perceived sleep
quality using a combination of HRV metrics, activity data, and
stress (M1.1-M3.3). Generally, we find greater HRV to
significantly improve perceived sleep quality. However, we
find that activation of stress response (high sympathetic and
low parasympathetic activity), similar to higher levels of
perceived stress, significantly decreases perceived sleep quality.
For the control group, this effect is less severe.

With stress levels and sleep duration, we find predictors
particularly important for the sleep quality of patients with MS
that can be at least partially acted upon to improve perceived
sleep quality. However, calculated effects regarding signals that
are not directly controllable (eg, HRV) are much more difficult
to translate into actionable recommendations. For the effects of
HR and HRV, further studies are needed to better understand
the underlying drivers of these signals and how they can be
acted upon.

Effects of HRV on Sleep Quality
We found various HRV metrics to be suitable predictors for
perceived sleep quality. In particular, increased SD1 metrics
positively impacted normalized perceived sleep quality across
M1.1-M3.3, highlighting their consistency for patients with MS
as well as the control group. However, the calculated effects of
SD2 and SDNN seemed contradictory and inconsistent in
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M1.1-M1.3 and were not selected when the automated feature
selection procedure was conducted separately for participants
with MS and the control group for M3.1-M3.3.

There are various factors that influence ANS activity and thus
also HRV metrics. While participants are awake, physical
activity, stress, overall mood, and deep breathing [53,54] might
impact HRV metrics. In the long run, ANS activity is also
affected by MS disease progression [16].

While asleep, a possible explanation for the calculated effects
of increased activity of the sympathetic and parasympathetic
nervous system is their behavior during rapid eye movement
(REM) and non-REM sleep phases and their connection to
stress. HRV fluctuates strongly between different phases of
sleep [25,55-57] and is particularly high during REM sleep.
More time spent in REM sleep phases was found to increase
subjective sleep quality and also cognitive performance [58],
which matches the calculated effects regarding the sympathetic
and parasympathetic nervous system. While the activity of the
former increases during REM sleep compared to non-REM
sleep, the activity of the latter decreases during REM sleep
phases [59]. Furthermore, the sympathetic nervous system
regulates the fight-or-flight response and gives an indication of
stress levels. The negative effect of increases in sympathetic
activity and positive effect of increased parasympathetic activity
on sleep quality might thus indicate that participants experienced
stress throughout the day, which carried on into their sleep
(activated stress response), or that participants went through
stressful experiences during their REM sleep, which might again
be impacted by experienced stress while awake. As outlined in
M1.3-M3.3, we found increased stress to reduce perceived sleep
quality, thus matching the effects outlined above.

Effects of MS Diseases Status on Sleep Quality
Symptoms of severe MS significantly decreased perceived sleep
quality. However, we did not find significant differences in
subjective sleep quality between participants diagnosed with
MS and the control group. This indicates that MS itself does
not affect perceived sleep quality. However, scoring high on
the ARMSS, MSSS, or EDSS scale and affection of the spinal
cord or ANS resulted in significantly worse sleep for patients
with MS. Thus, symptoms that were found to decrease general
quality of life for patients with MS also contribute to lower
perceived sleep quality, matching previous studies [3,16,30,60].

Effects of Sleep Duration and Awake Duration on Sleep
Quality
We generally found increased sleep duration to positively affect
perceived sleep quality. The effects were statistically significant
for participants with MS as well as the control group across
M1.1-M3.3 and are rather unsurprising. This is a further
indication of the importance of an adequate sleep schedule to
achieve high-quality sleep and increase quality of life. For
patients with MS as well as healthy individuals, this offers an
opportunity to improve their sleep quality and subsequently
quality of life. Furthermore, at least for the control group, longer
times spent awake before going to bed positively affected their
perceived quality of sleep. This seems in contrast to the positive
effect of longer sleep duration; however, this might indicate

that too little time spent awake negatively impacts perceived
sleep quality. The 2 effects of longer sleep duration and longer
awake duration thus highlight the need of a balance between
the time spent awake and asleep.

Effects of Stress on Sleep Quality
We found stress levels (self-reported) to have a statistically
significant negative impact on perceived sleep quality. For
participants with MS, stress impacted perceived sleep quality
more strongly than it did for the control group (Table 6).
Furthermore, for participants with MS, stress correlated
significantly negatively with awake duration and minimal HR
while asleep. This indicates that stress more severely affects
patients with MS, which is even measurable using their minimal
HR while asleep. The significant negative correlation of stress
to awake duration for participants with MS, which is positive
but statistically insignificant for the control group, might indicate
that stress even impacted the daily routine of participants with
MS.

These effects are consistent with existing literature [26-28,61].
For patients with MS, several studies suggest that increased
stress increases the chances of relapse [62] and influences
inflammatory activity [63]. Furthermore, the ANS is a stress
response system. The more severe effect of stress on sleep
quality for participants with MS might thus be another symptom
of a dysfunctional ANS.

While we do not find reported stress levels to impact the sleep
quality for the control group, we observe negative effects of
increases in sympathetic activity (SDNN and SD2) in
M2.1-M2.3 for patients with MS as well as the control group.
The sympathetic nervous system controls the fight-or-flight
response, and stress might cause an activated stress response,
which is characterized by increased sympathetic activity and
decreased parasympathetic activity. This indicates a negative
effect of stress on perceived sleep quality for both groups,
although not observable through reported stress levels for the
control group.

While we calculate similar effects for perceived stress and
objective measures of stress (ie, an activated stress response),
perceived stress ratings and objective assessments of stress do
not have to align [64]. Comparisons between objective and
subjective assessments of stress must thus be treated carefully.

Effects of Motion (Steps) on Sleep Quality
An increase in recorded arm motion between initially falling
asleep and waking up in the morning significantly decreased
perceived sleep quality. The recorded motion records both steps
of participants (eg, to use the bathroom) and general movement
while asleep due to low sleep continuity or a sleep disorder,
such as period leg movement disorder. Period leg movement
disorder affects 8% to 11% of the population [65] and around
25% of patients with MS [13,18,66]. Generally, excessive
motion indicates disruption of sleep. Recorded motion during
the night furthermore correlates significantly with being awake
at night (r=0.22; P=.004). The negatively calculated effects for
increases in both variables match existing literature about sleep
continuity [67] as well as compartment 5 of the Pittsburgh Sleep
Quality Index [24].
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Effects of HR on Sleep Quality
Despite various HR-based variables being included in
M1.1-M2.3, only minimal HR while asleep significantly affected
perceived sleep quality for patients with MS in M3.1-M3.2.
While the effect of increases in minimal HR seems consistent
for patients with MS, it seems to have no effect on sleep quality
for the control group. This highlights a difference in the effect
of cardiovascular activity between the 2 groups.

Effects of Weather (Temperatures) on Sleep Quality
We did not find temperature to affect perceived sleep quality
in our study, contradicting previous research about the influence
of weather on sleep quality [68] and temperatures on the
well-being of patients with MS [69]. However, past research
suggests that mainly the room temperature when falling asleep
impacts sleep [70]. The overall temperature outside, as recorded
during our study, is only a (poor) estimate of room temperature.

Relation Between Demographic Information and Sleep
Quality
Female participants slept significantly better (subjectively)
compared to male participants in our study. This is contradicting
existing literature on objective sleep quality where female
participants were found to sleep significantly worse and also
shorter than male participants [71,72]. Furthermore, women
were also found to be 1.41 times more likely to experience
insomnia compared to men [73].

Matching previous studies [71,74], we found age to correlate
strongly with motion while asleep and being awake at night
(Pearson correlation of r=0.31 and r=0.23, respectively, with
P<.001). Both factors are calculated to significantly reduce
sleep quality (M1.1-M3.2), which matches existing literature
about reduced sleep continuity of older individuals [74].

Limitations
Our study has several limitations that question the
generalizability and immediate clinical applicability of our
results.

First, because we collect ANS activity passively, we cannot
control all the factors that influence ANS activity and might
confound our results. In the long run, ANS activity is influenced
by disease progression for patients with MS [16]. Temporarily,
ANS activity might be influenced by deep breathing exercises,
shock, mood, physical exercise, and generally any type of
stressor [53,54]. As we aggregate ANS activity over multiple
hours when participants are either awake or asleep, it seems
unlikely that we capture either very short bursts of ANS activity
or long-term trends caused for instance by MS disease
progression. The multitude of factors that influence ANS
activity, however, only allow for hypothesis about the exact
causes of the effects we observe. This uncertainty makes the
translation into actionable clinical recommendations difficult.

Second, the translation of our findings into clinical
recommendations is further limited because many effects found
to be important for sleep quality estimation are based on signals
collected while participants are asleep. Our analysis does not
reveal what actions cause variables such as minimal HR while

asleep to differ. Thus, we can only provide recommendations
for variables such as stress or sleep duration.

Third, despite the diversity within our study population, it is
unlikely that it covers the diverse range of MS disease traits.
As we recruited patients with MS solely at the neuroimmunology
department of the University Hospital Zurich, our study is
effectively limited to Switzerland. While our findings regarding
ANS activity might generally be assumed to generalize to
patients with MS outside of Switzerland, there are likely several
confounders that bias our findings due to specifics of the life
in Switzerland, its health care sector, or the genetic traits of
Switzerland’s population. As part of a larger and more
representative study, it would also be possible to stratify for
disease progression and ANS dysfunction to investigate the
robustness of our findings toward particularly severe cases of
MS with a highly dysfunctional ANS.

Finally, we investigate self-reported sleep quality, which does
not have to align well with objective measures of sleep quality
[75]. While we find objective measures of sleep quality to be
strong predictors of perceived sleep quality and also normalize
perceived sleep quality ratings per participant to remove
intrasubject variability, our results have to be treated with care.
Similarly, we investigate perceived stress ratings, which do not
form a passive and objective measure of stress. Again, we find
similar effects of objective measures of stress (ie, an activated
stress response at night) and self-reported stress levels and also
normalized stress ratings per participant. However, self-reported
stress levels do not have to be consistent, and a comparison
between self-reported and objectively assessed stress levels is
difficult [64].

Generally, all the points above outline that a larger study is
needed to confirm our findings and hopefully derive actionable
insides. This will hopefully allow to derive what actions cause
the observed changes in signals that are outside participants’
direct control. We hope our study lays the basis for such larger
efforts.

Future Research
In addition to addressing what is outlined in the Limitations
section, there are multiple avenues worth exploring for future
research.

First, we believe a better understanding of the ANS of each
patient with MS would prove most valuable. This might be
achieved via imaging, particularly through connectomes that
provide a mapping of the nervous system’s connectivity. Given
recent successes in connectome-based predictive modeling [76],
the mapping of connectomes of patients with MS to perceived
sleep quality might prove an interesting first step. Similarly, an
analysis of the location of lesions in the CNS might help to
explain why the ANS of patients with MS might relate
differently to perceived sleep quality. Subsequently, this might
help to identify different subgroups of patients with MS, who
might have to be treated differently to improve their sleep
quality and quality of life.

Second, we believe incorporating information about sleep stages
into the analysis might prove most valuable. As outlined in the
Effects of HRV on Sleep Quality section, ANS activity
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fluctuates between different sleep stages. Therefore, through or
simple aggregation across the whole night, important patterns
might currently be neglected.

Combined with large representative studies that are also able
to establish causal relationships between participants’ behavior
and changes in bio signals, we believe this would paint a precise
and representative picture of the connection between ANS
activity of sleep quality more generally for patients with MS
and heathy individuals alike.

Third, we believe a longitudinal study that captures potential
disease progression in patients with MS would provide valuable
insights into how sleep quality and ANS activity might change
based on different stages of MS, including relapses. It would
be most interesting to include interventions in such a study
design to verify the causality of our results, for example,
intervening on participants sleep duration.

Fourth, low sleep quality is a symptom of various neurological
conditions such as Parkinson, epilepsy, or Huntington. Some
of the results we derived might translate and prove valuable
also to patients with other neurological conditions.

Conclusions
The results we present are 3-fold. First, we have found new
predictors for the perceived sleep quality of patients with MS

as well as healthy individuals, which are conveniently
measurable using wearable sensors. We thereby gained a better
understanding of the impact of HRV on sleep quality and the
differences in effect for patients with MS, namely, an activated
stress response (lower parasympathetic activity and higher
sympathetic activity) while asleep impacts perceived sleep
quality negatively. However, the activity of the parasympathetic
nervous system has greater impact on perceived sleep quality
than sympathetic activity, especially for healthy individuals.

Second, we found the disease state of patients with MS to impact
perceived sleep quality. In particular, patients with MS whose
ANS was dysfunctional; whose spinal cord was affected; or
who scored highly on the MSSS, ARMSS, or EDSS reported
significantly lower sleep quality than patients with MS whose
ANS was not dysfunctional; whose spinal cord was unaffected;
and who scored lower on the MSSS, ARMSS, or EDSS,
respectively.

Third, for binary classification problems using medical sensor
data, we provide further evidence for the use of more
conventional models that are interpretable as well as explainable
over state-of-the-art black box models. While GAMs
outperformed all other models, GLMs performed similar to
boosted tree ensemble classifiers or support vector machines
and outperformed neural networks.

Acknowledgments
This work was partially funded by the Personalized Health and Related Technologies (2021-801) focus area of the ETH Domain
and the Swiss Data Science Centre (C21-18P).

Please see a list of the members of the PHRT Author Consortium: Christian Holz, Gunnar Rätsch, Fernando Perez-Cruz, Cristóbal
Esteban, Martina Baumann, Rita Kuznetsova, Neda Davoudi, Shkurta Gashi, Liliana Barrios, Max Moebus, Ekaterina Krymova,
Luis Salamanca, Firat Ozdemir, Marc Hilty, Veronika Kana, Patrick Roth, and Andreas Lutterotti.

Data Availability
The data sets generated during and analyzed during this study are available from the corresponding author on reasonable request.
Accompanying code is available through the GitHub repository [77].

Authors' Contributions
MH, LB and the entire Personalized Health and Related Technologies consortium initialized the study. PO and LB built the study
apparatus; PO, LB and MH conducted the study. MM and CH prepared the collected data, conducted the data analysis, and wrote
the main manuscript. All authors reviewed the paper and contributed to the discussion of calculated effect.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Patients with multiple sclerosis on disease-modifying therapy.
[DOCX File , 14 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Patients with multiple sclerosis on medication that is known to affect heart rate variability.
[DOCX File , 14 KB-Multimedia Appendix 2]

JMIR Neurotech 2024 | vol. 3 | e48148 | p. 13https://neuro.jmir.org/2024/1/e48148
(page number not for citation purposes)

Moebus et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=neuro_v3i1e48148_app1.docx&filename=46c212536579c544dcc0df7f6b7da3ca.docx
https://jmir.org/api/download?alt_name=neuro_v3i1e48148_app1.docx&filename=46c212536579c544dcc0df7f6b7da3ca.docx
https://jmir.org/api/download?alt_name=neuro_v3i1e48148_app2.docx&filename=be15044d718eafd3631cb42d2cf65aca.docx
https://jmir.org/api/download?alt_name=neuro_v3i1e48148_app2.docx&filename=be15044d718eafd3631cb42d2cf65aca.docx
http://www.w3.org/Style/XSL
http://www.renderx.com/


Multimedia Appendix 3
Distribution of sleep quality ratings.
[PNG File , 11 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Correlation between input variables to models M3.1-M3.3.
[DOCX File , 18 KB-Multimedia Appendix 4]

References

1. Okano K, Kaczmarzyk JR, Dave N, Gabrieli JD, Grossman JC. Sleep quality, duration, and consistency are associated with
better academic performance in college students. NPJ Sci Learn. Oct 01, 2019;4(1):16. [FREE Full text] [doi:
10.1038/s41539-019-0055-z] [Medline: 31583118]

2. Klier K, Dörr S, Schmidt A. High sleep quality can increase the performance of CrossFit® athletes in highly technical- and
cognitive-demanding categories. BMC Sports Sci Med Rehabil. Oct 28, 2021;13(1):137. [FREE Full text] [doi:
10.1186/s13102-021-00365-2] [Medline: 34711279]

3. Haensch CA, Jörg J. Autonomic dysfunction in multiple sclerosis. J Neurol. Feb 2006;253 Suppl 1(S1):I3-I9. [doi:
10.1007/s00415-006-1102-2] [Medline: 16477484]

4. Wakabayashi K, Takahashi H. Neuropathology of autonomic nervous system in Parkinson's disease. Eur Neurol. Jan 11,
1997;38 Suppl 2(2):2-7. [doi: 10.1159/000113469] [Medline: 9387796]

5. Micieli G, Tosi P, Marcheselli S, Cavallini A. Autonomic dysfunction in Parkinson's disease. Neurol Sci. May 1, 2003;24
Suppl 1:S32-S34. [doi: 10.1007/s100720300035] [Medline: 12774210]

6. Femminella GD, Rengo G, Komici K, Iacotucci P, Petraglia L, Pagano G, et al. Autonomic dysfunction in Alzheimer's
disease: tools for assessment and review of the literature. J Alzheimers Dis. Aug 28, 2014;42(2):369-377. [doi:
10.3233/jad-140513]

7. Algotsson A, Viitanen M, Winblad B, Solders G. Autonomic dysfunction in Alzheimer's disease. Acta Neurol Scand.
1995;91:14-18. [doi: 10.1111/j.1600-0404.1995.tb06982.x]

8. Lobentanz I, Asenbaum S, Vass K, Sauter C, Klösch G, Kollegger H, et al. Factors influencing quality of life in multiple
sclerosis patients: disability, depressive mood, fatigue and sleep quality. Acta Neurol Scand. Jul 2004;110(1):6-13. [doi:
10.1111/j.1600-0404.2004.00257.x] [Medline: 15180801]

9. Stanton BR, Barnes F, Silber E. Sleep and fatigue in multiple sclerosis. Mult Scler. Aug 2006;12(4):481-486. [doi:
10.1191/135248506ms1320oa] [Medline: 16900762]

10. Bamer AM, Johnson KL, Amtmann D, Kraft GH. Prevalence of sleep problems in individuals with multiple sclerosis. Mult
Scler. Sep 2008;14(8):1127-1130. [FREE Full text] [doi: 10.1177/1352458508092807] [Medline: 18632776]

11. Brass SD, Duquette P, Proulx-Therrien J, Auerbach S. Sleep disorders in patients with multiple sclerosis. Sleep Med Rev.
Apr 2010;14(2):121-129. [FREE Full text] [doi: 10.1016/j.smrv.2009.07.005] [Medline: 19879170]

12. Boentert M. Sleep disturbances in patients with amyotrophic lateral sclerosis: current perspectives. Nat Sci Sleep.
2019;11:97-111. [FREE Full text] [doi: 10.2147/NSS.S183504] [Medline: 31496852]

13. Veauthier C, Paul F. Sleep disorders in multiple sclerosis and their relationship to fatigue. Sleep Med. Jan 2014;15(1):5-14.
[FREE Full text] [doi: 10.1016/j.sleep.2013.08.791] [Medline: 24360534]

14. Attarian HP, Brown KM, Duntley SP, Carter JD, Cross AH. The relationship of sleep disturbances and fatigue in multiple
sclerosis. Arch Neurol. Apr 01, 2004;61(4):525-528. [doi: 10.1001/archneur.61.4.525] [Medline: 15096400]

15. Flachenecker P, Kümpfel T, Kallmann B, Gottschalk M, Grauer O, Rieckmann P, et al. Fatigue in multiple sclerosis: a
comparison of different rating scales and correlation to clinical parameters. Mult Scler. Dec 02, 2002;8(6):523-526. [doi:
10.1191/1352458502ms839oa] [Medline: 12474995]

16. Disanto G, Zecca C, MacLachlan S, Sacco R, Handunnetthi L, Meier UC, et al. Prodromal symptoms of multiple sclerosis
in primary care. Ann Neurol. Jun 30, 2018;83(6):1162-1173. [doi: 10.1002/ana.25247] [Medline: 29740872]

17. Sztajzel J. Heart rate variability: a noninvasive electrocardiographic method to measure the autonomic nervous system.
Swiss Med Wkly. Sep 04, 2004;134(35-36):514-522. [FREE Full text] [doi: 10.4414/smw.2004.10321] [Medline: 15517504]

18. Moebus M, Gashi S, Hilty M, Oldrati P, PHRT author consortium, Holz C. Meaningful digital biomarkers derived from
wearable sensors to predict daily fatigue in multiple sclerosis patients and healthy controls. iScience. Feb 16,
2024;27(2):108965. [FREE Full text] [doi: 10.1016/j.isci.2024.108965] [Medline: 38362266]

19. Moebus M, Holz C. Personalized interpretable prediction of perceived sleep quality: models with meaningful cardiovascular
and behavioral features. PLoS One. Jul 08, 2024;19(7):e0305258. [FREE Full text] [doi: 10.1371/journal.pone.0305258]
[Medline: 38976698]

20. Moebus M, Holz C, Wolfensberger J. Predicting sleep quality via unsupervised learning of cardiac activity. In: Proceedings
of the 46th Annual International Conference of the IEEE Engineering in Medicine & Biology Society. 2024. Presented at:
EMBC 2024; July 15-19, 2024; Copenhagen, Denmark. URL: https://embc.embs.org/2024/wp-content/uploads/sites/102/
2024/07/EMBC-2024_Proceedings.pdf

JMIR Neurotech 2024 | vol. 3 | e48148 | p. 14https://neuro.jmir.org/2024/1/e48148
(page number not for citation purposes)

Moebus et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=neuro_v3i1e48148_app3.png&filename=0449d19768e007db07b35ceee1b14e1d.png
https://jmir.org/api/download?alt_name=neuro_v3i1e48148_app3.png&filename=0449d19768e007db07b35ceee1b14e1d.png
https://jmir.org/api/download?alt_name=neuro_v3i1e48148_app4.docx&filename=8c6442607ed3881adac6da2c378a7165.docx
https://jmir.org/api/download?alt_name=neuro_v3i1e48148_app4.docx&filename=8c6442607ed3881adac6da2c378a7165.docx
https://doi.org/10.1038/s41539-019-0055-z
http://dx.doi.org/10.1038/s41539-019-0055-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31583118&dopt=Abstract
https://bmcsportsscimedrehabil.biomedcentral.com/articles/10.1186/s13102-021-00365-2
http://dx.doi.org/10.1186/s13102-021-00365-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34711279&dopt=Abstract
http://dx.doi.org/10.1007/s00415-006-1102-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16477484&dopt=Abstract
http://dx.doi.org/10.1159/000113469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9387796&dopt=Abstract
http://dx.doi.org/10.1007/s100720300035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12774210&dopt=Abstract
http://dx.doi.org/10.3233/jad-140513
http://dx.doi.org/10.1111/j.1600-0404.1995.tb06982.x
http://dx.doi.org/10.1111/j.1600-0404.2004.00257.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15180801&dopt=Abstract
http://dx.doi.org/10.1191/135248506ms1320oa
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16900762&dopt=Abstract
https://europepmc.org/abstract/MED/18632776
http://dx.doi.org/10.1177/1352458508092807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18632776&dopt=Abstract
https://doi.org/10.1016/j.smrv.2009.07.005
http://dx.doi.org/10.1016/j.smrv.2009.07.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19879170&dopt=Abstract
https://europepmc.org/abstract/MED/31496852
http://dx.doi.org/10.2147/NSS.S183504
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31496852&dopt=Abstract
https://doi.org/10.1016/j.sleep.2013.08.791
http://dx.doi.org/10.1016/j.sleep.2013.08.791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24360534&dopt=Abstract
http://dx.doi.org/10.1001/archneur.61.4.525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15096400&dopt=Abstract
http://dx.doi.org/10.1191/1352458502ms839oa
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12474995&dopt=Abstract
http://dx.doi.org/10.1002/ana.25247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29740872&dopt=Abstract
https://doi.org/10.4414/smw.2004.10321
http://dx.doi.org/10.4414/smw.2004.10321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15517504&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2589-0042(24)00186-X
http://dx.doi.org/10.1016/j.isci.2024.108965
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38362266&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0305258
http://dx.doi.org/10.1371/journal.pone.0305258
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38976698&dopt=Abstract
https://embc.embs.org/2024/wp-content/uploads/sites/102/2024/07/EMBC-2024_Proceedings.pdf
https://embc.embs.org/2024/wp-content/uploads/sites/102/2024/07/EMBC-2024_Proceedings.pdf
http://www.w3.org/Style/XSL
http://www.renderx.com/


21. Van de Water AT, Holmes A, Hurley DA. Objective measurements of sleep for non-laboratory settings as alternatives to
polysomnography--a systematic review. J Sleep Res. Mar 2011;20(1 Pt 2):183-200. [doi: 10.1111/j.1365-2869.2009.00814.x]
[Medline: 20374444]

22. Ibáñez V, Silva J, Navarro E, Cauli O. Sleep assessment devices: types, market analysis, and a critical view on accuracy
and validation. Expert Rev Med Devices. Dec 27, 2019;16(12):1041-1052. [doi: 10.1080/17434440.2019.1693890] [Medline:
31774330]

23. Grandner MA, Kripke DF, Yoon IY, Youngstedt SD. Criterion validity of the Pittsburgh Sleep Quality Index: investigation
in a non-clinical sample. Sleep Biol Rhythms. Jun 2006;4(2):129-139. [FREE Full text] [doi:
10.1111/j.1479-8425.2006.00207.x] [Medline: 22822303]

24. Buysse DJ, Reynolds CF3, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for
psychiatric practice and research. Psychiatry Res. May 1989;28(2):193-213. [doi: 10.1016/0165-1781(89)90047-4] [Medline:
2748771]

25. Vanoli E, Adamson PB, Ba-Lin BL, Pinna GD, Lazzara R, Orr WC. Heart rate variability during specific sleep stages. A
comparison of healthy subjects with patients after myocardial infarction. Circulation. Apr 01, 1995;91(7):1918-1922. [doi:
10.1161/01.cir.91.7.1918] [Medline: 7895347]

26. Sadeh A, Keinan G, Daon K. Effects of stress on sleep: the moderating role of coping style. Health Psychol. Sep
2004;23(5):542-545. [doi: 10.1037/0278-6133.23.5.542] [Medline: 15367075]

27. Han KS, Kim L, Shim I. Stress and sleep disorder. Exp Neurobiol. Dec 30, 2012;21(4):141-150. [FREE Full text] [doi:
10.5607/en.2012.21.4.141] [Medline: 23319874]

28. da Estrela C, McGrath J, Booij L, Gouin JP. Heart rate variability, sleep quality, and depression in the context of chronic
stress. Ann Behav Med. Mar 16, 2021;55(2):155-164. [FREE Full text] [doi: 10.1093/abm/kaaa039] [Medline: 32525208]

29. Stein PK, Pu Y. Heart rate variability, sleep and sleep disorders. Sleep Med Rev. Feb 2012;16(1):47-66. [doi:
10.1016/j.smrv.2011.02.005] [Medline: 21658979]

30. Tobaldini E, Costantino G, Solbiati M, Cogliati C, Kara T, Nobili L, et al. Sleep, sleep deprivation, autonomic nervous
system and cardiovascular diseases. Neurosci Biobehav Rev. Mar 2017;74(Pt B):321-329. [doi:
10.1016/j.neubiorev.2016.07.004] [Medline: 27397854]

31. McDougall AJ, McLeod JG. Autonomic nervous system function in multiple sclerosis. J Neurol Sci. Nov 15,
2003;215(1-2):79-85. [doi: 10.1016/s0022-510x(03)00205-3] [Medline: 14568133]

32. Yu W, Liu T, Valdez R, Gwinn M, Khoury MJ. Application of support vector machine modeling for prediction of common
diseases: the case of diabetes and pre-diabetes. BMC Med Inform Decis Mak. Mar 22, 2010;10:16. [FREE Full text] [doi:
10.1186/1472-6947-10-16] [Medline: 20307319]

33. Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models: a methodology review.
J Biomed Inform. 2002;35(5-6):352-359. [FREE Full text] [doi: 10.1016/s1532-0464(03)00034-0] [Medline: 12968784]

34. Zhang Z, Zhao Y, Canes A, Steinberg D, Lyashevska O, Written on Behalf of AME Big-Data Clinical Trial Collaborative
Group. Predictive analytics with gradient boosting in clinical medicine. Ann Transl Med. Apr 2019;7(7):152. [FREE Full
text] [doi: 10.21037/atm.2019.03.29] [Medline: 31157273]

35. Durán JM, Jongsma KR. Who is afraid of black box algorithms? On the epistemological and ethical basis of trust in medical
AI. J Med Ethics. Mar 18, 2021:medethics-2020-106820. [doi: 10.1136/medethics-2020-106820] [Medline: 33737318]

36. Julious SA. Sample size of 12 per group rule of thumb for a pilot study. Pharm Stat. Nov 24, 2005;4(4):287-291. [doi:
10.1002/pst.185]

37. Lancaster GA, Dodd S, Williamson PR. Design and analysis of pilot studies: recommendations for good practice. J Eval
Clin Pract. May 2004;10(2):307-312. [doi: 10.1111/j..2002.384.doc.x] [Medline: 15189396]

38. Sim J, Lewis M. The size of a pilot study for a clinical trial should be calculated in relation to considerations of precision
and efficiency. J Clin Epidemiol. Mar 2012;65(3):301-308. [doi: 10.1016/j.jclinepi.2011.07.011] [Medline: 22169081]

39. Berntson GG, Quigley KS, Jang JF, Boysen ST. An approach to artifact identification: application to heart period data.
Psychophysiology. Sep 1990;27(5):586-598. [doi: 10.1111/j.1469-8986.1990.tb01982.x] [Medline: 2274622]

40. Weather data and API. Visual Crossing. URL: https://www.visualcrossing.com/ [accessed 2021-12-15]
41. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology.

Nov 1983;33(11):1444-1452. [doi: 10.1212/wnl.33.11.1444] [Medline: 6685237]
42. Roxburgh R, Seaman S, Masterman T, Hensiek A, Sawcer S, Vukusic S, et al. Multiple sclerosis severity score: using

disability and disease duration to rate disease severity. Neurology. Apr 12, 2005;64(7):1144-1151. [doi:
10.1212/01.wnl.0000156155.19270.f8]

43. Manouchehrinia A, Westerlind H, Kingwell E, Zhu F, Carruthers R, Ramanujam R, et al. Age related multiple sclerosis
severity score: disability ranked by age. Mult Scler. Dec 2017;23(14):1938-1946. [FREE Full text] [doi:
10.1177/1352458517690618] [Medline: 28155580]

44. Sletten DM, Suarez GA, Low PA, Mandrekar J, Singer W. COMPASS 31: a refined and abbreviated Composite Autonomic
Symptom Score. Mayo Clin Proc. Dec 2012;87(12):1196-1201. [FREE Full text] [doi: 10.1016/j.mayocp.2012.10.013]
[Medline: 23218087]

JMIR Neurotech 2024 | vol. 3 | e48148 | p. 15https://neuro.jmir.org/2024/1/e48148
(page number not for citation purposes)

Moebus et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

http://dx.doi.org/10.1111/j.1365-2869.2009.00814.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20374444&dopt=Abstract
http://dx.doi.org/10.1080/17434440.2019.1693890
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31774330&dopt=Abstract
https://europepmc.org/abstract/MED/22822303
http://dx.doi.org/10.1111/j.1479-8425.2006.00207.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22822303&dopt=Abstract
http://dx.doi.org/10.1016/0165-1781(89)90047-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=2748771&dopt=Abstract
http://dx.doi.org/10.1161/01.cir.91.7.1918
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=7895347&dopt=Abstract
http://dx.doi.org/10.1037/0278-6133.23.5.542
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15367075&dopt=Abstract
https://europepmc.org/abstract/MED/23319874
http://dx.doi.org/10.5607/en.2012.21.4.141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23319874&dopt=Abstract
https://europepmc.org/abstract/MED/32525208
http://dx.doi.org/10.1093/abm/kaaa039
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32525208&dopt=Abstract
http://dx.doi.org/10.1016/j.smrv.2011.02.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21658979&dopt=Abstract
http://dx.doi.org/10.1016/j.neubiorev.2016.07.004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27397854&dopt=Abstract
http://dx.doi.org/10.1016/s0022-510x(03)00205-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14568133&dopt=Abstract
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/1472-6947-10-16
http://dx.doi.org/10.1186/1472-6947-10-16
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20307319&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(03)00034-0
http://dx.doi.org/10.1016/s1532-0464(03)00034-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12968784&dopt=Abstract
https://europepmc.org/abstract/MED/31157273
https://europepmc.org/abstract/MED/31157273
http://dx.doi.org/10.21037/atm.2019.03.29
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31157273&dopt=Abstract
http://dx.doi.org/10.1136/medethics-2020-106820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33737318&dopt=Abstract
http://dx.doi.org/10.1002/pst.185
http://dx.doi.org/10.1111/j..2002.384.doc.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15189396&dopt=Abstract
http://dx.doi.org/10.1016/j.jclinepi.2011.07.011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22169081&dopt=Abstract
http://dx.doi.org/10.1111/j.1469-8986.1990.tb01982.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=2274622&dopt=Abstract
https://www.visualcrossing.com/
http://dx.doi.org/10.1212/wnl.33.11.1444
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=6685237&dopt=Abstract
http://dx.doi.org/10.1212/01.wnl.0000156155.19270.f8
https://journals.sagepub.com/doi/abs/10.1177/1352458517690618?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1177/1352458517690618
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28155580&dopt=Abstract
https://europepmc.org/abstract/MED/23218087
http://dx.doi.org/10.1016/j.mayocp.2012.10.013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23218087&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


45. Georgiou K, Larentzakis AV, Khamis NN, Alsuhaibani GI, Alaska YA, Giallafos EJ. Can wearable devices accurately
measure heart rate variability? A systematic review. Folia Med (Plovdiv). Mar 01, 2018;60(1):7-20. [doi:
10.2478/folmed-2018-0012] [Medline: 29668452]

46. ACSM’s Guidelines for Exercise Testing and Prescription, 11th edition. Alphen aan den Rijn, The Netherlands. Wolters
Kluwer; 2021.

47. Natarajan A, Pantelopoulos A, Emir-Farinas H, Natarajan P. Heart rate variability with photoplethysmography in 8 million
individuals: a cross-sectional study. Lancet Digit Health. Dec 2020;2(12):e650-e657. [doi: 10.1016/s2589-7500(20)30246-6]

48. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in python. J
Mach Learn Res. 2011;12(85):2825-2830.

49. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 2016. Presented at: KDD '16; August 13-17, 2016; San Francisco,
CA. [doi: 10.1145/2939672.2939785]

50. Keras homepage. Keras. URL: https://keras.io [accessed 2024-07-20]
51. Gadaleta M, Radin JM, Baca-Motes K, Ramos E, Kheterpal V, Topol EJ, et al. Passive detection of COVID-19 with

wearable sensors and explainable machine learning algorithms. NPJ Digit Med. Dec 08, 2021;4(1):166. [FREE Full text]
[doi: 10.1038/s41746-021-00533-1] [Medline: 34880366]

52. Akiba T, Sano S, Yanase T, Ohta T, Koyama M. Optuna: a next-generation hyperparameter optimization framework. In:
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019. Presented
at: KDD '19; August 4-8, 2019; Anchorage, AK. [doi: 10.1145/3292500.3330701]

53. Shields RWJ. Heart rate variability with deep breathing as a clinical test of cardiovagal function. Cleve Clin J Med. Apr
2009;76 Suppl 2:S37-S40. [FREE Full text] [doi: 10.3949/ccjm.76.s2.08] [Medline: 19376980]

54. Birjandtalab J, Cogan D, Pouyan MB, Nourani M. A non-EEG biosignals dataset for assessment and visualization of
neurological status. In: Proceedings of the IEEE International Workshop on Signal Processing Systems (SiPS). 2016.
Presented at: SiPS 2016; October 26-28, 2016; Dallas, TX. [doi: 10.1109/sips.2016.27]

55. Berlad I, Shlitner A, Ben-Haim S, Lavie P. Power spectrum analysis and heart rate variability in stage 4 and REM sleep:
evidence for state-specific changes in autonomic dominance. J Sleep Res. Jun 20, 1993;2(2):88-90. [doi:
10.1111/j.1365-2869.1993.tb00067.x] [Medline: 10607076]

56. Baharav A, Kotagal S, Gibbons V, Rubin BK, Pratt G, Karin J, et al. Fluctuations in autonomic nervous activity during
sleep displayed by power spectrum analysis of heart rate variability. Neurology. Jun 1995;45(6):1183-1187. [doi:
10.1212/wnl.45.6.1183] [Medline: 7783886]

57. Versace F, Mozzato M, De Min Tona G, Cavallero C, Stegagno L. Heart rate variability during sleep as a function of the
sleep cycle. Biol Psychol. May 2003;63(2):149-162. [doi: 10.1016/s0301-0511(03)00052-8] [Medline: 12738405]

58. Della Monica C, Johnsen S, Atzori G, Groeger JA, D DJ. Rapid eye movement sleep, sleep continuity and slow wave sleep
as predictors of cognition, mood, and subjective sleep quality in healthy men and women, aged 20-84 years. Front Psychiatry.
Jun 22, 2018;9:255. [FREE Full text] [doi: 10.3389/fpsyt.2018.00255] [Medline: 29988413]

59. Somers VK, Dyken ME, Mark AL, Abboud FM. Sympathetic-nerve activity during sleep in normal subjects. N Engl J Med.
Feb 04, 1993;328(5):303-307. [doi: 10.1056/nejm199302043280502]

60. Sankari A, Badr MS, Martin JL, Ayas NT, Berlowitz DJ. Impact of spinal cord injury on sleep: current perspectives. Nat
Sci Sleep. Oct 2019;11:219-229. [FREE Full text] [doi: 10.2147/NSS.S197375] [Medline: 31686935]

61. Sajjadieh A, Shahsavari A, Safaei A, Penzel T, Schoebel C, Fietze I, et al. The association of sleep duration and quality
with heart rate variability and blood pressure. Tanaffos. Nov 2020;19(2):135-143. [FREE Full text] [Medline: 33262801]

62. Briones-Buixassa L, Milà R, Mª Aragonès J, Bufill E, Olaya B, Arrufat FX. Stress and multiple sclerosis: a systematic
review considering potential moderating and mediating factors and methods of assessing stress. Health Psychol Open. Jul
2015;2(2):2055102915612271. [FREE Full text] [doi: 10.1177/2055102915612271] [Medline: 28070374]

63. Mohr DC. Stress and multiple sclerosis. J Neurol. May 2007;254 Suppl 2(S2):II65-II68. [doi: 10.1007/s00415-007-2015-4]
[Medline: 17503132]

64. Masood K, Ahmed B, Choi J, Gutierrez-Osuna R. Consistency and validity of self-reporting scores in stress measurement
surveys. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4895-4898. [doi: 10.1109/EMBC.2012.6347091] [Medline:
23367025]

65. Hornyak M, Feige B, Riemann D, Voderholzer U. Periodic leg movements in sleep and periodic limb movement disorder:
prevalence, clinical significance and treatment. Sleep Med Rev. Jun 2006;10(3):169-177. [doi: 10.1016/j.smrv.2005.12.003]
[Medline: 16762807]

66. Veauthier C, Radbruch H, Gaede G, Pfueller CF, Dörr J, Bellmann-Strobl J, et al. Fatigue in multiple sclerosis is closely
related to sleep disorders: a polysomnographic cross-sectional study. Mult Scler. May 2011;17(5):613-622. [doi:
10.1177/1352458510393772] [Medline: 21278050]

67. Libman E, Fichten C, Creti L, Conrod K, Tran DL, Grad R, et al. Refreshing sleep and sleep continuity determine perceived
sleep quality. Sleep Disord. 2016;2016:7170610. [FREE Full text] [doi: 10.1155/2016/7170610] [Medline: 27413553]

68. Zheng G, Li K, Wang Y. The effects of high-temperature weather on human sleep quality and appetite. Int J Environ Res
Public Health. Jan 18, 2019;16(2):270. [FREE Full text] [doi: 10.3390/ijerph16020270] [Medline: 30669302]

JMIR Neurotech 2024 | vol. 3 | e48148 | p. 16https://neuro.jmir.org/2024/1/e48148
(page number not for citation purposes)

Moebus et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

http://dx.doi.org/10.2478/folmed-2018-0012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29668452&dopt=Abstract
http://dx.doi.org/10.1016/s2589-7500(20)30246-6
http://dx.doi.org/10.1145/2939672.2939785
https://keras.io
https://doi.org/10.1038/s41746-021-00533-1
http://dx.doi.org/10.1038/s41746-021-00533-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34880366&dopt=Abstract
http://dx.doi.org/10.1145/3292500.3330701
https://www.ccjm.org/cgi/pmidlookup?view=long&pmid=19376980
http://dx.doi.org/10.3949/ccjm.76.s2.08
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19376980&dopt=Abstract
http://dx.doi.org/10.1109/sips.2016.27
http://dx.doi.org/10.1111/j.1365-2869.1993.tb00067.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10607076&dopt=Abstract
http://dx.doi.org/10.1212/wnl.45.6.1183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=7783886&dopt=Abstract
http://dx.doi.org/10.1016/s0301-0511(03)00052-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12738405&dopt=Abstract
https://europepmc.org/abstract/MED/29988413
http://dx.doi.org/10.3389/fpsyt.2018.00255
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29988413&dopt=Abstract
http://dx.doi.org/10.1056/nejm199302043280502
https://europepmc.org/abstract/MED/31686935
http://dx.doi.org/10.2147/NSS.S197375
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31686935&dopt=Abstract
https://europepmc.org/abstract/MED/33262801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33262801&dopt=Abstract
https://journals.sagepub.com/doi/10.1177/2055102915612271?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1177/2055102915612271
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28070374&dopt=Abstract
http://dx.doi.org/10.1007/s00415-007-2015-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17503132&dopt=Abstract
http://dx.doi.org/10.1109/EMBC.2012.6347091
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23367025&dopt=Abstract
http://dx.doi.org/10.1016/j.smrv.2005.12.003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16762807&dopt=Abstract
http://dx.doi.org/10.1177/1352458510393772
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21278050&dopt=Abstract
https://doi.org/10.1155/2016/7170610
http://dx.doi.org/10.1155/2016/7170610
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27413553&dopt=Abstract
https://www.mdpi.com/resolver?pii=ijerph16020270
http://dx.doi.org/10.3390/ijerph16020270
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30669302&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


69. Christogianni A, Bibb R, Davis SL, Jay O, Barnett M, Evangelou N, et al. Temperature sensitivity in multiple sclerosis:
an overview of its impact on sensory and cognitive symptoms. Temperature (Austin). 2018;5(3):208-223. [FREE Full text]
[doi: 10.1080/23328940.2018.1475831] [Medline: 30377640]

70. Mattingly SM, Grover T, Martinez GJ, Aledavood T, Robles-Granda P, Nies K, et al. The effects of seasons and weather
on sleep patterns measured through longitudinal multimodal sensing. NPJ Digit Med. Apr 28, 2021;4(1):76. [FREE Full
text] [doi: 10.1038/s41746-021-00435-2] [Medline: 33911176]

71. Madrid-Valero JJ, Martínez-Selva JM, Ribeiro do Couto B, Sánchez-Romera JF, Ordoñana JR. Age and gender effects on
the prevalence of poor sleep quality in the adult population. Gac Sanit. Jan 2017;31(1):18-22. [FREE Full text] [doi:
10.1016/j.gaceta.2016.05.013] [Medline: 27474487]

72. Uhlig BL, Sand T, Odegård SS, Hagen K. Prevalence and associated factors of DSM-V insomnia in Norway: the
Nord-Trøndelag Health Study (HUNT 3). Sleep Med. Jun 2014;15(6):708-713. [doi: 10.1016/j.sleep.2014.01.018] [Medline:
24767721]

73. Zhang B, Wing YK. Sex differences in insomnia: a meta-analysis. Sleep. Jan 2006;29(1):85-93. [doi: 10.1093/sleep/29.1.85]
[Medline: 16453985]

74. Mander BA, Winer JR, Walker MP. Sleep and human aging. Neuron. Apr 05, 2017;94(1):19-36. [FREE Full text] [doi:
10.1016/j.neuron.2017.02.004] [Medline: 28384471]

75. Fabbri M, Beracci A, Martoni M, Meneo D, Tonetti L, Natale V. Measuring subjective sleep quality: a review. Int J Environ
Res Public Health. Jan 26, 2021;18(3):1082. [FREE Full text] [doi: 10.3390/ijerph18031082] [Medline: 33530453]

76. Liu P, Yang W, Zhuang K, Wei D, Yu R, Huang X, et al. The functional connectome predicts feeling of stress on regular
days and during the COVID-19 pandemic. Neurobiol Stress. May 2021;14:100285. [FREE Full text] [doi:
10.1016/j.ynstr.2020.100285] [Medline: 33385021]

77. Sleep quality prediction for multiple sclerosis patients. GitHub. URL: https://github.com/eth-siplab/
Sleep_Quality_Prediction_for_Multiple_Sclerosis_Patients [accessed 2024-08-09]

Abbreviations
ANS: autonomic nervous system
AUC: area under the curve
DMT: disease-modifying treatment
EDSS: Expanded Disability Status Scale
GAM: generalized additive model
GLM: generalized linear model
HR: heart rate
HRV: heart rate variability
IBI: interbeat interval
MS: multiple sclerosis
REM: rapid eye movement
SDNN: SD of interbeat intervals

Edited by P Kubben; submitted 13.04.23; peer-reviewed by L Masanneck, S Okita; comments to author 29.01.24; revised version
received 26.02.24; accepted 27.06.24; published 21.08.24

Please cite as:
Moebus M, Hilty M, Oldrati P, Barrios L, PHRT Author Consortium, Holz C
Assessing the Role of the Autonomic Nervous System as a Driver of Sleep Quality in Patients With Multiple Sclerosis: Observation
Study
JMIR Neurotech 2024;3:e48148
URL: https://neuro.jmir.org/2024/1/e48148
doi: 10.2196/48148
PMID:

©Max Moebus, Marc Hilty, Pietro Oldrati, Liliana Barrios, PHRT Author Consortium, Christian Holz. Originally published in
JMIR Neurotechnology (https://neuro.jmir.org), 21.08.2024. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work, first published in JMIR Neurotechnology, is properly cited. The
complete bibliographic information, a link to the original publication on https://neuro.jmir.org, as well as this copyright and
license information must be included.

JMIR Neurotech 2024 | vol. 3 | e48148 | p. 17https://neuro.jmir.org/2024/1/e48148
(page number not for citation purposes)

Moebus et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

https://europepmc.org/abstract/MED/30377640
http://dx.doi.org/10.1080/23328940.2018.1475831
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30377640&dopt=Abstract
https://doi.org/10.1038/s41746-021-00435-2
https://doi.org/10.1038/s41746-021-00435-2
http://dx.doi.org/10.1038/s41746-021-00435-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33911176&dopt=Abstract
http://www.elsevier.es/en/linksolver/ft/pii/S0213-9111(16)30118-2
http://dx.doi.org/10.1016/j.gaceta.2016.05.013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27474487&dopt=Abstract
http://dx.doi.org/10.1016/j.sleep.2014.01.018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24767721&dopt=Abstract
http://dx.doi.org/10.1093/sleep/29.1.85
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16453985&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0896-6273(17)30088-0
http://dx.doi.org/10.1016/j.neuron.2017.02.004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28384471&dopt=Abstract
https://www.mdpi.com/resolver?pii=ijerph18031082
http://dx.doi.org/10.3390/ijerph18031082
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33530453&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2352-2895(20)30075-8
http://dx.doi.org/10.1016/j.ynstr.2020.100285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33385021&dopt=Abstract
https://github.com/eth-siplab/Sleep_Quality_Prediction_for_Multiple_Sclerosis_Patients
https://github.com/eth-siplab/Sleep_Quality_Prediction_for_Multiple_Sclerosis_Patients
https://neuro.jmir.org/2024/1/e48148
http://dx.doi.org/10.2196/48148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

