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Abstract

Background: Natural language processing (NLP), a branch of artificial intelligence that analyzes unstructured language, is
being increasingly used in health care. However, the extent to which NLP has been formally studied in neurological disorders
remains unclear.

Objective: We sought to characterize studies that applied NLP to the diagnosis, prediction, or treatment of common neurological
disorders.

Methods: This review followed the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses
Extension for Scoping Reviews) standards. The search was conducted using MEDLINE and Embase on May 11, 2022. Studies
of NLP use in migraine, Parkinson disease, Alzheimer disease, stroke and transient ischemic attack, epilepsy, or multiple sclerosis
were included. We excluded conference abstracts, review papers, as well as studies involving heterogeneous clinical populations
or indirect clinical uses of NLP. Study characteristics were extracted and analyzed using descriptive statistics. We did not aggregate
measurements of performance in our review due to the high variability in study outcomes, which is the main limitation of the
study.

Results: In total, 916 studies were identified, of which 41 (4.5%) met all eligibility criteria and were included in the final review.
Of the 41 included studies, the most frequently represented disorders were stroke and transient ischemic attack (n=20, 49%),
followed by epilepsy (n=10, 24%), Alzheimer disease (n=6, 15%), and multiple sclerosis (n=5, 12%). We found no studies of
NLP use in migraine or Parkinson disease that met our eligibility criteria. The main objective of NLP was diagnosis (n=20, 49%),
followed by disease phenotyping (n=17, 41%), prognostication (n=9, 22%), and treatment (n=4, 10%). In total, 18 (44%) studies
used only machine learning approaches, 6 (15%) used only rule-based methods, and 17 (41%) used both.

Conclusions: We found that NLP was most commonly applied for diagnosis, implying a potential role for NLP in augmenting
diagnostic accuracy in settings with limited access to neurological expertise. We also found several gaps in neurological NLP
research, with few to no studies addressing certain disorders, which may suggest additional areas of inquiry.

Trial Registration: Prospective Register of Systematic Reviews (PROSPERO) CRD42021228703;
https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=228703

(JMIR Neurotech 2024;3:e51822) doi: 10.2196/51822
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Introduction

The implementation of the electronic medical record (EMR) in
health care systems has resulted in a remarkable increase in the
amount of digital patient data [1], much of which is text-based
and stored in an unstructured, narrative format [2-4]. While
unstructured text is a rich data source, analyses of these data
often require time- and cost-intensive manual processing [3].
Natural language processing (NLP), a type of artificial
intelligence that automatically derives meaning from
unstructured language, can significantly reduce costs and
enhance the quality of health care systems by converting
unstructured text into a structured form that can be processed
by computers [2,4,5].

Approaches to NLP can use rule-based techniques, machine
learning (ML), or a combination of both [6-8]. Between the
fifth and eighth decades of the 20th century, NLP approaches
were predominantly rule-based, using a set of rules defined by
human experts [7,9] to systematically extract meaning from
unstructured text. Rule-based methods are comprehensible by
humans but difficult to generalize [7,9]. Driven by recent
advances in computing power and access to computing
resources, contemporary approaches to NLP have increasingly
incorporated ML, which possesses greater scalability [7] than
rule-based methods despite the need for greater computational
power to construct ML-based NLP models. Most recently,
complex ML methods such as deep learning (DL), which are
based on neural networks and larger datasets than conventional
ML approaches, have become popular approaches to address
NLP tasks [9,10].

The high prevalence of unstructured text in EMR systems creates
an ideal use case for NLP in health care. However, the majority
of current NLP research remains focused on nonneurological
conditions such as mental health, cancer, and pneumonia [5].
The dearth of neurological NLP research is out of proportion
to the worldwide importance of neurological conditions, both
in terms of public health burden and cost. For instance,
cerebrovascular disease occupies the second leading cause of
death worldwide [11], and in the United States, neurological
and musculoskeletal disorders generate the greatest number of
years lost to disability [12]. Finally, the estimated annual cost
of the most prevalent neurological diseases in the United States
is nearly US $800 billion [12].

Neurology is a specialty that is uniquely well suited to benefit
from NLP approaches. The data used in the diagnosis and
management of neurological conditions, such as examination
findings or clinical impressions, are often recorded as narrative,
unstructured text in clinical documentation. Aside from clinical
notes containing the patient history and neurological
examination, reports from radiology [13,14], sonography, or
electrophysiology studies are integral to neurological practice
and often are crucial for detection, prognosis, and treatment.

Further, NLP analysis of spoken language may allow the
detection of certain neurodegenerative conditions such as
Alzheimer disease in their early stages [15]. Given the unique
position of neurology with respect to NLP and the relative lack
of research on the applications of NLP in neurology, we sought
to conduct a scoping review in order to quantify and characterize
studies that directly applied NLP for clinical use in common
neurological disorders.

Methods

Literature Search Strategy and Eligibility Criteria
This review was conducted using the PRISMA-ScR (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
Extension for Scoping Reviews) guidelines (Multimedia
Appendix 1) and was registered with the Prospective Register
of Systematic Reviews (PROSPERO CRD42021228703). Our
search was conducted using Ovid Embase and MEDLINE on
May 11, 2022 (Multimedia Appendix 2 [16-22]). Based on the
most globally prevalent and costly neurological disorders [11],
studies investigating the use of NLP in Alzheimer disease
(exclusive of Alzheimer disease–related disorders), Parkinson
disease, stroke and transient ischemic attack, epilepsy, multiple
sclerosis (MS), and migraine were included.

Studies that used NLP to analyze radiographic findings without
any clinical correlation (eg, silent brain infarcts) or for purposes
other than diagnosis, detection, phenotyping, subtyping,
prognostication, risk stratification, or therapy were excluded.
We excluded studies with populations comprised of patients
with heterogeneous diseases or ambiguously defined populations
(eg, we excluded studies that used a patient cohort consisting
of patients with both Alzheimer dementia and mild cognitive
impairment) as well as studies that did not use NLP for direct
clinical applications. Examples of indirect clinical applications
include the use of NLP to identify cohorts for subsequent model
development or conduct epidemiological associations between
cohorts without direct impact on clinical practice. We
additionally excluded abstracts, conference proceedings,
reviews, and editorials.

Data Extraction
A medical librarian (SW) with expertise in scoping reviews first
conducted a literature search (Multimedia Appendix 2) based
on our eligibility criteria to generate a list of abstracts, which
were then imported into a web application (Covidence Ltd) for
initial screening by 3 authors (BRK, LJB, and IL). After the
abstract screening was completed, full-text papers for screened
abstracts were reviewed by 2 authors (BRK and IL) to determine
eligibility for inclusion. Disagreements at both stages were
resolved by discussion and consensus.

Using the final list of full-text studies, study characteristics were
manually extracted by 1 author (IL) and charted in a REDCap
(Research Electronic Data Capture; REDCap Consortium) web
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database form, which was subsequently reviewed by a second
author (BRK) for accuracy. The data charting form was initially
tested by the data extractor (IL) and revised after feedback from
all coauthors (BRK, NJ, LJB, and SW). We extracted study
publication year, population size, country of origin, journal field
(eg, medical informatics, clinical neurology, nonclinical
neuroscience, clinical medicine, or other), neurological disorder,
and target of NLP (eg, diagnosis or detection, phenotyping or
subtyping and severity, prognostication or risk stratification, or
disease management or therapy). Each study could have multiple
targets whenever applicable.

For each study, the source language to which NLP techniques
were applied was also extracted. For studies conducted in or
authored by teams from non-English–speaking countries, the
source language was extrapolated directly as described from
the study methodology. If the source language was a publicly
available research dataset or ontology (eg, MetaMap ontology
or ADReSS dataset, both of which use English), the source
language was reported as English. Source of language for NLP
(eg, clinical notes, radiographic reports, speech audio, or other)
and type of study (eg, model derivation, validation, or both)
were also noted. Validation studies were defined as studies that
specifically investigated the validation of a derived model in a
population external to the original model derivation population.
Our definition of validation studies did not include validation
on held-out test sets as part of model derivation. If the NLP
model was both derived and externally validated in the same
study, the population size included the additional population
used for validation. Simulated patients, who were used as a
training set in one study, were included in the population size.
If no population size was mentioned in the studies, the number
of text instances (eg, clinical notes and radiographic reports)
was recorded.

We additionally extracted the study’s NLP approaches (ie,
rule-based methods, ML, or both). Rule-based NLP included
any approaches that used keyword searches, pattern matching,
regular expressions, or ontological systems for word-concept
mapping, text preprocessing, or classification. ML-based NLP
comprised both conventional ML and DL approaches and both
were distinguished as dichotomous study characteristic variables
but could co-occur in the studies. A study was characterized as
including any of these methods if either ML or DL was used at
any point in model development for the study.

Under the category of conventional ML methods, linear
regression, logistic regression, support vector machines (SVMs),
naïve Bayes classifiers, decision trees, random forest classifiers,
k-nearest neighbor algorithms, gradient boosting techniques
such as extreme gradient boosting, latent Dirichlet allocation,
and shallow neural networks were included. Under the definition
of shallow neural network, we included any approaches using
Word2vec or other “-2vec” word-embedding techniques that
use a neural network to construct word contexts and extract
semantic and syntactic meaning from text [23,24]. We also
included other types of regression, such as lasso regression,
which is often used for dimensionality reduction, in the
conventional ML category.

DL techniques included convolutional neural networks, recurrent
neural networks (RNNs), long- and short-term memory
networks, multilayer perceptrons, and transformers. Studies
using long- and short-term memory networks were also
categorized as using an RNN. We also note that neural networks
of unspecified type and number of layers, which were not clearly
referred to as DL in the study, were not included in this category.

Results

Included Studies
In total, 916 studies were identified from our search strategy,
of which 271 were duplicates and were excluded. We then
screened the resulting 645 abstracts, of which 565 were excluded
due to not meeting initial eligibility criteria. Of the remaining
80 studies, 39 (49%) were excluded. The 2 most common
reasons for exclusion were the use of NLP for nonclinical
applications (n=15, 38%) and heterogeneous clinical populations
(n=12, 31%). In total, 41 (4.5%) of the 916 studies from the
original search results were ultimately included for review
(Figure 1 and Table 1).

Of the 41 included studies, NLP was applied to stroke or
transient ischemic attack in 20 (49%) studies, epilepsy in 10
(24%) studies, Alzheimer dementia in 6 (15%) studies, and MS
in 5 (12%) studies. We found no studies applying NLP to
Parkinson disease or migraine that met our eligibility criteria.
Across all neurological conditions, NLP was most commonly
applied for the purposes of detection or diagnosis (n=20, 49%),
followed by clinical disease phenotyping or subtyping (n=17,
41%), prognostication or risk stratification (n=9, 22%), and
management or therapy (n=4, 10%; Table 2).
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Figure 1. Study PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) diagram. NLP: natural language processing.
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Table 1. Included studies.

Study outcomesAlgorithms usedDeep
learn-
ing

NLP
method

Purpose of

NLPa
Condition
being
studied

External
model
valida-
tion

Journal
field

Source
text

Coun-
try

Publica-
tion
date

Paper
authors

Radiographic com-
plications of is-

Random forest, lin-
ear regression,

YesRule-
based,

MLb

Detection
or diagno-
sis

StrokeYesClinical
neurolo-
gy

Radiolo-
gy re-
ports

United
States

May 9,
2022

Miller
et al
[19] chemic stroke (eg,

hemorrhagic trans-
formation)

KNNc, lasso regres-

sion, MLPd, trans-
former

Identifying themes
in medical records

Latent Dirichlet allo-
cation

NoMLDetection
or diagno-
sis

EpilepsyNoClinical
neurolo-
gy

Clinical
notes

Aus-
tralia

October
23,
2020

Lay et
al [25]

in patients with

PNESe, congruen-
cy of themes

Acute stroke diag-
nosis, stroke sever-
ity and subtypes

SVMf, logistic re-
gression

NoMLDetection
or diagno-
sis, clinical
disease

StrokeNoClinical
neurolo-
gy

Clinical
notes

United
States

June 24,
2021

Mayam-
purath
et al
[26]

phenotyp-
ing or
severity

Acute or subacute
ischemic stroke

Random forestNoRule-
based,
ML

Detection
or diagno-
sis

StrokeYesNeurora-
diology

Radiolo-
gy re-
ports

United
States

March
1, 2021

Li et al
[16]

cases before and
during COVID-19

30-day stroke read-
mission, 30-day

SVM, naïve Bayes,
random forest, logis-

NoMLPrognosis
or risk

StrokeNoClinical
neurolo-
gy

Clinical
notes

United
States

July 13,
2021

Lineback
et al
[27] all-cause readmis-

sion
tic regression, shal-
low neural network,
lasso regression, en-
semble, boosting

stratifica-
tion

Detection of
Alzheimer disease
from speech

SVM, random for-
est, logistic regres-
sion, boosting,

CNNg, transformer

YesMLDetection
or diagno-
sis

Alzheimer
disease

NoPublic
health

SpeechChinaApril
13,
2022

Liu et al
[28]

Detection of
Alzheimer disease
from speech

CNN, RNNh

(LSTMi)

YesMLDetection
or diagno-
sis

Alzheimer
disease

NoNonclin-
ical neu-
ro-
science

SpeechIndiaFebru-
ary 5,
2021

Maha-
jan and
Baths
[29]

Extraction of
stroke key perfor-
mance indicators

Random forest, deci-
sion tree, logistic re-
gression, neural net-
work with an unspec-

NoRule-
based,
ML

Clinical
disease
phenotyp-
ing or
severity

StrokeNoClinical
medicine

Clinical
notes

Aus-
tralia

Febru-
ary 20,
2022

Bacchi
et al
[30]

ified number of lay-
ers

Identification of
patients with PNES

Naïve BayesNoRule-
based,
ML

Detection
or diagno-
sis

EpilepsyNoClinical
neurolo-
gy

Clinical
notes

United
States

October
14,
2013

Hamid
et al
[31]

Identification of
the presence and

N/AjNoRule-
based

Detection
or diagno-
sis, clinical

StrokeNoMedical
infor-
matics

Radiolo-
gy re-
ports

Cana-
da

Septem-
ber 16,
2020

Yu et al
[13]

location of vascu-
lar occlusions anddisease
other stroke-related
attributes

phenotyp-
ing or
severity
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Study outcomesAlgorithms usedDeep
learn-
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method

Purpose of

NLPa
Condition
being
studied

External
model
valida-
tion

Journal
field

Source
text

Coun-
try

Publica-
tion
date

Paper
authors

Determining the

cause of TIAk-like
presentations
(cerebrovascular vs
noncerebrovascu-
lar)

Random forest, deci-
sion tree, CNN,
RNN (LSTM)

YesMLDetection
or diagno-
sis

StrokeNoClinical
neurolo-
gy

Clinical
notes
and radi-
ology
reports

Aus-
tralia

January
17,
2019

Bacchi
et al
[32]

Ischemic stroke
subtypes

SVM, random for-
est, logistic regres-
sion, KNN, boost-
ing, ensemble
(stacking logistic re-
gression, extra trees
classifier)

NoRule-
based,
ML

Clinical
disease
phenotyp-
ing or
severity

StrokeNoClinical
neurolo-
gy

Clinical
notes
and radi-
ology
reports

United
States

May 15,
2019

Garg et
al [33]

Incidence of
stroke, stroke sub-
types

Random forest, logis-
tic regression

NoRule-
based,
ML

Detection
or diagno-
sis, clinical
disease
phenotyp-
ing or
severity

StrokeYesMedical
infor-
matics

Clinical
notes

United
States

March
8, 2021

Zhao et
al [21]

Distinguishing be-
tween PNES and
epilepsy, hesita-
tions and repeti-
tions in descrip-
tions of epileptic
seizures versus
PNES

Random forestNoMLDetection
or diagno-
sis

EpilepsyNoClinical
neurolo-
gy

SpeechUnited
King-
dom

October
1, 2021

Pevy et
al [34]

Subtyping and
phenotyping car-
dioembolic stroke

SVM, random for-
est, decision tree, lo-
gistic regression,
KNN

NoRule-
based,
ML

Clinical
disease
phenotyp-
ing or
severity

StrokeNoClinical
neurolo-
gy

Echocar-
dio-
graphic
reports

United
States

Decem-
ber 10,
2020

Guan et
al [35]

Epilepsy pheno-
type extraction
with correlated
anatomic location

N/ANoRule-
based

Clinical
disease
phenotyp-
ing or
severity

EpilepsyNoMedical
infor-
matics

Clinical
notes

United
States

June 26,
2014

Cui et al
[36]

Prediction of poor
stroke outcome

SVM, random for-
est, decision tree,
shallow neural net-
work, lasso regres-
sion, CNN, RNN
(LSTM), MLP

YesMLPrognosis
or risk
stratifica-
tion

StrokeNoClinical
medicine

Radiolo-
gy re-
ports

South
Korea

Decem-
ber 16,
2020

Heo et
al [37]

Prediction of
stroke outcome
measurements and
extraction of pa-
tient characteristics

SVM, naïve Bayes,
random forest,
KNN, CNN, trans-
former

YesRule-
based,
ML

Prognosis
or risk
stratifica-
tion, clini-
cal disease
phenotyp-
ing or
severity

StrokeNoMedical
infor-
matics

Clinical
notes

BrazilNovem-
ber 1,
2021

Zanotto
et al
[38]

Risk factors for

SUDEPl
N/ANoRule-

based
Prognosis
or risk
stratifica-
tion

EpilepsyYesClinical
neurolo-
gy

Clinical
notes

United
States

May 21,
2019

Barbour
et al
[17]
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Study outcomesAlgorithms usedDeep
learn-
ing

NLP
method

Purpose of

NLPa
Condition
being
studied

External
model
valida-
tion

Journal
field

Source
text

Coun-
try

Publica-
tion
date

Paper
authors

Identification of
acute ischemic
stroke, features of
acute ischemic
stroke reports ver-
sus nonischemic
stroke reports

SVM, naïve Bayes,
decision tree, logis-
tic regression

NoMLDetection
or diagno-
sis

StrokeNoNonclin-
ical neu-
ro-
science

Radiolo-
gy re-
ports

United
States

Febru-
ary 28,
2019

Kim et
al [39]

Extraction of clini-
cal traits of pa-
tients with MS

N/ANoRule-
based

Clinical
disease
phenotyp-
ing or
severity

MSmNoMedical
infor-
matics

Clinical
notes,
letters,
and
problem
lists

United
States

October
22,
2013

Davis et
al [40]

Epilepsy psychi-
atric comorbidities

SVMNoRule-
based,
ML

Detection
or diagno-
sis

EpilepsyNoClinical
neurolo-
gy

SpeechUnited
States

January
22,
2020

Glauser
et al
[41]

Identification of
potential candi-
dates for surgical
intervention for pe-
diatric drug–resis-
tant epilepsy, per-
formance of classi-
fication algorithm
over time

SVM, naïve BayesNoMLPrognosis
or risk
stratifica-
tion, man-
agement or
therapy

EpilepsyNoMedical
infor-
matics

Clinical
notes

United
States

May 22,
2016

Cohen
et al
[42]

Localizing the
epileptogenic zone
(temporal vs extra-
temporal), postsur-
gical prognosis and
outcome

SVM, naïve Bayes,
random forest, logis-
tic regression, boost-
ing

NoRule-
based,
ML

Clinical
disease
phenotyp-
ing or
severity,
prognosis
or risk
stratifica-
tion

EpilepsyNoMedical
infor-
matics

Clinical
notes
and radi-
ology
reports

United
King-
dom

Febru-
ary 10,
2021

Alim-
Mar-
vasti et
al [43]

Detection of
Alzheimer disease
from speech, pre-

diction of MMSEn

SVM, naïve Bayes,
random forest, linear
regression, shallow
neural network,
ridge regression,
transformer

YesMLDetection
or diagno-
sis

Alzheimer
disease

NoNonclin-
ical neu-
ro-
science

SpeechCana-
da

April
27,
2021

Bal-
agopalan
et al
[44]

Detection of
Alzheimer disease
from speech

SVM, random for-
est, logistic regres-
sion, boosting, trans-
former

YesMLDetection
or diagno-
sis

Alzheimer
disease

NoNonclin-
ical neu-
ro-
science

SpeechSlove-
nia

June 14,
2021

Martinc
et al
[45]

Detection of
Alzheimer disease
from speech

Shallow neural net-
work, transformer

YesMLDetection
or diagno-
sis

Alzheimer
disease

NoClinical
neurolo-
gy

SpeechUnited
States

April 5,
2022

Liu et al
[46]

Identification of
MS phenotype,
percentages of
each phenotype

N/ANoRule-
based

Clinical
disease
phenotyp-
ing or
severity

MSNoPharma-
cy

Clinical
notes

United
States

Decem-
ber 22,
2016

Nelson
et al
[47]

Performance of
system to generate

ICHo treatment
plan

TransformerYesRule-
based,
ML

Manage-
ment or
therapy

StrokeYesNonclin-
ical neu-
ro-
science

Clinical
notes
and radi-
ology
reports

ChinaApril 8,
2022

Deng et
al [18]
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Study outcomesAlgorithms usedDeep
learn-
ing

NLP
method

Purpose of

NLPa
Condition
being
studied

External
model
valida-
tion

Journal
field

Source
text

Coun-
try

Publica-
tion
date

Paper
authors

Early detection of
MS

Naïve BayesNoRule-
based,
ML

Detection
or diagno-
sis

MSNoMedical
infor-
matics

Clinical
notes

United
States

Febru-
ary 28,
2017

Chase et
al [48]

Epilepsy surgery
candidacy score

SVMNoMLPrognosis
or risk
stratifica-
tion, man-
agement or
therapy

EpilepsyNoClinical
neurolo-
gy

Clinical
notes

United
States

Novem-
ber 29,
2019

Wissel
et al
[49]

Classification of
ischemic stroke
subtypes

SVM, random for-
est, decision tree, lo-
gistic regression,
KNN, ensemble

NoRule-
based,
ML

Clinical
disease
phenotyp-
ing or
severity

StrokeNoMedical
infor-
matics

Clinical
notes

Tai-
wan

Febru-
ary 28,
2020

Sung et
al [50]

Prediction of poor
functional outcome
after acute is-
chemic stroke

Random forest, logis-
tic regression, trans-
former

YesMLPrognosis
or risk
stratifica-
tion

StrokeYesClinical
neurolo-
gy

Clinical
notes
and radi-
ology
reports

Tai-
wan

Novem-
ber 19,
2021

Sung et
al [20]

Expanded disabili-
ty status scale
score, expanded
disability status
scale subscore

Shallow neural net-
work, CNN, RNN

YesRule-
based
ML

Clinical
disease
phenotyp-
ing or
severity

MSNoMedical
infor-
matics

Clinical
notes

Cana-
da

October
20,
2020

Yang et
al [51]

Seizure freedom,
seizure frequency,
date of last seizure

TransformerYesMLClinical
disease
phenotyp-
ing or
severity

EpilepsyNoMedical
infor-
matics

Clinical
notes

United
States

Febru-
ary 22,
2022

Xie et al
[52]

Performance of

EMRp interface
that determines eli-
gibility for intra-
venous thrombolyt-
ic therapy

N/ANoRule-
based

Manage-
ment or
therapy

StrokeNoMedical
infor-
matics

Clinical
notes

Tai-
wan

Febru-
ary 8,
2018

Sung et
al [53]

Prediction of poor
functional outcome
after acute is-
chemic stroke

Logistic regression,
boosting, unspeci-
fied penalized logis-
tic regression
method, ensemble
(extra trees classifi-
er)

NoRule-
based,
ML

Prognosis
or risk
stratifica-
tion

StrokeNoMedical
infor-
matics

Clinical
notes
and radi-
ology
reports

Tai-
wan

Febru-
ary 17,
2022

Sung et
al [54]

Identification of
patients with MS,
severity of MS

Lasso regression,
stepwise regression

NoRule-
based,
ML

Detection
or diagno-
sis, clinical
disease
phenotyp-
ing or
severity

MSNoNonclin-
ical neu-
ro-
science

Clinical
notes
and radi-
ology
reports

United
States

Novem-
ber 11,
2013

Xia et al
[55]

Ischemic stroke
presence, location,
and acuity

Random forest, deci-
sion tree, logistic re-
gression, KNN,
RNN (LSTM)

YesMLDetection
or diagno-
sis, clinical
disease
phenotyp-
ing or
severity

StrokeYesNonclin-
ical neu-
ro-
science

Radiolo-
gy re-
ports

United
States

June 19,
2020

Ong et
al [22]
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Study outcomesAlgorithms usedDeep
learn-
ing

NLP
method

Purpose of

NLPa
Condition
being
studied

External
model
valida-
tion

Journal
field

Source
text

Coun-
try

Publica-
tion
date

Paper
authors

Detection of
Alzheimer disease
from speech

Logistic regression,
shallow neural net-
work, CNN, RNN
(LSTM) transformer

YesMLDetection
or diagno-
sis

Alzheimer
disease

NoMedical
infor-
matics

SpeechIranMarch
9, 2021

Roshan-
zamir et
al [56]

Stroke subtypesRNNYesRule-
based,
ML

Clinical
disease
phenotyp-
ing or
severity

StrokeNoMedical
infor-
matics

Radiolo-
gy re-
ports

United
King-
dom

June 15,
2021

Ran-
nikmäe
et al
[57]

aNLP: natural language processing.
bML: machine learning.
cKNN: k-nearest neighbor.
dMLP: multilayer perceptron.
ePNES: psychogenic nonepileptic seizures.
fSVM: support vector machine.
gCNN: convolutional neural network.
hRNN: recurrent neural network.
iLSTM: long- and short-term memory network.
jN/A: Not applicable.
kTIA: transient ischemic attack.
lSUDEP: sudden unexpected death in epilepsy.
mMS: multiple sclerosis.
nMMSE: Mini-Mental Status Examination.
oICH: intracerebral hemorrhage.
pEMR: electronic medical record.

Table 2. Overall study characteristics: journal field, target of NLPa, and neurological condition.

Studies (n=41), n (%)Study characteristics

Condition

20 (49)Stroke

10 (24)Epilepsy

6 (15)Alzheimer disease

5 (12)Multiple sclerosis

Target of NLP

20 (49)Diagnosis

17 (42)Phenotyping

9 (22)Prognosis

4 (10)Therapy

Journal field

15 (37)Medical informatics

14 (34)Clinical neurology

7 (17)Nonclinical neuroscience

2 (5)Clinical medicine

3 (7)Otherb

aNLP: natural language processing.
bOther includes studies published in pharmacy, public health, and neuroradiology journals.
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Of the 41 studies, the language sources for NLP comprised
clinical notes (n=25, 61%); radiology reports (n=14, 34%);
speech (n=8, 20%); and other sources (n=2, 5%) that included
echocardiography reports, letters to referring providers, and
problem lists (Table 3). Of studies with speech as the language
source, half (4/8, 50%) analyzed transcripts only, whereas half

additionally incorporated acoustic features from the audio files
themselves. These transcripts and audio files were largely from
research datasets (eg, ADReSS and Pitt corpus). Two studies
analyzed transcripts from interviews with patients. In the study
including problem lists, it is unknown who reported the
problems.

Table 3. Overall study characteristics: NLPa methods and language sources.

Studies (n=41), n (%)Study characteristics

NLP method

23 (56)Rule-based

35 (85)Machine learning

Type of machine learning

31 (76)Conventional machine learning

16 (39)Deep learning

Source text

25 (61)Clinical notes

14 (34)Radiology reports

8 (20)Speech

2 (5)Otherb

aNLP: natural language processing.
bOther includes echocardiography reports, problem lists, and letters to referring providers.

Of the 41 studies, the most common source language for NLP
was English (n=39, 95%), Portuguese in 1 (2%) study, and
unspecified in the remaining 1 study (which was of Chinese
nationality, not multicentric). When patient population size was
recorded, the median was 1091 (IQR 188-4211). In studies that
did not specify a population size (n=4, 10%), the median number
of clinical or radiographic notes was 2172 (IQR
1155.5-22,018.0).

Papers were most commonly published in medical informatics
(n=15, 37%) journals, followed closely by clinical neurology

(n=14, 34%) journals. Seven (17%) studies were published in
nonclinical neuroscience journals; 2 (5%) in clinical medicine
journals; and 1 (2%) each in neuroradiology, public health, and
pharmacy journals. Studies were mostly conducted in the United
States (n=21, 51%), followed by Taiwan (n=4, 10%) and the
United Kingdom, Canada, and Australia (n=3, 7% each). Two
(5%) studies were conducted in China, and 1 (2%) study was
conducted in each of South Korea, Brazil, Iran, India, and
Slovenia (Figure 2).

Figure 2. Proportion of included studies (n=41), organized according to country of origin: the United States (n=21, 51%); Taiwan (n=4, 10%); the
United Kingdom, Canada, and Australia (n=3, 7% each); China (n=2, 5%); and South Korea, Brazil, Iran, India, and Slovenia (n=1, 2% each).
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Only 6 (15%) studies used strictly rule-based methods. The
majority of studies incorporated ML (n=35, 85%), either
exclusively (n=18, 44%) or in combination with rule-based
methods (n=17, 41%). Of the studies that used ML, most (n=31,
89%) used conventional ML methods, whereas 16 (46%) used
DL approaches (Table 3), and 12 (34%) used a combination of
both conventional ML and DL approaches.

As shown in Figure 3, the most frequently used conventional
ML algorithms were random forest (n=18, 58%), SVM (n=15,
48%), and logistic regression (n=15, 48%) models. Among

studies using DL approaches, transformers (n=10, 63%) were
the most commonly used algorithm, followed by convolutional
neural networks and RNNs (each n=7, 44%). The co-occurrence
of random forest and transformer algorithms was a prevalent
trend in research combining traditional ML with DL
methodologies (n=6, 15%). Studies that used DL only began to
appear in 2019 and later (Figure 4). The most often reported
performance metrics for ML models were precision or recall
(n=31, 76%), accuracy (n=22, 54%), area under the receiver
operating curve (n=20, 49%), and F1-score (n=19, 46%).

Figure 3. Relative proportions of machine learning algorithms used by the included NLP models. CNN: convolutional neural network; KNN: k-nearest
neighbor; LSTM: long- and short-term memory networks; MLP: multilayer perceptron; RNN: recurrent neural network; SVM: support vector machine.
*Other includes stepwise regression, ridge regression, an unspecified penalized regression method, latent Dirichlet allocation, and an unspecified neural
network with an unspecified number of layers.
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Figure 4. Number of studies applying natural language processing (NLP) to neurological conditions, stratified by NLP methodology and publication
year.

All 41 studies were model derivation studies, with only 7 (17%)
studies conducting additional external validation (Multimedia
Appendix 2). Furthermore, nearly all the study models were
developed retrospectively and were not applied in practice or
deployed in real-world environments, except for 3 studies. A
study by Li et al [16] developed a model for stroke detection
from imaging reports and then applied it to quantify the change
in stroke cases before and during the COVID-19 pandemic. A
second by Sung et al [53], also in the stroke category, evaluated
the deployment of a user-interface system to determine
intravenous thrombolysis eligibility built on the NLP model
devised. A third study by Wissel et al [49] created a model to
identify surgical resection candidates in adult patients with
epilepsy. The model was retrained prospectively to incorporate
new information.

Study Characteristics, Stratified by Condition
In studies focused on Alzheimer dementia, diagnosis and
detection was the only target of NLP (6/6, 100%). Disease
phenotyping and subtyping was the most common purpose of
NLP in stroke (10/20, 50%) and MS (4/5, 80%), whereas
prognostication was seen as often as diagnosis in epilepsy
studies (4/10, 40%; Figure S9 in Multimedia Appendix 2).
Studies that applied NLP for the purpose of disease treatment
or management were limited to stroke and epilepsy (Figure S9
in Multimedia Appendix 2).

Rule-based methods were used across all studies, except for
Alzheimer dementia, in which only ML approaches were used
(Figure S10 in Multimedia Appendix 2). Conventional ML
methods were used most often by Alzheimer dementia studies
(5/6, 83%), followed by stroke (16/20, 80%). Similarly, DL
methods were used predominantly by Alzheimer dementia (6/6,
100%) and stroke (8/20, 40%) studies (Figure S10 in Multimedia
Appendix 2). The transformer was the DL method used most
frequently in Alzheimer disease-related studies (5/6, 83%).

Discussion

Principal Findings
In this scoping review, 41 studies [13,16-22,25-57] that
investigated direct clinical applications of NLP to common
neurological disorders were identified. We found that the
majority of these studies focused on detection and diagnosis
and applied NLP to stroke, whereas we found no studies of NLP
that met our eligibility criteria in the clinical areas of migraine
or Parkinson disease. Methodologically, ML techniques were
used more often than rule-based methods, but a considerable
number of studies still relied on rule-based approaches in
combination with ML. While we observed that DL began to
emerge as a methodology for NLP in 2019, we found that the
transformer was the most commonly used DL algorithm overall.

At the time of writing, we believe our scoping review to be the
first to examine direct clinical NLP applications in common
neurological conditions. One prior review [58] investigated
NLP applications across the combined clinical specialties of
neurosurgery, spine surgery, and neurology, whereas another
evaluated the use of NLP in both psychiatry and clinical
neuroscience [59]. However, neither reviews analyzed studies
and NLP applications according to neurological condition. More
importantly, these reviews included many studies where NLP
was not applied for direct clinical use, instead aiming to perform
tasks such as characterizing patient cohorts [58], analyzing
information extraction, or determining causal inference between
concepts [59]. In contrast to this prior work, our review focused
on direct clinical applications of NLP.

Of note, we found no studies applying NLP to migraine or
Parkinson disease that met our eligibility criteria, thereby
highlighting a potential gap in NLP research focusing on these
disorders. This is perhaps unexpected, as the combined
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prevalence of migraine and Parkinson disease in the United
States exceeds that of both stroke and MS [12]. Two
explanations may account for this finding. One is that migraine
and Parkinson disease may rely less on radiographic imaging
studies and their reports to establish a diagnosis than stroke,
Alzheimer dementia, or MS. Given that many ML applications
in stroke have focused on neuroimaging [60], it is plausible that
stroke imaging reports could represent an important source of
data for NLP analyses. Indeed, the results of our review
demonstrate that stroke-related NLP studies made use of
radiographic reports as often as clinical notes for source text,
which could have resulted in a relatively higher number of NLP
studies within stroke than in other neurological conditions.

A second explanation may be that Alzheimer disease is a more
common cause of dementia worldwide than dementing
syndromes associated with Parkinson disease [61] and has in
turn garnered a larger proportion of research funding. National
Institutes of Health [62] research funding for Alzheimer
dementia was approximately US $3 billion in 2022, as compared
to US $259 million for Parkinson disease.

Our finding that NLP was most frequently applied to diagnostic
problems is expected, given that clinical decision support is a
common focus of artificial intelligence in medicine [63].
Historically, clinical decision support has also played an
important role in medical informatics by constituting the main
focus of archetypal systems such as MYCIN, INTERNIST-1,
and DXplain, which were first developed in the 1970s and 1980s
[64]. An alternative explanation is that the shortage of
neurologists that already exists worldwide [65] may have
potentially created a more urgent need for detection-oriented
NLP applications rather than NLP applications targeting
therapeutic management or prognostication.

Though diagnosis was the most common target of NLP overall,
we found that epilepsy-related studies focused as much on
prognostication as they did on diagnostic tasks. Given that
roughly one-third of all patients with epilepsy are drug resistant
[66], determining good surgical resection candidates as well as
predicting surgical outcomes are important objectives that have
been the focus of considerable research [67]. Consistent with
this, the epilepsy-related studies in the prognostication category
were directed toward identifying adult [49] and pediatric [42]
surgical candidates, predicting postsurgical outcomes [43], and
detecting risk factors for sudden unexpected death in epilepsy
[17].

With respect to the types of ML models we found in our review,
the relatively high proportion of conventional ML-based studies
using random forest and SVM (18/31, 58% and 15/31, 48%,
respectively) may have been related to the fact that SVM
together with random forest models generally represented the
dominant ML techniques prior to the advent of neural networks
[68] in diagnostic and clinical decision support applications
[63,69,70]. Despite its position as a potentially more basic
classification method than either SVM or random forest, logistic
regression was used as commonly as SVM in our analysis.

Furthermore, while we found that SVM and random forest
models were common in ML-based NLP approaches, the optimal
problems these models address are fundamentally different.

SVM generally works best as a binary classifier, whereas
random forest models are best used for classification tasks
involving multiple categories [71]. We found that the most
frequently used ML algorithms in stroke-related NLP studies
were random forest models. This matches the most frequent
target of NLP in stroke-related studies, which was disease
subtyping (a multiple classification problem).

Among DL algorithms, which are becoming increasingly
widespread in NLP [72], the transformer was the most
commonly used technique we identified. Unlike other word
embedding methods, a transformer processes a whole sequence
of text while preserving the context and meaning of words
[59,73]. Another significant advantage of transformers is that
they can use transfer learning, which first trains a model on a
learning task and then applies the model to a separate but closely
related task [58,74]. A prevalent example of transfer learning
in our results is Bidirectional Encoder Representations From
Transformers (BERT), a transformer model that was originally
trained using publicly available text from Wikipedia and
BookCorpus, a collection of free, unpublished novels consisting
of over 50 million sentences [75,76]. BERT can then be further
refined on a target training task and dataset before being passed
to a separate classification algorithm [28]. This is helpful in
situations where the target training set is small [28]. The high
frequency of Alzheimer disease–related NLP studies we found
using BERT is expected within this context, as these studies
often used the ADReSS speech dataset that consists of only 78
healthy controls and 78 patients with Alzheimer disease [28,45].

A particularly important finding of our review is that although
many of the NLP studies leveraged powerful and sophisticated
computational tools, most studies constitute research work rather
than reports of operationalization or evaluation in practical
settings. This is consistent with the current state of clinical NLP
outside of neurology, wherein real-world deployment of NLP
models continues to be limited [7,77,78].

One major obstacle to the implementation of NLP in clinical
practice is model generalizability [7]. Published NLP models
are usually internally validated rather than externally validated
[7,17], limiting the understanding of model accuracy beyond
the model’s original training environment [60]. We found this
to be true for the majority of studies identified in our review.
The lack of EMR standardization, including note formatting
[17,78], documentation styles, and radiographic report structures
across different medical institutions [7] and between clinicians,
may partly account for our observations. Furthermore, the
preponderance of English language as source text in NLP [79],
as demonstrated by the single study in our review using
non-English (Portuguese) text for analysis, suggests that the
generalizability of NLP within neurology is most likely limited
outside the English language.

Another major obstacle impeding the adoption of NLP tools is
the inherent lack of transparency of ML-based algorithms [60],
particularly artificial neural networks and other forms of DL
approaches [80]. These approaches have low transparency
because the computational methods they use to characterize
relationships between inputs and outputs are not readily
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intelligible to humans [7,78,80] acting as a black box that could
undermine clinicians’ trust in their performance.

The lack of well-defined regulatory guidelines and standards
overseeing the artificial intelligence space [81] has furthered
this mistrust. Compromise of personal health data, algorithmic
bias, and the question of how to attribute culpability when
diagnostic errors arise [82,83] are all ethical concerns that may
serve to explain the relative paucity of studies across all
neurological conditions that externally validated DL models.

Finally, the lack of portability of NLP applications into external
EMRs is another factor that has restricted the development of
NLP models to the research arena. External software modules
containing ML and DL models are challenging to integrate into
EMRs [1,84], as most implementations require a high level of
computing infrastructure and technical expertise that many
hospital information technology systems and personnel may
lack [84]. Recent work suggests few EMR-integrated
aggregative tools exist to display NLP findings to clinicians in
a digestible format [85]. To address these barriers, some authors
have advocated for collaborations between NLP researchers
and EMR companies [77].

Limitations and Future Work
Our scoping review has several limitations. First, we note that
the target of NLP was categorized according to author
experience and interpretation of the literature, which may have
underreported the application of the published NLP algorithms.
Second, due to the variable performance metrics and outcomes
across studies, we did not aggregate measurements of
performance in our review, and we therefore could not reliably
provide summary performance metrics for NLP models within
individual diseases, applications, or outcomes. Future work
should focus on individual outcomes within a clinical disorder

for a more exact appraisal of NLP model performance than this
review.

Third, this review only included studies based on common
neurological disorders, direct clinical applications of NLP, and
homogeneous clinical populations, which limited the number
of studies we identified. It is therefore important to note that
this review cannot be used to make definitive conclusions on
the state of NLP research across all neurological disorders.
Future efforts can be directed at characterizing the use of NLP
across less common neurological disorders as well as in
heterogeneous or ambiguously defined clinical populations. As
NLP technologies continue to advance, it will also be critically
important to evaluate studies that use newer transformers, such
as GPT3, which have better performance than BERT models
[59].

Conclusions
The abundance of unstructured text data in modern-day EMRs
as well as the emphasis in neurology on narrative history and
physical examination and heavy reliance on ancillary
information such as radiographic reports and speech, all create
an optimal use case for applying NLP for the diagnosis,
management, or prognostication of neurological disorders. To
our knowledge, this is the first attempt to systematically
characterize research efforts to investigate direct NLP
applications to common neurological conditions. Our review
reveals gaps in neurological NLP research, showing a relative
deficiency of NLP studies in subspecialties outside of stroke or
epilepsy, and underlines the need to actualize NLP models
outside of the research phase. Moreover, the current emphasis
of NLP on diagnostic tasks suggests that NLP may be
particularly useful in settings that lack access to neurological
expertise.
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