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Abstract

Neurological disorders are the leading cause of physical and cognitive disability across the globe, currently affecting up to 15%
of the world population, with the burden of chronic neurodegenerative diseases having doubled over the last 2 decades. Two
decades ago, neurologists relying solely on clinical signs and basic imaging faced challenges in diagnosis and treatment. Today,
the integration of artificial intelligence (AI) and bioinformatic methods is changing this landscape. This paper explores this
transformative journey, emphasizing the critical role of AI in neurology, aiming to integrate a multitude of methods and thereby
enhance the field of neurology. Over the past 25 years, integrating biomedical data science into medicine, particularly neurology,
has fundamentally transformed how we understand, diagnose, and treat neurological diseases. Advances in genomics sequencing,
the introduction of new imaging methods, the discovery of novel molecular biomarkers for nervous system function, a
comprehensive understanding of immunology and neuroimmunology shaping disease subtypes, and the advent of advanced
electrophysiological recording methods, alongside the digitalization of medical records and the rise of AI, all led to an unparalleled
surge in data within neurology. In addition, telemedicine and web-based interactive health platforms, accelerated by the COVID-19
pandemic, have become integral to neurology practice. The real-world impact of these advancements is evident, with AI-driven
analysis of imaging and genetic data leading to earlier and more accurate diagnoses of conditions such as multiple sclerosis,
Parkinson disease, amyotrophic lateral sclerosis, Alzheimer disease, and more. Neuroinformatics is the key component connecting
all these advances. By harnessing the power of IT and computational methods to efficiently organize, analyze, and interpret vast
datasets, we can extract meaningful insights from complex neurological data, contributing to a deeper understanding of the
intricate workings of the brain. In this paper, we describe the large-scale datasets that have emerged in neurology over the last
25 years and showcase the major advancements made by integrating these datasets with advanced neuroinformatic approaches
for the diagnosis and treatment of neurological disorders. We further discuss challenges in integrating AI into neurology, including
ethical considerations in data use, the need for further personalization of treatment, and embracing new emerging technologies
like quantum computing. These developments are shaping a future where neurological care is more precise, accessible, and
tailored to individual patient needs. We believe further advancements in AI will bridge traditional medical disciplines and
cutting-edge technology, navigating the complexities of neurological data and steering medicine toward a future of more precise,
accessible, and patient-centric health care.
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KEYWORDS

neurology; artificial intelligence; telemedicine; clinical advancements; mobile phone

JMIR Neurotech 2024 | vol. 3 | e59556 | p. 1https://neuro.jmir.org/2024/1/e59556
(page number not for citation purposes)

Gutman et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

mailto:shahar.shell@technion.ac.il
http://dx.doi.org/10.2196/59556
http://www.w3.org/Style/XSL
http://www.renderx.com/


Introduction

Neurological disorders are a leading cause of disability and
mortality worldwide, affecting millions of individuals and
placing a significant burden on health care systems. In 2019,
these disorders were responsible for nearly 10 million deaths
and 349 million disability-adjusted life-years globally, with
stroke and neonatal encephalopathy being the primary
contributors [1,2]. Over the past 3 decades, the prevalence of
neurological disorders has increased substantially, particularly
in low- and middle-income countries, and this trend is expected
to continue as populations age [1]. However, we have also
witnessed remarkable advancements in technology and data
science that are transforming the field of neurology. These
developments offer new hope for improving the diagnosis,
treatment, and management of neurological disorders. This
paper explores the evolving landscape of neurology, focusing
on how the integration of cutting-edge technologies and vast
datasets is revolutionizing our understanding of neurological
disorders and paving the way for more personalized, effective,
and accessible care.

In the past 25 years, numerous technological advancements
have significantly impacted the field of neurological medicine.
These advancements include the integration of cutting-edge
imaging technologies that offer deeper insights into brain
anatomy, physiology, and function; the use of advanced
electrophysiological techniques to create detailed brain region
and connectivity maps; breakthroughs in neurogenetics and
molecular biology that aid in identifying and characterizing
neurological conditions; and the expansion of telemedicine,
which allows physicians to deliver more efficient and accessible
care.

Specifically, one of the most notable advancements has been
the widespread adoption of electronic health records (EHRs).
EHRs have not only transformed clinical practice but also
opened up vast opportunities for research by creating large
datasets that can be analyzed using advanced data science

techniques. The integration of EHRs with other data sources,
such as imaging and genetic data, has enabled researchers to
identify novel disease subtypes, predict patient outcomes, and
develop personalized treatment strategies. Another area where
technology has made significant strides is in the development
of novel diagnostic tools and biomarkers. For example, advances
in neuroimaging techniques, such as functional magnetic
resonance imaging (fMRI) and positron emission tomography
(PET) scans, have facilitated more accurate diagnosis of
neurological diseases. Similarly, the discovery of new genomic
and molecular biomarkers has paved the way for more targeted
therapies and precision medicine approaches. Furthermore, the
increasing availability of large-scale neurological datasets,
coupled with advancements in machine learning and artificial
intelligence (AI), has opened new possibilities for predictive
and decision support systems. These tools can assist clinicians
in making more accurate diagnoses, predicting disease
progression, and optimizing treatment plans based on individual
patient characteristics.

It is important to acknowledge that while this paper aims to
provide a comprehensive overview of the impact of AI on
neurology, its scope is necessarily limited. We have focused on
key areas that, in our assessment, have most significantly
influenced the field of neurology over the past quarter-century.
The subsequent 5 chapters of this paper dive deeper into these
advancements, exploring how they are reshaping the landscape
of neurological care and research (Figures 1 and 2). Rather than
attempting an exhaustive analysis of each topic, our goal is to
highlight the current state of the art, identify pressing challenges
and promising opportunities, and suggest potential future
directions within each domain. By doing so, we hope to provide
a balanced perspective on the transformative potential of AI in
neurology, while also recognizing the vast and rapidly evolving
nature of this field. This paper serves as a starting point for
further exploration and discussion, acknowledging that the
integration of AI in neurology is an ongoing journey with many
exciting developments yet to come.
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Figure 1. Fields of advances in the last half-century in neurology. AI: artificial intelligence; CT: computed tomography; EHR: electronic health record;
GWAS: genome-wide association study; MRI: magnetic resonance imaging; NGS: next-generation sequencing; PET: positron emission tomography;
RNA-seq: RNA sequencing.
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Figure 2. Timeline of key technological advances in the last 25 years. AD: Alzheimer disease; ADNI: Alzheimer’s Disease Neuroimaging Initiative;
AI: artificial intelligence; ALS: amyotrophic lateral sclerosis; CAD: computer-aided design; CT: computed tomography; EHR: electronic health record;
ENIGMA: Enhancing NeuroImaging Genetics through Meta‐Analysis; FDG-PET: fluorodeoxyglucose-positron emission tomography; GWAS:
genome-wide association study; MRI: magnetic resonance imaging; NIH: National Institutes of Health; scRNA-seq: single-cell RNA sequencing;
SeLECT: severity of the stroke, large artery atherosclerosis, early seizure, cortical involvement, and territory of the middle cerebral artery.

The Digital Transformation of
Neurological Evaluation: From Bedside
Physical Examination to Data-Driven
Diagnostics

Overview
The transition from traditional physical examination to digital
data acquisition and patient triage in outpatient clinics marks a
significant paradigm shift in neurological evaluation. It is widely
accepted that a meticulous patient history is crucial for achieving
an accurate and timely diagnosis, with estimates suggesting that
70% to 90% of medical diagnoses can be determined by history
alone [3]. This, combined with a physical examination and a
comprehensive understanding of neuroanatomy, constitutes a
traditional approach to neurological diagnosis, primarily aimed
at pinpointing the disease’s anatomical location. The specific
features that make neurology unique include a heavy reliance
on complex physical examination for diagnosis and follow-up,
use of specialty-specific neurophysiologic testing (eg,
electromyography or nerve conduction studies,
electroencephalogram [EEG], sensory evoked potential studies,
and sensory evoked potentials), high use of neuroradiologic
imaging such as magnetic resonance imaging (MRI) and
computed tomography (CT), use of videotaped examinations
by clinicians for movement disorders, use of patient-recorded
videos or pictures in the medical record (eg, seizures,
pseudoseizures, tics, and dyskinesias), and importance of patient
documentation of episodic complaints (eg, migraines and
seizures).

While traditional approaches have been the backbone of
neurological practice, the rapid growth of digital technologies
and the increasing volume of patient data have necessitated a
shift in how neurologists approach diagnosis and treatment. The
digitization of medical records, in particular, has been a game
changer, allowing clinicians to capture, store, and analyze vast
amounts of patient information in ways that were previously
unimaginable. This transition has not only improved the
efficiency and accuracy of neurological care but also opened
up new avenues for research and discovery.

The adoption of EHRs has been a gradual process, driven by
advances in computing technology and the recognition of their
potential to improve patient care. The journey began in the
1960s with the earliest attempts to digitize patient information,
but it was not until the 1990s that electronic medical records
began to gain widespread traction. In the 1990s, the rise of more
affordable, powerful, and compact computing technologies,
alongside the increasing use of local area networks and the
internet, catalyzed the development and adoption of electronic
health and medical records, also known as EHRs [4]. Initially,
EHRs were predominantly deployed in academic medical
facilities, containing only partial medical information, with the
remainder still documented on paper [5]. These early systems
were mainly hosted on large mainframes with limited
functionalities, focusing on laboratory and medication [6]. Their
adoption faced challenges due to high costs, data-entry errors,
and only partial acceptance by physicians [7]. At this stage,
EHRs were primarily used for data interchange among
physicians [8] and for image scanning and documentation [9],
with clinical use increasing as computers became more
integrated into health care as “physician workstations” [10].
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There has been rapid adoption of EHRs over the last few years,
spurred largely by financial incentives allocated by the Health
Information Technology for Economic and Clinical Health Act
as part of the American Recovery and Reinvestment Act of
2009. In the years that have since passed, the global use and
reliance on EHRs in departments such as the emergency
department have grown stronger. By 2015, EHRs had gained
recognition from major medical organizations and governments
as essential for storing patient data to optimize care delivery
[11]. This app endowed the hospital with improved web or
client-server–based systems with relational databases,
facilitating easier data access and the sharing of medical
information through health information exchange networks [12].
This period also saw efforts to standardize EHRs internationally,
allowing for a common set of data exchange standards and
terminology. In outpatient clinics, there is a consensus that the
integration of EHR has resulted in a significant reduction in

overall waiting times and a decrease in documentation errors
[13].

Improved Patient Care and Triage in Neurology
The implementation of EHR system has fundamentally altered
both research paradigms and clinical workflows for neurologists
(Figure 3). The EHR system, by its very design, has transformed
the way neurologists compose clinical notes, often replacing
individualized communication styles with template-based entries
that aggregate vast amounts of data with minimal effort.
Neurologists have written about the challenges of EHR use with
many published articles discussing the difficulties in neurology
practice. Recent publications report concerns with the efficiency
of the use of EHRs in academic practice, challenges of
implementation, improper documentation, issues of privacy,
and impairing the physician-patient relationship.

Figure 3. Summary of neurology-related data science–based advances in the last half-century. AD: Alzheimer disease; ADNI: Alzheimer’s Disease
Neuroimaging Initiative; AI: artificial intelligence; ALS: amyotrophic lateral sclerosis; CRISPR: clustered regularly interspaced short palindromic
repeats; EHR: electronic health record; ENIGMA: Enhancing NeuroImaging Genetics through Meta‐Analysis; GWAS: genome-wide association
study; IMNM: immune-mediated necrotizing myopathy; NIH: National Institutes of Health; PRx: pressure reactivity index; SeLECT: severity of the
stroke, large artery atherosclerosis, early seizure, cortical involvement, and territory of the middle cerebral artery.

The adoption of EHRs has had a significant impact on the field
of neurology, along with the broader medical community,
influencing everything from clinical practice and patient care
to research and administration. EHR systems have standardized
the documentation process, making it easier to maintain
consistency across patient records. This is particularly beneficial
in neurology, where the complexity of neurological conditions
requires detailed recording of clinical findings, treatment plans,
and patient responses. However, the standardization can

sometimes lead to a loss of individual clinician’s nuances in
documenting their observations and thought processes,
potentially impacting the richness of the clinical narrative.
Another area is accessibility and coordination of care, which
allows for easier access to patient records across different health
care settings, which is crucial for neurology patients who often
require multidisciplinary care. This accessibility improves
coordination among health care providers, leading to more
integrated care plans and better patient outcomes. Furthermore,
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EHR systems have facilitated the growth of telemedicine, which
has become especially important for neurology patients with
mobility issues or those living in remote areas. One
overwhelming success is the wealth of data captured in EHRs
that can be a gold mine for neuroinformatic research and the
development of predictive models for neurological diseases.
This aspect is particularly relevant in academic and research
settings where EHR data can be analyzed to uncover patterns,
predict outcomes, and guide the development of new treatment
protocols [14].

Prediction Models Using Electronic Records
In this current era of big data, the focus has shifted toward
leveraging the vast databases of EHRs through AI and machine
learning technologies. This involves developing AI algorithms
for predicting patient risk and personalized treatment plans [15].
One example is a study that focuses on addressing the gap in
predicting poststroke seizures, a significant concern in neurology
given stroke’s role as a leading cause of acquired epilepsy in
adults [16]. The researchers aimed to develop and validate a
prognostic model, named the SeLECT score (“Se” severity of
the stroke, “L” large artery atherosclerosis, “E” early seizure,
“C” cortical involvement, and “T” territory of the middle
cerebral artery), for predicting the risk of late seizures (occurring
more than 7 days after) in individuals who have had an ischemic
stroke. The SeLECT score was developed through a
multivariable prediction model using data from 1200 participants
in Switzerland and validated externally in 1169 participants
across Austria, Germany, and Italy. It incorporates 5 clinical
predictors: severity of stroke, large-artery atherosclerotic
etiology, early seizures, cortical involvement, and territory of
middle cerebral artery involvement. The model’s effectiveness
was demonstrated by its ability to stratify the risk of late seizures
after stroke with a concordance statistic of 0.77 in validation
cohorts, indicating good predictive accuracy. This approach
exemplifies the potential of predictive models to transform
patient care in neurology by enabling tailored interventions
based on individual risk assessments [16].

Another example is a study that introduces a statistical model
designed to improve the diagnosis of immune-mediated
necrotizing myopathy (IMNM), a condition where delayed
diagnosis can lead to significant morbidity. In a subset of IMNM
diagnosis is particularly challenging as in patients describe
chronic course and lack specific symptoms. The model leverages
electrical myotonia versus fibrillations as biomarkers to predict
immunotherapy treatment response, based on data from 119
cases of IMNM and 938 other patients with myopathy. All
patients underwent electrophysiological evaluations, muscle
biopsies, neurological examinations, and creatine kinase
measurements [17]. In the broader context of predictive models
in neurology, this study exemplifies how statistical models can
significantly enhance the diagnosis and treatment of neurological
conditions. By identifying specific biomarkers and incorporating
them into a predictive framework, such models offer a path
toward more personalized and timely interventions. This
approach mirrors the potential seen in the SeLECT score for
predicting poststroke seizures, further illustrating the critical
role of predictive models in advancing neurology practice.

Predictive models may also incorporate other types of data,
including imaging, biomarkers, and environmental and lifestyle
factors. The scope of predictive models is broad; in cerebral
hemodynamics, they focus on assessing cerebral autoregulation
to determine the optimal cerebral perfusion pressure for
individual patients. For example, the pressure reactivity index
[18] uses data from ventricular catheters [19] or
intraparenchymal devices [20]. Cerebral metabolism is another
area benefiting from predictive analytics, with algorithms
analyzing brain interstitial fluid via intracerebral microdialysis
to detect metabolic distress, anaerobic metabolism, cell injury,
and membrane breakdown. This monitoring facilitates early
detection of metabolic changes and guides therapeutic
interventions [21]. In addition, predictive analytics plays a
critical role in brain oxygenation monitoring, ensuring a balance
between oxygen supply and demand. The primary methods in
this field include direct brain tissue oxygen tension monitoring
[22], jugular venous bulb oximetry [23,24], and near-infrared
spectroscopy [25]. Moreover, in recent years, the development
of predictive analytics for neurological disorders has seen
significant advancements. For instance, researchers have derived
a single “Alzheimer Disease Identification Number” from
clinical and neuroimaging data, offering a novel approach to
tracking disease severity [26]. In multiple sclerosis (MS), a
developed predictive model can identify MS subtypes through
MRI data and unsupervised machine learning [27]. In Parkinson
disease (PD), predictive models have identified antitumor
necrosis factor therapy as a potential therapeutic option for
mitigating disease risk among patients with inflammatory bowel
disease [28]. These advanced analytics methods demonstrate
improved accuracy and prognostication over traditional models,
offering new insights into patient management and treatment
outcomes in neurovascular research.

This shift toward health care institutions taking on the
responsibility for developing decision support tools marks a
significant point in the regulatory environment and the need for
tailored solutions. At the same time, the global health care sector
is increasingly tapping into EHR data for AI-based projects,
aiming to use the vast amount of medical data to enhance patient
outcomes through disease prediction, treatment personalization,
and the acceleration of new drug discovery especially in
neurology. These efforts require strict protocols for data
standardization, processing, and privacy to maximize the
benefits of AI research while protecting sensitive patient
information. Supported by initiatives such as those from the
Korean government [29,30], there is a growing movement
toward leveraging AI in health care, pointing toward a future
where AI, powered by EHR data, becomes central to advancing
medical research and delivering personalized care to patients.

Creation of Large Accessible Datasets
Despite the critical importance of training databases, there is a
lack of publicly accessible, reliable datasets. This shortage
primarily results from data sharing barriers across institutions,
the time and cost of data annotation, and occasionally, the
complexity of building data processing pipelines. Training data
may be preannotated, a process known as “supervised learning,”
or it may not be, which is referred to as “unsupervised learning.”
In the realm of AI in health care, supervised learning models
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are predominantly used due to the critical nature of their
applications, where human lives hinge on the accuracy of AI
outputs. To address this issue, several national and multinational
data banks have emerged, covering various neurological
conditions [31]. From 2013 to 2014, several governments
initiated national initiatives aimed at understanding brain
function, such as the National Institutes of Health (NIH) BRAIN
Initiative [32], the Human Brain Project [33], and the Brain
Mapping by Integrated Neurotechnologies for Disease Studies
project in Japan [34]. Many of them soon became global and
involved collecting and analyzing voluminous data, including
neuroimaging, genetic, biospecimen, and clinical assessments,
to unlock and decipher the genesis and prognosis of neurological
conditions. As the collection of data became increasingly
prominent, the need for procedures, standards, hardware, and
software for data-intensive computing increased [35]. These
projects leverage big data to explore the brain structure
(“connectome”) and function with the ultimate goal of
developing new treatments for neurological diseases.

For instance, the Alzheimer’s Disease Neuroimaging Initiative
(ADNI), which was launched in 2005, aims to identify
biomarkers for the early detection and monitoring of Alzheimer
disease (AD). It supports interventions, prevention,
and treatments through early diagnostics and facilitates global
data sharing [36,37]. By collecting and analyzing data on
cognitive functions, brain structure, metabolism (via PET and
MRI scans), genetics, and biochemical changes in a diverse
cohort, ADNI has provided significant contributions. Its most
substantial contribution to date is the development of
methodologies for the early diagnosis of AD using biomarker
tests, such as amyloid PET scans and cerebrospinal fluid lumbar
punctures. This approach has revealed a significant number of
individuals in their mid-70s showing preclinical stages of AD
[38], underscoring the critical importance of early prevention
and treatment strategies for the disease.

In parallel, the Enhancing NeuroImaging Genetics through
Meta‐Analysis Consortium [39], established in 2009,
represents another pivotal big data initiative in the field of
neuroscience. It aims to integrate neuroimaging and genetic
data to investigate brain genotype-phenotype relationships.
Notable achievements of the Enhancing NeuroImaging Genetics
through Meta‐Analysis consortium include identifying
genome-wide variants related to brain imaging phenotypes
[40,41] and examining MRI-based abnormalities across various
conditions [39,42] such as major depressive disorder [43] and
bipolar disorder [44]. These discoveries have substantially
improved diagnostics and patient care, showcasing the value of
integrating big data in advancing neuroscience research.

Beyond the contributions of major organizations, recent years
have witnessed the emergence of numerous big data–driven
diagnostic solutions in neuroscience from smaller entities. Key
discoveries include the identification of MS subtypes using
sophisticated imaging analyses and improvements in MRI data
[27] and unsupervised machine learning as well as the
differentiation of dementia subtypes through the analysis of
multimodal data from ADNI [45]. In addition, significant strides
have been made in depression research, highlighted by the
successful prediction of treatment response through various

methods: connectome gradient dysfunction paired with gene
expression [46], resting state connectivity markers of
transcranial magnetic stimulation response [47], and a
sertraline-response EEG signature [48]. In terms of migraine
research, the Italian Migraine Registry is being developed to
serve as a comprehensive source of clinical, biological, and
epidemiological big data. This registry aims to enhance our
understanding of therapeutic response rates and the efficacy of
treatments [49]. Another notable diagnostic initiative is the
iPrognosis mobile app designed to expedite the diagnosis of PD
and improve the quality of life for patients with PD. The app
functions by collecting data during the user’s interaction with
smart devices, including smartphones and smartwatches,
showcasing the innovative use of technology in patient care and
research [50].

In summary, over the past decade, numerous emerging AI
technologies have significantly enhanced patient flow through
various means. These advancements range from facilitating
direct intrahospital communication to autonomously analyzing
radiological images and assisting in the selection of patients for
specialized treatments. The development and refinement of
these AI systems rely heavily on access to extensive data banks,
which serve as foundational resources for training purposes.
Such repositories, both large and small, have already yielded
substantial improvements in the diagnosis of numerous
neurological conditions. The trend toward leveraging big data
is expected to intensify, with the emergence of larger databases
in the coming years. This expansion will be further supported
by an increasing volume of data collected through wearable
technology. Consequently, these databases will play a crucial
role in enabling the development of new AI-driven approaches
for treatment and diagnosis [51].

New Communication Technologies:
Telemedicine and Remote Patient
Monitoring

Overview
As powerful an approach as AI-mediated medical treatment is,
it still does not fully address the growing demand for
neurological care, which is exacerbated by a shortage of
neurologists. This challenge is expected to intensify with the
expanding aging population, highlighting the urgent need for a
more substantial neurological care provision. Telemedicine
emerges as a promising solution to bridge this gap, offering
access to those hindered by geographical or physical barriers
such as mobility issues (Figure 3). It facilitates earlier access
to specialized care, potentially reducing the strain on patients
and caregivers while enhancing patient satisfaction. In addition,
telemedicine provides an avenue for neurologists facing social,
physical, or health-related challenges to maintain or extend their
practice, including those considering part-time work or
retirement. It also allows for more efficient use of neurologists’
time by eliminating travel between facilities, thereby increasing
their availability for patient evaluations and the ability to serve
remote clinics. Telemedicine leverages a wide array of
technologies, including 2-way videoconferencing, data storage
and forwarding, and mobile and wireless devices, to deliver
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care more flexibly and efficiently [52]. Despite previous barriers
to telemedicine adoption, such as reimbursement issues, recent
policy changes by the Centers for Medicare and Medicaid
Services, which expanded Medicare-covered telehealth services
for 2019, have significantly improved access to neurological
care. These changes not only enhance patient care options but
also open new revenue streams for neurologists, signaling a
shift toward a more accessible and sustainable model of
neurological care delivery [53,54].

Virtual Consultations
Telestroke services, first described in 1999 and formally
integrated into stroke care systems for over a decade, have
significantly influenced the broader field of telemedicine. This
period has seen expanded access to care, improvements in
quality, and higher rates of reperfusion therapy for patients with
ischemic stroke [55]. In addition, comparisons between
telestroke and in-person evaluations have shown similar rates
of stroke mimics, indicating that assessment scales and imaging
interpretations are just as effective when conducted remotely
[56]. Telestroke’s acceptance across diverse cultures further
underscores its effectiveness and potential for broader
application. However, despite these strides in enhancing stroke
care through telemedicine, there remains a gap in data regarding
the suitability and practicality of telemedicine for treating other
neurological conditions [57], highlighting an area ripe for
exploration and development.

Another example is in neuromuscular conditions that encompass
a wide range of disorders, from common diabetic neuropathy
to rare diseases such as periodic paralysis. Many of these
conditions, including amyotrophic lateral sclerosis (ALS),
necessitate a comprehensive, multidisciplinary management
approach. Despite rapid advancements in diagnostic
technologies, the accurate diagnosis of many neuromuscular
disorders often hinges on detailed neurological examinations
to detect subtle clinical signs that might be overlooked in
teleneurology assessments. However, telemedicine has been
found beneficial for patients with established diagnoses and
stable symptoms, offering a convenient option for follow-up
evaluations [58]. Research on the use of teleneurology
specifically for neuromuscular disorders is limited, and only a
handful of studies have been published to date. These studies,
primarily focused on patients with a confirmed diagnosis of
ALS [55], revealed a generally positive perception of
teleneurology among patients, caregivers, and health care
providers. Patients expressed high levels of satisfaction
appreciating particularly the elimination of travel-related
burdens, which led to less stress and more comfortable medical
interactions. In addition, a smaller study involving patients with
advanced facioscapulohumeral muscular dystrophy indicated
that teleneurology was well-received by both patients and
caregivers [57]. The quality of care provided via teleneurology
was rated highly in patient questionnaires, although it was noted
that acute care issues were not addressed in these evaluations.

There are other examples such as concussions and traumatic
brain injuries [59,60], dementia evaluations [61], and the
management and follow-up of patients with epilepsy [62,63].
It has also facilitated the diagnosis and treatment of nonacute

headaches [64-66], assessment of movement disorders [67-69],
remote care for MS [70,71], as well as follow-up consultations
and care management patients with neuromuscular diseases
[52,72]. The COVID-19 pandemic saw an increase in
telemedicine use across specialties to manage patient care during
lockdowns, mask mandates, and overall minimization of
personal interactions. This era is characterized by the adoption
of telemedicine on a national scale, exemplified by Saudi
Arabia's adoption of telemedicine as an alternative health
delivery system [73] and the launch and deployment of a
telemedicine program by the Italian government [74].

Improving Patient Flow and Early Detection
Stroke is a highly prevalent neurological disorder, affecting
approximately 9.4 million Americans aged >20 years between
2017 and 2020 [75]. More than half of the patients who
experienced stroke were left chronically disabled [76], and the
annual mortality rate as of 2020 was 160,000 Americans [75].
For many years, stroke diagnosis was significantly hampered
by time delays between the initial detection at radiologic centers
and subsequent treatment at thrombectomy centers within
hospitals. As of 2016, this delay averaged nearly 100 minutes
in the United States, leading to increased morbidity [77] and
disability [78]. In response to this challenge, an AI company
developed a convolutional neural network (CNN) algorithm
capable of automatically detecting ischemic stroke patterns
associated with large vessel occlusions (LVOs) [79]. Upon
identifying an LVO, the algorithm autonomously alerts the
stroke treatment team, bypassing the need for any intervention
by the clinician who requested the radiologic examination.
Alerts are dispatched through a mobile app, facilitating
immediate communication and resulting in an average reduction
of 52 minutes in the time to LVO treatment initiation [80].
Beyond facilitating direct communication, modern AI-based
telestroke systems enhance patient flow by autonomously
analyzing radiological images, often surpassing the capabilities
of human radiologists [81]. Clinical AI today is adept at
interpreting CT and MRI scans to determine the size and extent
of brain damage caused by ischemic strokes [81] and can even
forecast the potential progression of the stroke [82].

AI has also augmented radiologist performance by aiding in the
selection of patients for endovascular thrombectomy. This is
achieved through the integration of automated Alberta Stroke
Program Early CT Scores (ASPECTS) with clinical
presentations, thereby correlating with the NIH Stroke Scale
scores [83,84]. Moreover, AI proves its proficiency in acute
prognosis prediction by evaluating detected infarct volumes
[85] or white matter hyperintensities [86]. It even enables
predicting treatment outcomes [84,87,88] with remarkable
accuracy, including a notable 7% improvement in forecasting
symptomatic intracerebral hemorrhage [89]. These
advancements highlight AI’s broad application in stroke care,
from the analysis of radiological imaging to the identification
of stroke indicators, enhancing intrahospital communication
and significantly contributing to the decision-making process
for timely and effective treatments.
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Quantum Computing
Quantum computing represents the potential to change the way
we view data storage, specifically in neurology. Unlike classical
computers, which use bits to process information as binary 0s
or 1s, quantum computers use qubits that can exist in multiple
states simultaneously due to superposition. This allows quantum
computers to process vast amounts of data at unprecedented
speeds, making them exceptionally powerful for complex
computations. Quantum computing could significantly enhance
our ability to analyze large datasets, such as those generated
from neuroimaging, genomics, and EHRs. The ability to process
and analyze these massive datasets more efficiently can lead to
more accurate models of brain function, disease progression,
and treatment outcomes. For example, quantum algorithms
could optimize machine learning models used for diagnosing
neurological disorders, predicting disease trajectories, and
personalizing treatment plans.

In summary, telemedicine and remote patient monitoring have
emerged as transformative forces in neurological care, offering
unprecedented access, convenience, and efficiency. From virtual
consultations for stroke, neuromuscular disorders, and
movement disorders to AI-driven early detection and
prognostication in acute stroke management, these technologies
are reshaping the landscape of neurological services. As we
navigate the challenges posed by an aging population and a
shortage of neurologists, the continued adoption and
advancement of telemedicine hold immense promise in ensuring
timely, equitable, and effective care for patients with
neurological conditions worldwide.

Genetics and Omics: Driving
Personalized Medicine in Neurology

Overview
The genetic and molecular insights gained from omics studies
are informing the development of neurotechnological
interventions, from brain-computer interfaces (BCIs) to
neuroprosthetics (Figure 3). Despite the historical limitations
imposed by the high costs of genetic analysis and the constrained
ability to address neurological disorders once identified, recent
technological advancements in DNA sequencing and gene
editing have propelled genetic analysis and gene therapy to the
forefront of clinical neurology. These innovations promise
significant improvements in patient care, emphasizing the
critical role of genetics in understanding and managing
neurological diseases. The human genome’s complexity, with
its 3 billion nucleotides, of which <2% encode proteins,
underlines the intricate relationship between genetic variations
in both protein-coding genes and noncoding regulatory DNA
and disease risk. Diseases can be monogenic, resulting from a
single gene mutation, or polygenic, involving mutations across
multiple genes. The advent of next-generation sequencing (NGS)
has exponentially increased the speed, accuracy, and
affordability of DNA sequencing, making it possible to use an
individual’s genome to guide their medical care. This leap in
sequencing technology, alongside developments in gene editing,
particularly Clustered Regularly Interspaced Short Palindromic
Repeats (CRISPR)/Cas9, marks significant advancement toward

correcting genetic mutations responsible for neurological
diseases.

The integration of genomic information from genome-wide
association studies (GWASs) for predicting disease risk and
aiding in the identification of patient populations for clinical
trials, points toward a future where genetic screening plays a
crucial role in early intervention strategies. As gene-based
diagnostics and treatments become more accessible and refined,
the potential for addressing a vast array of neurological
conditions grows, underscoring the importance of continued
investment in basic science research to fuel the development of
tomorrow’s treatments.

Genetics in Predictive Analytics
Together, NGS and GWAS significantly enhance neurological
predictive analytics by offering a comprehensive approach to
understanding complex diseases. NGS provides detailed genetic
screening and diagnosis, enabling precise prognostication,
informed treatment planning, and accurate genetic counseling
through genetic risk scores. It deepens our understanding of
disease mechanisms by mapping phenotype or genotype
correlations, paving the way for novel therapies and personalized
medicine in neurology. GWAS, in turn, identifies genetic loci
associated with various neurological conditions, illuminating
their heritability and pathophysiology and revealing potential
therapeutic targets. Collectively, these technologies form a
potent toolkit for elucidating the genetic foundations of
neurological disorders, promising advancements in treatment
and patient care [90-92].

In the past 2 decades, GWAS facilitated many discoveries, such
as the identification of multiple novel risk loci in
neurodegenerative diseases like AD and PD (CR1, BIN1, and
PICALM for AD [93]; SNCA and MAPT for PD [94]) that
elucidate roles in lipid processing, the immune system, and
synaptic-cell functioning pathways. Similarly, in ALS, GWAS
findings have highlighted genes such as UNC13A and the
significance of the 9p21.2 region in both familial and sporadic
forms [95,96]. Chronic conditions such as MS [97], epilepsy
[98], and restless legs syndrome [99] have benefited from
GWAS revealing numerous loci, particularly highlighting the
autoimmune nature of MS and the dopaminergic
neurotransmission and iron dysregulation in restless legs
syndrome. Cerebrovascular disorders, such as stroke [100] and
Moyamoya disease [101], have revealed specific genetic risk
factors through GWAS, including the identification of 8 different
loci causing neurological instability postischemic stroke and
the strong association of the RNF213 locus with Moyamoya
disease risk. These discoveries underscore the complexity of
neurological diseases and the crucial role of genetic factors,
paving the way for targeted therapies and improved diagnostic
strategies.

Genetic insights are instrumental for predictive models that use
algorithms and statistical techniques, including machine learning
and neural networks, to identify patterns and predict future
clinical outcomes from data. For example, in neurovascular
conditions such as cerebral aneurysms [102] and arteriovenous
malformations [103], predictive models have successfully
forecasted risks of cerebral aneurysm rupture and outcomes
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following endovascular treatment of arteriovenous
malformations. These predictions are based on a combination
of basic demographics, clinical information, and computational
blood flow simulations processed through machine learning
and image processing techniques.

Beyond DNA sequencing, other “omics” have been
transformative in various neurology traits. For instance,
transcriptome analysis, used to measure the expression levels
of genes, provided significant insights across various diseases.
In AD, it uncovered 3 molecular subtypes [104] and led to the
development of a blood RNA test that distinguishes AD from
other dementias before symptom onset [105,106], also
highlighting the downregulation of NeuroD6 as a potential
biomarker [107]. For PD, it enabled patient stratification based
on mitochondrial or lysosomal dysfunctions and assisted in
selecting neuroprotective compounds [108]. In ALS,
transcriptome analysis facilitated the molecular classification
into 2 distinct subtypes, sporadic ALS group 1 and group 2, by
analyzing deregulated genes and pathways in postmortem cortex
transcriptomes [109,110]. Moreover, it revealed central nervous
system (CNS) dysregulation of over 300 biological processes
in prion infections and suggested alternative pathways for
astrocyte activation [111]. It also identified molecular
heterogeneity in trigeminal ganglia subregions, aiding in the
understanding of migraine and headache mechanisms through
the analysis of postmortem trigeminal ganglia [112]. Even
though it was revolutionary at the time, bulk transcriptome
analysis has several disadvantages that have prompted the
development and adoption of single-cell RNA sequencing
(scRNA-seq) and spatial transcriptomics technologies. One key
limitation of bulk transcriptomics is its inability to capture
cellular heterogeneity within complex tissues or cell populations,
as it provides only an average expression profile from a bulk
sample. This averaging masks the diversity of individual cell
types and their unique transcriptional states, which are crucial
for understanding biological processes and disease mechanisms.
In addition, bulk transcriptomics lacks spatial context, meaning
that it cannot pinpoint where specific genes are being expressed
in a tissue. scRNA-seq addresses these issues by profiling the
transcriptomes of individual cells, revealing the cellular
heterogeneity and enabling the identification of rare cell types
and subpopulations. This detailed cellular landscape often yields
valuable insights into disease progression, such as the discovery
of key demyelinating subpopulations mediating early AD
progression [113]. These discoveries are made possible and
reliable due to large scRNA-seq databases, which can be either
self-generated or obtained from publicly available repositories
and atlases. The past decade has witnessed the emergence of
many such atlases, including the Allen Brain Atlas [114],
making it easier for researchers to conduct scRNA-seq analysis,
as self-sequencing of data may be time-consuming and costly.
Spatial transcriptomics technologies go a step further by
retaining the spatial context of gene expression, allowing
researchers to map where in a tissue each gene is active.
Together, scRNA-seq and spatial transcriptomics offer a more
detailed and nuanced view of gene expression.

Selective neuronal vulnerability as a subfield in neurology
focuses on the molecular mechanisms underlying enhanced

neuronal degeneration. This field highly benefited from
single-cell technologies, which linked tau accumulation to AD
progression and depletion of specific excitatory neurons [115].
In addition, these technologies enabled the identification of
molecular features pruning degradation of dopaminergic neurons
in PD [116]. Moreover, it facilitated the characterization of
specific hippocampus and dorsolateral prefrontal cortex neuronal
subtypes, involved in many neuropsychiatric disorders, such as
schizophrenia and major depressive disorder [117]. Another
neurology subfield highly benefiting from scRNA-seq-based
discoveries is neuroimmune dysfunction, which sheds light on
the function of immune cells in neurodegenerative disease
progression. For example, studies have identified
disease-associated microglia with unique gene expression
profiles in AD models and distinct microglial responses
associated with different stages of neurodegeneration [118,119].
In MS, transcriptomic analyses have uncovered microglial
subtypes with specific gene dysregulations, suggesting potential
therapeutic targets [120]. Furthermore, the adaptive immune
response, involving T cells and B cells, has been implicated in
the pathology of MS and PD, highlighting the influence of
immune cells on neuronal degeneration [121,122]. Single-cell
sequencing has also revealed key insights into glioma, showing
how myeloid cell interactions within the tumor
microenvironment drive disease progression and affect treatment
outcomes [123]. Similarly, in COVID-19, it has identified
changes in microglia and astrocytes gene expression, suggesting
that inflammation and immune responses contribute to
neurological symptoms, opening new paths for treatment [124].
Finally, single-cell technologies have also revolutionized the
understanding of how different cell types within the CNS and
tumors respond to treatments. In glioblastoma [125] and
medulloblastoma [126], for instance, scRNA-seq has identified
potential therapeutic targets based on the cells’ developmental
and inflammatory processes, demonstrating the potential for
tailored treatments.

Despite significant advancements in the field, single-cell
transcriptomics still faces challenges and limitations. These
include technical hurdles in sample collection [127] and cell
isolation from brain tissue [128,129], which impact data quality
and reproducibility. Key future directions involve advancing
single-cell multiomics to integrate various data types with
clinical information, enhancing the precision of spatial
transcriptomics and applying these technologies to brain
organoids for deeper insights into brain function and pathology.

Neurotechnology: Advancing Diagnosis,
Treatment, and Rehabilitation in
Neurology

Overview
Neurotechnology refers to the integration of techniques and
devices facilitating a direct interface between technical
apparatuses and the nervous system (Figure 4). These technical
components, including electrodes, computers, or advanced
prostheses, serve the purpose of capturing signals from the brain
and converting them into operational commands or modulating
brain activity through the application of electrical or optical
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stimuli. Ongoing research explores closed-loop interactions
between systems for signal acquisition and stimulation (control
circuits) [130].

Neurotechnology has its roots in the early exploration of brain
electrical activity. Electrical currents of the brain were first
described in 1875 by Richard Caton, who observed
electroencephalography from exposed rabbits’ and monkeys’
brains. In 1924, German neurologist Hans Berger enhanced the
measurement of human brain electrical activity through the
scalp, recording and depicting it graphically on paper. This laid
the foundation for modern EEG technology, which has become
a cornerstone of noninvasive BCIs. EEG signals are now
commonly used in BCIs to facilitate bidirectional
communication between the human brain and external devices.
By monitoring various cortical regions, it is possible to extract
signals across multiple frequency bands associated with distinct
human behaviors, enabling the study of corresponding patterns.
EEG-based BCIs have significantly advanced our understanding
of cognitive activities and contributed to progress in computer
science and engineering [131]. In EEG-based BCI applications,
machine learning technologies typically fall into 2 major
categories: classification and individual adaptive tasks. Deep
learning, a subset of machine learning, uses deep neural
networks to learn EEG patterns [132], featuring numerous
neurons across multiple layers to capture cognitive-related
features. The potential of BCIs is particularly evident in the
field of robotics. EEG-based BCIs have demonstrated efficacy

in communication with robots, with early applications, including
the control of wheelchairs through visual simulations or motor
imagery [131]. These advancements pave the way for more
sophisticated neurotechnological interventions in movement,
language, and speech, as we will explore in the subsequent
sections.

In summary, as neuroprosthetics involves devices that interact
directly with the nervous system to restore or enhance neural
functions and BCIs enable direct communication between the
brain and external devices, they can bypass traditional pathways.
They typically rely on electrodes that capture electrical signals
from the brain or stimulate neural tissue. These electrodes can
be noninvasive, which are placed on the scalp, or invasive,
which are implanted directly into the brain. BCIs decode neural
signals into commands that control prosthetic limbs, computers,
or other devices, often using machine learning algorithms to
interpret complex brain activity. There are a few technical
challenges such as ensuring long-term biocompatibility and
stability to prevent immune responses and device degradation.
The integration of neurotechnology into clinical practice requires
extensive training for both patients and health care providers.
Patients must learn to use and control neuroprosthetic devices
effectively, which often involves cognitive and physical training.
Health care providers need specialized knowledge to implant,
configure, and maintain these devices, as well as to provide
ongoing support and adjustments based on patient needs.

Figure 4. Summary of neurotechnology advances in the last half-century. AD: Alzheimer disease; AI: artificial intelligence; DWI: diffusion-weighted
imaging; MRI: magnetic resonance imaging; PD: Parkinson disease; PET: positron emission tomography.

Aiding Movement Language and Speech
One example is electrodes that are capable of noninvasively
capturing electrical fields generated by the active brain, typically
facilitated by their placement on the surface of the head in the

form of electrode caps. This method is deemed noninvasive as
the electrodes do not penetrate body tissues. Notably, it finds
application in patients afflicted with ALS, particularly during
the advanced, near-complete paralysis stages where it aids
speech by synthesizing it real time directly from brain activity
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[133]. For instance, electrodes used for deep brain stimulation
(DBS) are meticulously inserted by neurosurgeons into targeted
brain regions. Through modulation of these targets, it becomes
feasible to suppress or ameliorate certain symptoms associated
with various brain disorders. For instance, DBS serves as a
therapeutic option for patients with PD when conventional
medication proves ineffective. While DBS does not offer a cure
or halt the progression of neurodegenerative processes, it
substantially alleviates hallmark symptoms such as tremors or
rigidity, thereby significantly enhancing patient well-being and
overall quality of life [130].

Neurological Wearables
Another illustration within the realm of neurotechnology pertains
to neurological wearables. A primary challenge concerning
wearable sensors revolves around creating stretchable and
skin-attachable electronic devices capable of seamlessly and
inconspicuously monitoring human activity and vital signs
without impeding or restricting the user’s movement [134]. The
initial breakthrough in implantable medical devices came with
the development of a pacemaker for patients with arrhythmia
in 1958 [135]. Since this milestone, a range of pacemakers and
implantable cerebellar stimulators have been developed and
used [134].

In neurology, wearable devices are considered an evolving
technology used to track and monitor the patient’s ambulatory
status for long periods. It can track vital signs and other types
of data, creating a digital profile of the patient [136], even during
their sleep. The collected data are expected to improve the
diagnosis, assessment, and treatment of patients with various
conditions. Out of the health care companies investing in the
development of wearable devices, around 60% were founded
after 2006, whereas the oldest one was founded in 1993 [137].
Many wearable devices were developed to diagnose, monitor,
and treat neurological disorders, such as stroke, PD, and
epilepsy. In stroke, smartphones and smartwatches are primarily
used to monitor parameters, such as upper extremity activity,
walking, and physical activity [138], all of which may detect
pulse and cardiac arrhythmia [139] that can cause subsequent
transient ischemic attacks or ischemic strokes [140]. In PD,
wearable devices in the form of sensors attached to the lower
back may track cardinal motor symptoms, such as postural sway,
tremor and bradykinesia, quantity and duration of freezing and
falling phases, sleeping distributions, and also more cognitively
advanced symptoms like dyskinesia [138]. In epilepsy, most
wearables are wrist-worn sensors with accelerometers, which
are used to identify seizures based on movement patterns that
might be associated with tonic-clonic or convulsive seizures
[138].

One example of such a device is the Embrace smartwatch, which
quantifies alterations in skin electric conductance that
correspond to epileptic activity within the brain, and it can notify
contacts or caregivers about the seizure activity it identified
[141]. Other such devices include one that had electrodes
attached to the biceps and detected tonic-clonic seizures and
another that detected simple partial seizures [141].

An additional instance pertains to the use of wearables within
the realm of sleep neurology. The neurological status of patients

is notably influenced by both the quality and quantity of sleep.
Wrist-worn actimetry sensors have been established as
longstanding tools in sleep studies, enabling the monitoring of
various physiological parameters associated with sleep [140].
These devices may be supplemented by cardiac monitoring or
mattress-based devices, colloquially termed “nearables,” which
possess the capability to track respiratory movements [142].
Several newer devices actively intervene with the patient’s
sleep, helping them to get better sleep quality [140].

In all the mentioned wearables, AI technologies play a crucial
role in their embedded architecture, as they enable the mass
analysis and process of the detected data. However, efficient
AI tools or wearables require large amounts of training data,
effective noise removal from detected features, and subsequent
feature selection (ie, focusing on important data characteristics
for each type of evaluation). Furthermore, it involves
distinguishing between similar activities and developing
computationally efficient algorithms and hardware
implementations. Nevertheless, there are significant technical
challenges such as the need for energy-efficient designs to
ensure long battery life, robust data privacy and security
measures, and overcoming the devices’ limitations of real-time
data processing. Addressing these challenges is essential for
the successful deployment and widespread adoption of
AI-enabled neurological wearables [143,144].

Despite its ongoing popularity and contribution to patient care,
there are some current issues with wearables in the field of
neurology. These mainly include a lack of high-quality data,
an absence of accepted evaluation standards, and limited
implementation strategies; many wearables lack robust efficacy
data that would improve the care of abundant disabling
neuropsychiatric conditions, such as migraine and depression
[140]. As for evaluation standards, even though the American
Psychiatric Association proposed a framework for evaluating
digital health tools in 2018 [145], there is still no widely
accepted standard [146]. This lack of standards results in
inconsistent evaluations and limits implementations. Apart from
evaluation problems, the rapid development of wearables also
outpaces the creation of validation protocols, resulting in a lag
in adapting these tools to health care systems [140].

Robotics in Neurological Diseases
Researchers have discovered that robotic devices significantly
enhance stroke rehabilitation by offering patients tailored,
intensive, and repetitive training. These devices facilitate
real-time feedback, enabling immediate correction of movement
errors, thus fostering more efficient and effective motor learning.
With the ability to provide targeted training, these robots not
only enhance motor learning but also deliver objective
performance and function measurements. Customizable to
individual patient needs, these robotic systems can be
programmed for specific training or therapeutic interventions,
underscoring their versatility in rehabilitation [147]. Neural
rehabilitation is an emerging field aiming to restore defective
neurological circuits’ functionality or enhance the remaining
functionality of impaired ones. Its purpose is to enhance
patient’s independence and improve their quality of life by
relying on the principle of neuroplasticity [148,149], a subject

JMIR Neurotech 2024 | vol. 3 | e59556 | p. 12https://neuro.jmir.org/2024/1/e59556
(page number not for citation purposes)

Gutman et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


that relies on the idea that CNSs and peripheral nervous systems
can be retrained after an injury to achieve an effective
rehabilitation [150]. Another application is in pediatric
neurosurgery; robot-assisted stereotactic biopsies for brainstem
and thalamic lesions have proven effective, showcasing the
potential of robotic procedures in enhancing surgical precision
and accuracy and minimizing tissue damage. This approach has
been particularly promising in pediatric neurosurgery, offering
a method to improve outcomes while reducing the risk to
surrounding healthy tissues [147].

Robotics is also making strides in the clinical assessment of
neurological disorders and upper-limb therapy, indicating a
broader application of this technology beyond traditional
settings. Investigations into robot-assisted diagnosis and the use
of robotic control through neural interfaces for individuals with
tetraplegia highlight the innovative applications of robotics in
neurology and intensive care.

Human-robot interaction is an emerging field that integrates
AI, robotics, and social sciences to facilitate interaction and
communication between humans and robots. It has various
applications in medicine and also specifically in
neurorehabilitation [151,152]. When using robots, numerous
considerations must be considered, including safety, learning
by demonstration, imitation learning, cognition and reasoning,
perception, and more [153]. Typically, AI algorithms and
systems are used to address these issues, thereby enhancing the
overall interaction and experience for patients. Owing to the
presence of multiple representations within an environment,
there is often an abundance of multimodal data, such as visual,
audio, infrared, and ultrasound inputs. These inputs are used by
AI algorithms capable of conducting tasks, such as object
classification, prediction, and task planning [154].

Neuroprosthetics
Neuroprosthetics is an evolving field that combines
neuroscience, engineering, and medicine to develop devices
that can restore or enhance neural function. These devices,
known as neuroprostheses, interact directly with the nervous
tissue, usually to bridge the gap between lost function and the
brain’s control over the body. Over the past 25 years, several
key advancements have propelled the field of neuroprosthetics
forward. Notable examples of these advancements are BCIs,
which have emerged as a promising avenue for restoring
communication and control in patients with severe motor
impairments. Notable achievements include the development
of high-performance BCIs that enable users to control prosthetic
limbs with near-natural dexterity and speed. One example of
such achievement is a description of 2 patients with spinal cord
injury who were able to regain their grasp function through
neuroprosthesis, by using an asynchronous BCI, allowing them
to complete a Grasp and Release Test of the paperweight
multiple times [155].

Another example is advancements in sensory restoration.
Neuroprosthetics has made significant progress in restoring
sensory function, particularly in the realm of hearing and vision.
Cochlear implants, which aid more than half a million people
worldwide with severe to profound hearing impairment [156],
electrically stimulate the auditory nerve to restore hearing and

have become increasingly sophisticated, offering improved
sound quality and speech recognition. Recently, a demonstration
of a new development in the cochlear implant field was
presented, allowing better pitch perception for the users by using
haptic stimulation on the forearm [156]. Similarly, retinal
implants and optogenetic approaches have shown promise in
restoring visual perception in individuals with blindness, as can
be seen from the launching of 2 electrical retinal prostheses in
the last 2 decades, as well as preclinical and early clinical trials
of gene therapies in the field of optogenetics [157].

Neuroprosthetic devices have also been developed to stimulate
the spinal cord, offering new treatment options for individuals
with spinal cord injuries or neurological disorders. These devices
can modulate neural activity in the spinal cord, leading to
improved motor function, reduced spasticity, and enhanced
sensory feedback. Recent studies have demonstrated the
potential of spinal cord stimulation to restore voluntary
movement in patients with paraplegia. Another demonstration
is of functional electrical stimulation electrodes that help patients
with improper trunk stabilization due to spinal cord injuries by
stimulating lumbar erector spinae among other muscles,
improving their posture and forward reach and easing their
transfers [158,159]. Furthermore, epidural spinal cord
stimulation has been proven to activate central pattern generator
for locomotion, thus improving walking in patients with
incomplete spinal cord injuries [160].

Neuroprosthetics have led to the development of closed-loop
systems that can sense and respond to neural activity in real
time. These systems incorporate feedback mechanisms that
allow the device to adapt its stimulation parameters based on
the user’s needs and intentions. Closed-loop neuroprosthetics
have shown promise in applications, such as tremor suppression
in PD and seizure detection and intervention in epilepsy. A
neurotechnology company created a closed-loop stimulation
device that can detect and prevent seizures from 4 channels
[161], by comparing preseizure parameters to predefined
thresholds, by both cortical and deep-brain stimulation. It also
reduced sudden unexpected death in epilepsy significantly [162].
Another company developed a closed-loop device for PD
treatment that can record focal deep-brain potentials and
accordingly adjust the stimulation amplitude and frequency
[163].

Finally, neuroprosthetic devices have become increasingly
miniaturized and wireless, improving their implantability and
reducing the risk of complications. Wireless power transfer and
data communication have enabled the development of fully
implantable systems that can operate without the need for
external hardware. These advances have greatly enhanced the
practicality and acceptability of neuroprosthetic devices for
long-term use. One example of miniaturized neuroprosthetics
is cochlear implants, which use small electrodes with small
diameter wires of 20 μm [164] and an electrode array that is
considered one of the longest is only 31.5 mm [165]. Another
example of a miniaturized and wireless device is an
endovascular, wireless, and battery-free millimetric implant
that can stimulate specific peripheral nerves that are difficult to
reach surgically [166].
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Despite these advancements, challenges remain in the field of
neuroprosthetics. These include ensuring the long-term stability
and biocompatibility of implanted devices, optimizing the
specificity and resolution of neural interfaces, and developing
more intuitive control strategies for users. In addition, translating
neuroprosthetic technologies from research settings to clinical
practice requires rigorous testing, regulatory approval, and
consideration of ethical and social implications.

Looking ahead, the field of neuroprosthetics holds immense
promise for improving the lives of individuals with neurological
disorders or injuries. Ongoing research aims to further enhance
the functionality and usability of neuroprosthetic devices,
incorporating advancements in materials science, machine
learning, and neuroscience. As these technologies continue to
evolve, they have the potential to revolutionize the way we
approach neurological rehabilitation and restoration of function.

Advancements in Neuroimaging:
Transforming Neurosurgery,
Neuro-Oncology and Stroke Care

Overview
As we look forward to breakthroughs in neuroprosthetics,
advancements in neuroimaging are equally revolutionizing the
field of neurological diagnostics and treatments. The advent of
new imaging techniques like CT, nuclear magnetic resonance,
PET, and ultrasonic scanning has revolutionized our
understanding of the nervous system in both its healthy state
and when affected by the disease (Figure 4). These
advancements have provided unprecedented clarity and detail
in imaging, greatly enhancing our diagnostic capabilities.

Neuro-Oncology and Neurosurgery
Innovations in neuroimaging have been pivotal in enhancing
patient care, significantly reducing morbidity and mortality rates
among patients receiving neurosurgical care [167]. The
improvement in brain MRI for anatomical mapping has led to
rapid growth and progress. This enhancement is important for
diagnosing and treating oncological diseases of the nervous
system, which include a variety of tumors such as meningiomas.
Among the most prevalent primary brain tumors in adults are
cerebral gliomas, with an incidence rate of 5 to 6 per 100,000
person-years [168]. At the point of initial diagnosis, the
challenge of distinguishing brain tumors from benign lesions
is challenging due to their similar appearances on MRI scans.
Contrast-enhanced MRI, favored for its superior soft-tissue
resolution and accessibility, serves as the primary method for
such differentiation. Typically, brain tumor diagnoses rely on
conventional MRI techniques, including T1-weighted and
T2-weighted sequences. However, these standard imaging
approaches sometimes struggle to distinguish between tumor
changes due to disease progression and nonspecific,
treatment-related alterations, especially after therapeutic
interventions. PET scanning, using various radioactive tracers
to target distinct metabolic and molecular processes, offers more
data that enhance specificity, especially in clinically ambiguous
cases. Radiolabeled amino acids in PET scanning become
essential in neurodiagnostics, with the Response Assessment

in Neuro-Oncology working group recommending its use
alongside MRI for comprehensive brain tumor management.
Meanwhile, advanced MRI techniques like perfusion-weighted
imaging, diffusion-weighted imaging (DWI), and proton
magnetic resonance spectroscopic imaging [87] continue to be
evaluated clinically for their potential to provide critical
physiological or biochemical insights beyond standard MRI
capabilities. The evolution of modern neurosurgery and
radiology demonstrates the impact of radiological advancements
on neurosurgical practices. The pace of these developments is
so rapid that newer neurosurgical residents might be unfamiliar
with older procedures like pneumoencephalography or the
challenges of distinguishing between neurosurgical pathologies
before the advent of CT. Moreover, such progress has supported
the execution of high-quality clinical trials, improving
evidence-based neurosurgical practice.

Stroke Medicine
Stroke is one of the leading causes of death in older ages and
time to treatment is crucial. Over the recent decades, ischemic
stroke medicine has evolved with new technological innovations,
specifically with the advent of AI and the few critical examples
mentioned subsequently are just the tip of the iceberg. Multiple
AI-based models are able to detect and segment core infarct,
detect LVO, calculate ASPECTS score, and more [169]. One
example is a study from 2011, in which a computer-automated
detection (CAD) scheme using a circular adaptive region of
interest method was developed and implemented on noncontract
head CT scans to identify subtle changes in attenuation
indicative of ischemic stroke [170]. The findings from the study
indicated that CAD significantly enhanced the detection of
strokes for emergency physicians and radiology residents [170].
In another study, researchers demonstrated the efficacy of an
artificial neural network in distinguishing acute strokes from
stroke mimics within 4.5 hours of symptom onset, with a mean
sensitivity of 80% and specificity of 86.2% [171]. In the domain
of automatic lesion segmentation, a recent study used an
ensemble of 2 CNNs to effectively segment DWI lesions,
irrespective of their size, while simultaneously mitigating false
positives, achieving a Dice score of 0.61 for small lesions and
0.83 for large lesions [172]. In detecting LVOs, a support vector
machine (SVM) algorithm demonstrated high sensitivity (97.5%)
in identifying the Middle cerebral artery dot sign on noncontrast
CT scans in patients with an acute stroke [173]. A commercial
software, based on CNN, achieved an accuracy of 86% in
detecting proximal LVO, with a sensitivity of 90.1% and
specificity of 82.5% [174]. In ASPECTS grading, a commercial
software platform offering automated ASPECTS scoring
demonstrated comparable performance to neuroradiologists in
scoring ASPECTS on noncontrast CT scans in patients with
acute stroke (P<.003) [175]. In stroke prognosis, a study found
that a generalized linear model combining DWI and
perfusion-weighted imaging MR outperformed individual
modalities in predicting tissue outcomes [176], and another
study showed that a CNN trained on MRP source images
achieved an area under the curve of 0.871 in predicting final
infarct volume [177].
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Neurodegenerative Diseases
The significance of biomarkers in comprehending and
diagnosing neurodegenerative diseases is growing. The use of
imaging biomarkers for the live examination of these disorders
has seen a significant rise in recent decades, offering enhanced
diagnostic capabilities and deeper insights into disease
mechanisms.

Neurodegenerative diseases, notably AD, are understood to
commence years before the manifestation of symptoms.
Research, particularly on familial AD, outlines a sequence of
pathological events beginning with the buildup of amyloid beta
(Aβ), detectable via PET imaging and cerebrospinal fluid
analysis, culminating in cognitive deficits and dementia. These
processes not only occur in a specific sequence but also overlap
over time, offering insights into the disease’s progression. The
National Institute on Aging and Alzheimer’s Association has
established a research framework for AD diagnosis, using the
AT(N) scale to categorize Aβ, tau, and neurodegeneration
markers. These markers, identifiable through imaging
biomarkers in vivo, enhance the sensitivity and specificity of
AD diagnostics, underscoring the vital role of advanced imaging
techniques in the early detection and understanding of
neurodegenerative diseases. Neuroimaging has become integral
to diagnosing suspected neurodegenerative diseases, using
various MRI techniques, and developing novel PET ligands.
These tools provide objective measures for detecting and
monitoring disease presence and progression, aiding in patient
care, and facilitating clinical trial recruitment and treatment
efficacy evaluation. The cross-disciplinary approach,
incorporating imaging biomarkers, is crucial for diagnosing and
comprehending neurodegenerative disorders, emphasizing the
expanding utility of neuroimaging in medical research and
patient management [178]. Aβ PET imaging has transformed
the diagnostic landscape for AD, allowing for the in vivo
quantification of Aβ plaques, a key AD biomarker. The
development of Aβ-specific PET tracers, such as Pittsburgh
compound B and subsequent F-18-labeled tracers, has facilitated
this advancement [179]. Similarly, tau-specific PET tracers
have opened new avenues for diagnosis, prognosis, and clinical
trial outcomes in AD, correlating tau pathology with cognitive
symptoms and deterioration [180]. The portfolio of PET ligands
for identifying biomarkers of neurodegeneration has grown
considerably, with some advancing to clinical use and others
offering new insights into these conditions. MRI techniques
continue to aid diagnosis and enhance our understanding of
neurodegenerative diseases, with structural MRI being the most
accessible imaging tool. Fluorodeoxyglucose PET, despite its
limitations, remains a valuable tool for investigating neuronal
injury in dementia [181], illustrating the complex nature of
neuroimaging in understanding and treating neurodegenerative
diseases.

Few studies also use machine learning to aid diagnosis. For
example, an innovative CAD system was developed to diagnose
AD from MRI images, based on aging brains and machine
learning, and to identify the AD-related regions [182]. The
experiments demonstrated that the proposed method could
predict AD patients with a competitive accuracy of 92.36%,
comparable to existing methods. In another study, the

researchers trained a deep learning algorithm based on CNN to
predict a diagnosis of AD or mild cognitive impairment, based
on fluorodeoxyglucose-PET imaging [183]. The algorithm
achieved an impressive area under the receiver operating
characteristic curve of 0.98 when predicting the final clinical
diagnosis of AD in an independent test set. It demonstrated 82%
specificity at 100% sensitivity, with predictions made an average
of 75.8 months before the final diagnosis. Notably, the
algorithm’s performance surpassed that of human readers, with
a sensitivity of 57% and specificity of 91%. Saliency map
analysis revealed an attention to known areas of interest,
highlighting the entire brain’s importance in the diagnostic
process [183]. Another example is PD, a common
neurodegenerative disease where early detection is highly
important to improve patient’s quality of life [184]. In recent
years, remarkable progress has been made in using advanced
computational methods in neuroimaging, providing a valuable
tool set for the medical imaging research community to extract
pertinent features. These methodologies have been instrumental
in developing sophisticated diagnostic approaches for PD [184].
In one study neural activity and functional connectivity within
the olfactory brain network were investigated [181]. Through
the application of independent component analysis and the
generalized linear model, discernible differences between
patients with PD and healthy controls were identified, with
independent component analysis demonstrating superior
performance compared with generalized linear model. Similarly,
a predictive model using fMRI datasets for PD diagnosis through
multiclass patient classification was devised [182]. Feature
reduction and selection were achieved using
principal-component analysis and the Fisher discriminant ratio,
while the classification task was carried out using the least
square SVM. Notably, these classifiers exhibited impressive
accuracy levels of up to 87.89% and a precision of 82.54%. In
another study, resting-state fMRI datasets were used, leveraging
an SVM classifier to effectively distinguish 19 patients with
PD from 18 healthy controls [183]. In a study aimed at building
a model based on Grey’s cerebellum changes, an SVM classifier
used data of cerebellar structural changes derived from
voxel-based morphometry for PD detection with an accuracy
of more than 95% [184]. Researchers also reported that they
were able to detect and differentiate successfully patients with
PD from healthy ones, by associating different facial expressions
and brain activity on fMRI.

In conclusion, the field of medical imaging has witnessed
remarkable progress, evolving from the inception of x-ray
imaging to the advent of fMRI and other cutting-edge
technologies. This trajectory of innovation, coupled with the
emergence of AI technologies, has paved the way for
groundbreaking applications in the realm of neurological
disorders, significantly enhancing our understanding of various
neurological conditions.

Summary

The integration of AI with new medical technological
advancements has ushered in a transformative era for neurology,
reshaping diagnostic, therapeutic, and research landscapes. With
the advent of EHR systems and the widespread adoption of
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telemedicine, neurologists now have unparalleled access to
patient data and the ability to deliver care remotely. This shift
streamlines clinical workflows and enhances patient care by
enabling precise and timely interventions. As most neurological
conditions are chronic and require monitoring, this advancement
allows for scaling in treatment. Furthermore, the burgeoning
field of predictive modeling, powered by vast databases of
EHRs, leverages AI to forecast clinical outcomes, offering
personalized treatment strategies.

The paradigm shift from traditional physical examinations to
reliance on technological data has significantly impacted patient
triage and clinical management. Innovations, such as advanced
imaging technologies, revolutionized neurological diagnostics,
providing deep insights into the brain’s anatomy and function.
Stroke prevalence led to the dire need for rehabilitation in
neurology, while new wearable devices and robotics in
rehabilitation have further expanded the horizons of patient
care, offering targeted therapy that adapts to the dynamic needs
of individuals and saves expensive hospital visits. These
technological advancements highlight the evolving approach
to neurology, emphasizing the importance of integrating
cutting-edge tools for improved diagnosis, treatment, and patient
outcomes. AI models that analyze brain imaging to detect
strokes, coupled with predictive models for conditions like ALS

and AD, demonstrate the potential of machine learning to
improve patient care and bring to fruition personalized medicine
in neurology. The collaboration between neurology and AI
technologies paves the way for breakthroughs in understanding
and treating neurological disorders, marking a significant leap
toward advancing neuroscientific research.

Limitations are present across all these transformative ideas,
particularly in advanced imaging technologies such as fMRI,
PET, and CT, where challenges include cost, accessibility, and
resolution constraints. Another example of the limitations is AI
algorithms and their potential biases or hallucinations, data
requirements, and the challenges in integrating those into clinical
practice or ensuring patient privacy. In genomics, the issues are
ethical concerns, off-target effects, the high cost of these
technologies, and more.

In summary, the intersection of neurology with emerging
technologies has fundamentally changed the landscape of
neurological practice. From enhancing diagnostic accuracy and
streamlining patient care to personalizing treatment strategies,
the entire neurology field stands at the forefront of this
revolution. The integration of AI, advanced imaging, and
telemedicine underscores its dynamic evolution, driven by the
pursuit of excellence in patient care and neuroscientific
discovery.
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