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Abstract

Background: The emergence of generative artificial intelligence (GenAI) presents unprecedented opportunities to redefine
conceptions of personhood and cognitive disability, potentially enhancing the inclusion and participation of individuals with
cognitive disabilities in society.

Objective: We aim to explore the transformative potential of GenAI in reshaping perceptions of cognitive disability, dismantling
societal barriers, and promoting social participation for individuals with cognitive disabilities.

Methods: This study is a critical review of current literature in disability studies, artificial intelligence (AI) ethics, and computer
science, integrating insights from disability theories and the philosophy of technology. The analysis focused on 2 key aspects:
GenAI as a social mirror reflecting societal values and biases, and GenAI as a cognitive partner for individuals with cognitive
disabilities.

Results: This paper proposes a theoretical framework for understanding the impact of GenAI on perceptions of cognitive
disability. It introduces the concepts of GenAI as a “social mirror” that reflects and potentially amplifies societal biases and as a
“cognitive copilot” providing personalized assistance in daily tasks, social interactions, and environmental navigation. This paper
also presents a novel protocol for developing AI systems tailored to the needs of individuals with cognitive disabilities, emphasizing
user involvement, ethical considerations, and the need to address both the opportunities and challenges posed by GenAI.

Conclusions: Although GenAI has great potential for promoting the inclusion and empowerment of individuals with cognitive
disabilities, realizing this potential requires a change in societal attitudes and development practices. This paper calls for
interdisciplinary collaboration and close partnership with the disability community in the development and implementation of
GenAI technologies. Realizing the potential of GenAI for promoting the inclusion and empowerment of individuals with cognitive
disabilities requires a multifaceted approach. This involves a shift in societal attitudes, inclusive AI development practices that
prioritize the needs and perspectives of the disability community, and ongoing interdisciplinary collaboration. This paper emphasizes
the importance of proceeding with caution, recognizing the ethical complexities and potential risks alongside the transformative
possibilities of GenAI technology.

(JMIR Neurotech 2025;4:e64182)   doi:10.2196/64182
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Introduction

In the era of generative artificial intelligence (GenAI), traditional
notions of personhood and normality are being challenged [1-4].
Technological advances are blurring the boundaries between
human and machine capabilities, offering an opportunity to
expand the limits of social inclusion and promote change in
attitudes toward people with disabilities [1]. As artificial
intelligence (AI) systems demonstrate increasingly sophisticated
cognitive abilities, they prompt us to reconsider what qualities
define personhood and human intelligence. This paper examines
the potential of GenAI to disrupt limiting conceptions of
morality and humanity, focusing on the implications of GenAI
for the social status of people with cognitive disabilities. This
paper also proposes a practical toolkit for GenAI development
and engineering professionals—product managers, data
scientists, and developers—to help incorporate these insights
into their work.

Cognitive disability refers to a wide range of impairments
affecting cognitive functions such as learning, problem-solving,
judgment, communication, and social interaction [5]. Examples
of cognitive disabilities include intellectual disability,
attention-deficit/hyperactivity disorder, autism spectrum
disorders, specific learning disabilities (such as dyslexia), and
brain injuries (such as traumatic brain injury or stroke) [5-7].
It is important to emphasize the variety of individuals with
cognitive disabilities, each one possessing a unique combination
of strengths, impairments, and potential, which means that
cognitive disabilities require personalized approaches to
intervention. While recognizing the diverse nature of cognitive
disabilities and the need for tailored solutions, this paper focuses
on the general potential of GenAI to improve the lives of people
across the spectrum of cognitive disabilities.

Engaging with the integration of GenAI and individuals with
cognitive disabilities is a new direction in the use of technology
in the field of disability. The potential for AI to support and
empower this population lies in its ability to perform cognitive
tasks such as reasoning, planning, decision-making, and
communication—areas that are challenging for people with
cognitive disabilities [8-10]. The ability of AI to remove barriers
and open new paths for inclusive and equitable participation
makes it especially relevant for this population [11]. An in-depth
analysis of this ability requires examining the philosophical and
ethical implications of AI for conceptions of humanity and
morality, questions that directly determine how society views
and accommodates individuals with cognitive disabilities. These
are fundamental inquiries into the nature of intelligence,
personhood, consciousness, and human agency, which largely
determine the degree of participation and inclusion for this
group.

Personhood and AI: An Opportunity for
Paradigm Shift

The concept of personhood, which emerged as a central topic
in bioethical debates surrounding topics such as abortion, stem
cell research, and euthanasia, has evolved into a complex and

multifaceted construct that now spans multiple disciplines [12].
Inherently normative in nature, personhood involves value
judgments and ethical considerations regarding how we ought
to treat and perceive others rather than merely describing
observable facts. Personhood is not rooted exclusively in our
biology and experiences but in our essence and identity. This
identity, however, is not formed in isolation; it is dynamically
shaped in an intricate interaction between self-perception and
the perception of others and interaction with them. Rosfort [13]
argued that this conceptualization of personhood reveals its
profoundly relational and social nature, demonstrating how
identity and perception of self-worth are inextricably woven
into interactions and the broader human context.

The concept of “personhood” has long served as a central
criterion in bioethical discussions, determining which entities
deserve moral consideration and rights [3]. As a result, this
notion has also functioned as a mechanism of exclusion, denying
basic rights and opportunities to those deemed cognitively
“abnormal” [14].

For example, historically, people with cognitive disabilities
were excluded from the public sphere and denied the right to
make decisions for themselves [15,16]. Even today, despite
significant progress in discourse and work based on the “social
model” (an approach that views disability as created by societal
barriers rather than by individual impairments alone) [17] and
the “minority group model” (which recognizes people with
disabilities as a marginalized minority group) [18], exclusion
still exists in various aspects of life. People with cognitive
disabilities still face barriers to accessing higher education and
vocational training because of preconceived notions about their
abilities [19]. Despite relevant skills, they have difficulties
securing meaningful employment and career advancement
opportunities because of social stigma and prejudice [20].
Participation in political or civic decision-making processes,
such as voting or community involvement, is limited by
discriminatory perceptions of the competence of individuals
with cognitive disabilities [21]. They are also excluded from
leisure, social, and cultural activities because of a lack of access
or restrictive attitudes toward their participation [22].

These exclusion examples illustrate how, as a result of
conceptualizing what constitutes a person of merit, individuals
with cognitive disabilities are often excluded in the deepest and
broadest ways from society. This mechanism is difficult to
identify because it operates through our language and the most
basic organized mechanisms of any society: law, health care
system, education system, and more [23].

Breaking entrenched concepts and perceptions of personhood
is challenging because they are deeply embedded in societal
structures and norms, but emerging technologies are beginning
to challenge these long held beliefs. GenAI offers an opportunity
to challenge the definition of personhood perceptions by
demonstrating skills previously considered unique to humans
[1,4]. Although these capabilities are not yet perfect in AI, their
very existence challenges the idea that such traits belong
exclusively to the “normal” cognitive function of humans and
that social participation is conditional on the presence of these
abilities.
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The revolutionary potential of GenAI invites us to reexamine
the criteria for membership in the moral community and expand
them beyond limiting standards. Instead of relying on a narrow
model of “correct” cognitive abilities as a prerequisite for rights
and participation in society [14], we may adopt, with the
assistance of GenAI, a more inclusive view that recognizes
human diversity and the inherent value of all individuals,
regardless of their abilities [24]. By showcasing the potential
of machines to exhibit complex cognitive traits, GenAI
challenges the notion that certain abilities are essential for
personhood and moral status. It initiates a discourse on the need
to redefine our understanding of what it means to be human and
to have moral worth, moving away from a focus on cognitive
benchmarks and toward a more encompassing vision of human
dignity and rights [1,4].

Although AI presents opportunities to challenge our
understanding of personhood, there are legitimate concerns
about its potential to exacerbate exclusion and narrow definitions
of “normal” human cognition. The inherent biases in AI systems,
stemming from their training data and algorithmic design
[25-28], risk reinforcing and amplifying existing societal
prejudices [29]. As AI increasingly influences decision-making
processes in areas such as employment, health care, and criminal
justice, there is a danger that it could lead to more stringent and
narrow criteria for what constitutes “normal” human functioning.
This could inadvertently heighten barriers for individuals with
cognitive differences, further marginalizing them from full
societal participation [30]. Moreover, as AI systems become
more sophisticated in mimicking certain human cognitive
abilities, there is a risk that societal expectations of human
performance might be unrealistically elevated, potentially
creating an even more exclusionary standard of “normal” [31].
Thus, while AI challenges our notions of personhood, it
simultaneously risks entrenching and exacerbating existing
forms of exclusion, highlighting the critical need for ethical AI
development and deployment considering diverse human
experiences and capabilities. In the following sections, we will
explore 2 key areas where GenAI has the potential to drive
significant change: GenAI as a social mirror and GenAI as a
cognitive partner. These 2 domains highlight the multifaceted
impact that GenAI can have on reshaping perceptions, removing
barriers, and promoting participation of individuals with
cognitive disabilities on the one hand, and exacerbating existing
biases and exclusions in society on the other.

Generative AI as a Social Mirror:
Opportunity and Challenge

Overview
Vallor’s [32] conceptualization of AI as a societal mirror
provides a compelling framework for understanding the role of
AI in reflecting and potentially amplifying societal biases,
particularly concerning cognitive disabilities. This mirror
metaphor can be understood as follows: just as a physical mirror
reflects the image of what stands before it, AI systems reflect
the data, values, and biases present in the society that created
them. However, unlike a simple reflection, AI systems can

amplify and distort these reflections, much as a funhouse mirror
might exaggerate certain features.

This mirror effect illuminates how AI systems, trained on biased
data, risk perpetuating existing prejudices against individuals
with cognitive differences. AI essentially learns from and then
projects back the biases inherent in its training data, potentially
reinforcing and spreading these biases further. Paradoxically,
this same reflective quality presents a unique opportunity to
identify and address longstanding societal biases, rendering
implicit prejudices explicit and subject to scrutiny. By closely
examining what the AI “reflects back” to us, we can gain
insights into biases that might otherwise remain hidden or
unacknowledged in society.

Vallor [32] posits that AI systems in general, and GenAI systems
in particular, are not merely neutral technological tools but
mirrors reflecting the values, norms, and biases prevalent in
human society. Given that these systems are constructed upon
data and content created by humans, they inherently risk
replicating and perpetuating prejudices and discrimination
against marginalized groups, including people with cognitive
disabilities [27,33].

A study by Gadiraju et al [34] demonstrated this mirroring effect
in action. They conducted 19 focus groups with 56 participants
with various disabilities who interacted with a dialog model
based on a large language model. The researchers found that
the model frequently perpetuated harmful stereotypes and
narratives about disability. For example, the model often fixated
on physical disabilities, particularly wheelchairs, while
neglecting other types of disabilities. It also tended to portray
people with disabilities as passive, sad, and lonely, reinforcing
the misconception that disability is inherently negative.
Additionally, the model sometimes produced what participants
referred to as “inspiration porn,” objectifying people with
disabilities as sources of inspiration for nondisabled people.

For example, if the information used to train AI systems contains
stereotypical or derogatory expressions toward people with
cognitive disabilities, there is a significant risk that these systems
might “learn” to adopt discriminatory attitudes. The potential
consequences are severe: AI systems could rank individuals
with cognitive disabilities as having lower potential in
employment or educational contexts, limit their access to certain
services, or make biased decisions about them in critical areas
such as insurance or credit [35].

When we look into the societal mirror reflected by AI, several
possible human responses can be identified. One metaphorical
response is “breaking the mirror,” representing human resistance
to AI use and the insights it presents [36]. While this approach
attempts to avoid the uncomfortable truths AI exposes, it risks
missing out on the potential benefits and insights AI can offer.
Another metaphorical strategy is “cleaning the mirror,” where
humans attempt to eliminate biases through AI alignment
processes [37]. This approach aims to create AI systems aligned
with human values and intentions, striving for a bias-free
environment. However, it risks producing an artificially sterile
system that fails to reflect the complexities of human cognition
and interaction, potentially making AI less relevant and less
capable of addressing real-world complexities.
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The third and most promising approach involves using reflection
as a call to action in the real world. This method requires humans
to acknowledge the biases reflected by AI and use this awareness
as a catalyst for societal change. It demands active engagement
and concrete actions from us as humans to address these issues,
both in our AI systems and in society at large [38]. This
approach recognizes that if such action is taken, over time, the
reflection in the AI mirror itself can change, not as a result of
erasing biases in the machine as in the second option, but as a
consequence of real societal change that is then differently
reflected in the AI mirror.

To implement this approach specifically within the realm of AI
development and deployment, we must adopt advanced
techniques and ensure inclusive human involvement. As
contemporary AI systems increasingly incorporate vast datasets
populated from the internet, traditional methods of addressing
biases through direct data manipulation, such as the “datasheets”
approach proposed by Gebru et al [39], while still valuable in
certain contexts, have become more challenging to implement
comprehensively. This shift has led to the adoption of
complementary techniques that can handle the scale and
complexity of modern AI systems such as self-supervised
learning [40] and reward modeling [41]. Crucially, these
techniques still require human decision-making at key junctures.

To truly address biases and create more equitable AI systems,
particularly regarding cognitive disabilities, we must ensure
that people with cognitive disabilities are actively involved in
these decision-making processes. This collaborative approach
aligns with our third strategy, emphasizing real-world action
and societal change. By critically examining the biases revealed
in AI outputs and involving diverse perspectives in the
development process, we can work toward creating more
inclusive AI systems. This approach not only helps in
developing fairer algorithms and more representative models
but also contributes to broader societal change [1,4]. In this
way, the AI mirror becomes not just a reflection of our current
culture, but a catalyst for the more inclusive society we aspire
to create [16,42].

In conclusion, as illustrated in Figure 1, GenAI has the potential
to promote social justice and shift perceptions regarding
cognitive disabilities. To harness this potential, collaborative
work and ongoing effort are required to embed values of
accessibility, inclusion, and respect for diversity at the core of
technological development. These steps can transform the
“reflection in the mirror” into a positive and inclusive image
for people with cognitive disabilities, potentially leading to
broader societal changes in perception and inclusion.

Figure 1. GenAI as a social mirror: collaborative development for societal change. AI: artificial intelligence; GenAI: generative artificial intelligence.

While this mirror metaphor provides valuable insights, it is
important to recognize its limitations. Vallor’s conceptualization,
though powerful, doesn’t fully capture the multifaceted potential
of AI, particularly for people with disabilities. It overlooks its
capability to actively solve previously intractable problems and
enhance accessibility. To provide a more comprehensive
understanding, we must expand our view beyond the perception
of AI as a mere reflective tool. In the following section, we
propose considering AI not only as a mirror but also as a
cognitive partner for people with disabilities, emphasizing its
potential to actively support and empower individuals with
cognitive differences in navigating the world.

Generative AI as a Cognitive Partner for People With
Disabilities
Beyond Vallor’s mirror metaphor for AI and its contingent
inference on social change for people with cognitive disabilities,
a significant potential of GenAI lies in its ability to serve as a
“cognitive partner,” empowering participation of these people
in life domains that were previously blocked or limited for them
[43-45]. This partnership can be metaphorically described as a
“cognitive copilot” (an AI assistant for complex cognitive tasks),
assisting and empowering the individual with tasks requiring
complex cognitive functions. For example, GenAI can help a

person with cognitive disabilities manage daily tasks such as
scheduling, budgeting, or navigating urban spaces by providing
personalized reminders, recommendations, and guidance [46,47].
Additionally, it can serve as an advisor in complex social
situations, such as interpreting body language [48], suggesting
appropriate responses to expressions of anger or mockery from
others, or assisting in decision-making [1,49]. In this way,
GenAI may act as a kind of “social copilot,” providing real-time
support and feedback, allowing persons with cognitive disability
to expand their circle of social interactions, inclusion, and
activities.

One of the outstanding strengths of GenAI is its ability to
function as a translator and mediator between languages,
concepts, and realities. For people with cognitive disabilities,
translation and mediation pose a central challenge in daily life,
both in understanding the environment and in expressing
themselves in a way others can understand [50]. With its natural
learning and processing capabilities, GenAI can bridge these
gaps and make information and communication more accessible.

The application of GenAI as a cognitive copilot can focus on 3
main areas (Figure 2):
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1. Translating and making the inner world of people with
cognitive disability accessible to themselves: GenAI can
help people with cognitive disabilities better understand
themselves, their thoughts, emotions, and needs. This is
achieved by providing explanations and conceptualizations
in clear and accessible language, identifying and interpreting
emotional states, and suggesting strategies for coping with
challenges [50]. GenAI can serve as an “internal translator”
that through a process of assistive conceptual scaffolding
and cognitive structuring [51] assists individuals in accurate
self-understanding and self-expression.

2. Bidirectional translation and mediation in interpersonal
communication: By analyzing interpersonal and social
information, GenAI can mediate interactions with other
people, making it possible to negotiate the complexities
inherent in human communication more successfully. The
unique contribution of GenAI in this area lies in its ability
to bridge the communication gap in both directions, helping
the person with cognitive disability understand the social
environment, the intentions of others, and the implicit
messages in discourse, and making the person’s wants,

needs, and emotions more accessible to the social
environment [1]. For example, on one hand, GenAI can
offer interpretations of social cues and recommend
appropriate responses, and on the other assist individuals
in articulating their thoughts more clearly and presenting
their unique perspectives. The technology can serve as a
“two-way social translator,” enabling people with disability
and their environment to better understand each other and
promote respectful and equitable communication.

3. Making the physical environment and public spaces
accessible: GenAI can act as an “environmental translator,”
converting complex information about the world into a clear
and disability-friendly format. This can include, for
example, simplifying official texts, graphically converting
numeric data, or creating interactive guides for navigating
public spaces [52]. Thus, GenAI models that are open to
the public can “see” and “understand” photos and videos
and describe their content [1], so that people with cognitive
disabilities may gain greater access and independence in
managing their lives.

Figure 2. Three main areas of GenAI application as a cognitive partner. GenAI: generative artificial intelligence.

The goal is not to “normalize” individuals with cognitive
disabilities or to erase their disability. The cognitive partner
metaphor, similar to Vallor’s mirror metaphor, can show how
the use of AI might exacerbate exclusionary attitudes and further
marginalize individuals with disabilities. Therefore, using AI
for social change in our attitude toward people with cognitive
disabilities means that the aim of this technology should be to
enable access to environments and spaces that were previously
closed or socially inaccessible to them, while also facilitating
the accessibility of these environments to the individuals
themselves. The approach should be person-centered, respecting
diversity, and tailored to the unique aspirations and needs of
everyone, rather than imposing a uniform standard of “proper”
functioning.

Serious consideration must be given to the ethical implications
of such a close integration between humans and machines,
particularly in the areas of autonomy and responsibility.
Questions of privacy, data security, and people’s ownership of
decisions made by AI systems need to be thoroughly examined
[52,53]. Robust oversight and regulatory mechanisms must be
in place to ensure the responsible and ethical use of AI,
safeguarding the rights and well-being of users. This is

especially critical when working with vulnerable populations
such as people with cognitive disabilities, where protecting
individual autonomy is important [27,33].

In conclusion, although AI-based “cognitive copilot”
applications for people with cognitive disabilities have the
potential to remove barriers, increase participation, and promote
equal opportunities across various domains of life, it is essential
to proceed with caution. This technology must function as a
“translator” to contribute to a more inclusive and equitable
society, and we must remain vigilant to its risks. Ensuring that
AI development is person-centered, ethically sound, and
involves active participation from the disability community is
crucial for harnessing its benefits without worsening existing
biases and systemic barriers.

Implication for AI Developers and Technologists
GenAI has immense potential to promote inclusion and equality
for people with cognitive disabilities but to realize this potential
requires a perceptual shift on the part of developers, engineers,
researchers, and product managers. Instead of focusing narrowly
on “fixing” certain impairments, they must adopt a more holistic
approach that views technology as a lever for social integration
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and broad improvement in quality of life [54-56]. This involves
a transition from regarding GenAI as a mere technical solution
to perceiving it as a tool for effecting social change for the
population with cognitive disabilities.

In practice, close and ongoing collaboration with people with
cognitive disabilities throughout all stages of development is
important [57]. Development teams must learn from the unique
experiences and needs of individuals with cognitive disability
and meaningfully integrate them into the design and construction
of GenAI systems and prompts.

Recent research has demonstrated the feasibility and importance
of this approach. For example, Newbutt et al [58] conducted a
systematic review of studies involving autistic individuals in
the design of extended reality technologies. They found that
out of 20 studies published between 2002‐2022, several
successfully engaged autistic individuals as active co-designers
and cocreators, allowing them to shape the final products
according to their needs and preferences. This highlights the
growing trend and importance of including the target users in
the design process.

This requires a joint definition of goals, adapting user interfaces
and user experience to their modes of thinking and
communication, and clearly formulating principles of cognitive
accessibility from the earliest planning stages [59]. The
aspiration is for the empowerment and inclusion of people with
cognitive disabilities to be embedded in the core of the
technology and in the layer of its use.

Bircanin et al [60] presented a practical approach to including
adults with severe intellectual disabilities in co-design through
active support. They demonstrated how principles such as “every
moment has potential,” “graded assistance,” “little and often,”
and “maximizing choice and control” can be applied in design
contexts to ensure meaningful participation of individuals with
severe cognitive disabilities. This approach provides concrete
strategies for AI developers to engage with this population
during the development process.

For example, it is important to examine how the prompt-based
user interface can be made accessible and adapted to the
cognitive and communication characteristics of people with
different types of cognitive disabilities. Consideration should
be given to whether the development of dedicated products is
the right direction or whether personal adaptation at the level
of the individual user is preferable [61]. Answering such
questions requires ongoing discourse and feedback from the
community itself.

Dirks [57] explored the ethical challenges in inclusive software
development projects with people with cognitive disabilities.
The study emphasized the importance of maximizing choice
and control for participants, using a graded assistance approach,
and ensuring every moment has potential for meaningful
engagement. These principles can guide AI developers in
creating more inclusive design processes.

To assist developers and researchers in implementing the
principles presented in this paper, we propose a working
protocol specifically tailored to the development challenges of
GenAI technologies aimed at people with cognitive disabilities.
The protocol (Table 1) is based on the model developed by
Amershi et al [62], which was formulated following
comprehensive research, including a review of academic and
industry literature, interviews with experts, and an examination
of a wide range of AI-based products. The original model
defines 18 general guidelines for designing human-AI
interactions across different time frames and stages of
interaction. In practice, these guidelines serve as a framework
for developing human-centered AI systems, focusing on aspects
such as transparency, fairness, reliability, safety, privacy,
security, and accountability. Developers and designers use these
guidelines to enhance human-AI interaction by implementing
practices such as explaining AI decisions to users, designing
interfaces that enable user control and feedback, and
incorporating mechanisms to identify and mitigate biases [63].
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Table . Protocol for designing artifical intelligence (AI) interactions for people with cognitive disabilities.a

Implementation examplesGuidelines for AI interaction with
people with cognitive disabilities

Stage and dimension

Initial

I1. Create a personal profile includ-
ing preferences, abilities, and chal-
lenges.

I1. Identify and adapt to the user’s
unique cognitive and emotional
needs.

Personal

I2. Consider the human environment
(eg, caregivers or family members)
as part of system definition.

I2. Show awareness of the social
and cultural context of system use.

Interpersonal

During interaction

D1. Identify difficulties and adapt
the level of assistance and feedback
in real time.

D1. Provide custom-tailored, gradu-
al, and structured responses to per-
sonal needs during use.

Personal

D2. Mediate social interactions by
simplifying and explaining social
cues.

D2. Promote positive and reciprocal
communication with the human en-
vironment.

Interpersonal

D3. Provide detailed instructions
and cues on proper conduct in differ-
ent places.

D3. Assist in orientation, navigation,
and independent functioning in
complex spaces.

Environmental

When the system errs

E1. Provide repeated opportunities
to try again, together with verbal
encouragement.

E1. Handle errors respectfully and
in an empowering way, with empha-
sis on learning and progress.

Personal

E2. Provide a possibility for a care-
giver to assist in problem-solving or
making necessary adjustments.

E2. Involve support persons in the
process of learning and correction.

Interpersonal

E3. Make human backup available
by default in case of significant
problems.

E3. Avoid placing responsibility on
the user in complex or unexpected
situations.

Environmental

Over time

T1. Track progress and adapt tasks
and goals accordingly.

T1. Continually adapt to the pace of
development, learning, and changes
in personal needs.

Personal

T2. Update user profiles and access
settings based on feedback from the
environment.

T2. Show sensitivity to changes in
relationships and roles within the
support circle.

Interpersonal

T3. Automatically detect location
changes and provide relevant recom-
mendations.

T3. Show flexibility and adaptability
to changing environments and tran-
sitions between contexts.

Environmental

T4. Provide mechanisms for receiv-
ing feedback and involving users in
decisions about updates and im-
provements.

T4. Actively involve users and
stakeholders in the ongoing develop-
ment of the system.

Collaboration

aThe model for this protocol by Amershi et al [62] is based on extensive research and analysis of a range of artificial intelligence products and defines
18 general guidelines across different stages of interaction. We adapted and extended this model to address specifically the needs and challenges of
designing artificial intelligence technologies for people with cognitive disabilities. The protocol incorporates 4 key dimensions: personal, interpersonal,
environmental, and collaborative, and provides concrete examples of how these considerations can be integrated throughout the life cycle of the artificial
intelligence system. By implementing this protocol, developers can create artificial intelligence tools that empower and enhance the lives of individuals
with cognitive disabilities.

Building on the analysis presented in this paper, we expand the
model of Amershi et al [62] and adapt it to the 4 central
dimensions in which AI systems can assist people with cognitive
disabilities: the personal, the interpersonal, the environmental,
and the collaborative. For each of these dimensions, we propose
guidelines and offer practical examples of how the relevant

considerations can be embedded at different stages of the system
life cycle, from defining the initial requirements, through
ongoing interaction, to continuous adaptation and improvement.
The proposed protocol serves as a foundation that requires
further development, testing, and investigation, but it can serve
as a starting point for discourse and the advancement of best
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practices in designing AI systems for individuals with cognitive
disabilities.

Conclusion

The emergence of GenAI technologies represents a pivotal
moment in reconceptualizing disability and personhood. We
suggest that the advent of GenAI challenges assumptions about
what qualifies an individual as a “person” and questions the
notion that cognitive abilities are the sole determinant of one’s
rights and societal participation.

In this paper, we explored the transformative potential of GenAI
in reshaping perceptions, dismantling barriers, and empowering
individuals with cognitive disabilities. By serving as a social
mirror [32], AI systems can expose and challenge deeply
ingrained biases and prejudices, compelling us to confront the
ways we have historically marginalized and excluded the
population with cognitive disabilities. Simultaneously, by
functioning as a cognitive partner, GenAI may provide
unprecedented opportunities for individuals with cognitive
disabilities to participate in society.

Realizing this vision requires more than technological
innovation, however. It demands a gradual shift in societal
attitudes and a sincere effort to involve people with cognitive
disabilities in the AI development process, granting them
autonomy and recognizing and valuing their abilities. This is
where the role of technology professionals and GenAI
developers becomes crucial.

The importance of designing AI thoughtfully lies in the
understanding that whether we consider AI as a mirror or as a
cognitive partner, both metaphors indicate that AI will
increasingly mediate how we perceive the world, ourselves, and
others, confirming once again McLuhan’s [64] statement that
“the medium is the message.” This means that the significant
effect of AI lies not merely in the content we explore through
it but in how its very use changes us. Therefore, the design and
development of AI tools will profoundly influence the future

of human society, how we perceive individuals with disabilities,
as well as the rights and social positions they will attain.
Therefore, how AI is being shaped now will determine its role
in reinforcing existing biases or promoting a more inclusive
and equitable society.

The proposed protocol, based on the work by Amershi et al
[62], offers a practical framework for implementing these
principles as part of GenAI development for people with
cognitive disabilities. This paper marks only the beginning of
the discussion about GenAI and developmental disabilities,
therefore we must remain vigilant regarding the ethical and
social implications of GenAI and continue to engage in open,
multidisciplinary dialogue about how to harness its potential
for the greater good.

The path ahead is complex and challenging, but it is also filled
with immense possibilities. As we look toward the future, the
evolution of AI from reactive, prompt-based systems to
proactive, autopilot models promises to further expand these
possibilities, particularly for individuals with cognitive
disabilities. These advanced systems, capable of learning user
needs and initiating interactions without explicit prompts, could
provide more seamless and intuitive support, potentially
revolutionizing the way we approach cognitive assistance.

Technological progress also involves an ongoing need for ethical
and inclusive development. We must prioritize user autonomy
and privacy while maximizing the benefits of technological
assistance. This balance is important not only for protecting
individual rights but also for ensuring that AI serves the needs
of those it aims to support.

By embracing the potential of GenAI while remaining vigilant
regarding its ethical implications, researchers, developers, and
policy makers can create technologies that not only uplift those
who have been historically marginalized but enrich the human
experience for us all. In doing so, we may take a step toward a
future where technology serves as a platform for inclusivity and
empowerment.
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Abstract

Background: This paper presents an easy-to-use, affordable robotic manipulandum device (RMD) equipped with smart
monitoring and assistive technologies to engage in game-based exercise and repetitive task practice. The RMD has been designed
to enhance a wide range of fine motor manual dexterity skills, including thumb, finger, and wrist movements. By focusing on
finger and hand functions, it extends its utility beyond basic reaching or object transfer movements. Various interchangeable
3D-printed therapy handles of different shapes and sizes can be easily attached to the RMD drive shaft. These handle movements
can be used to engage with numerous affordable, commercially available computer games, allowing patients to practice tasks
that involve varying movement amplitudes, speeds, precision, and cognitive challenges. Additionally, the device is capable of
automatically recording and storing the patient’s real-time performance data on any given computer, integrating assessment into
treatment.

Objective: A pilot study was conducted with 5 patients with stroke to examine the feasibility and benefits of a 6-week game-based
exercise program using the proposed device.

Methods: A feasibility study was conducted with 5 participants. Data were collected using the computer game–based upper
extremity assessment of manual dexterity and Wolf Motor Function Test (WMFT) before and after the intervention lasting 6
weeks.

Results: The pilot study demonstrated that clients’ expectations related to manual dexterity were met. The average improvement
in the functional ability score of the WMFT was 14 (SD 3) points, with all participants exceeding the minimal clinically important
difference. The average reduction in total time was 30 (SD 14) seconds, with 4 of 5 participants surpassing the minimal clinically
important difference. For the computer game–based upper extremity assessment, the average improvement in success rate was
23% (SD 12%), and the average decrease in response time was 105 (SD 44) milliseconds.

Conclusions: Findings revealed acceptable, engaging, game-based, and task-oriented training with a high level of compliance.
Substantial improvements from pre- to postintervention were observed using the WMFT and assessments of manual dexterity.

Trial Registration: ClinicalTrials.gov NCT05071885; https://clinicaltrials.gov/study/NCT05071885

(JMIR Neurotech 2025;4:e67779)   doi:10.2196/67779

KEYWORDS

stroke; manual dexterity; hand function; poststroke; fine motor; thumb; finger; wrist; movement; motor rehabilitation; assistive
technology; smart monitoring; pilot; feasibility; prototyping; prototype; nervous system; nerve; motor neuron

Introduction

Background
Upper extremity (UE) motor impairments and persistent
hemiparesis commonly lead to difficulties with manual dexterity
after a stroke [1]. Manual dexterity, defined as the ability to
manipulate objects, is crucial for many everyday tasks, both for

leisure and social interactions. These tasks often require the
manipulation of objects that vary widely in physical properties
and functional demands, necessitating a high degree of precision
[2]. Individuals with chronic sensory-motor deficits in the UE
following a stroke can greatly benefit from intensive,
well-resourced therapy services [3-6]. A novel approach to
enhance patient engagement in therapy is the use of computer
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games, which integrate various learning elements and present
motor and cognitive challenges. This allows individuals to
participate in focused, task-specific activities with a significant
number of repetitions [7-10]. Several gaming systems have been
used as rehabilitation tools [11]. Various computer input devices
have been used to detect arm segments or finger motions. The
corresponding motion signals are used to interact with digital
avatars or objects [12,13]. However, these game-based exercise
programs often fail to adequately address object handling and
fine motor function–based object manipulation. Consequently,
they do not account for the sensory, tactile, or proprioceptive
signals from the hand that are essential for effective
goal-directed object manipulation tasks. To enhance the brain’s
capacity for learning, it is vital to create experiences that
improve manual dexterity through guided and repetitive practice
of manipulation tasks requiring precision [14-16]. Some
game-based rehabilitation systems use handles or joysticks as
controllers [17,18], where the handle is manipulated using wrist,
elbow, and shoulder motions. However, these systems include
only a few custom-made games.

To extend these systems, a cost-effective computer-based
gaming platform has already been developed, which integrates
various object manipulation tasks with engaging computer game
activities. This platform uses a miniature, wireless, inertial-based
(IB) computer mouse that directly connects object manipulation
with digital gaming [19-22]. The IB mouse can be attached to
a wide range of objects with different shapes, sizes, and weights
and can be handled using 2-finger, 3-finger, or whole-hand
motions as well as wrist, elbow, and shoulder movements. These
object manipulation tasks are used to practice diverse,
goal-oriented manual dexterity skills while users engage with
entertaining computer games. However, this gaming system
does not provide movement assistance for patients with limited
active range of motion or poor movement control.

Numerous studies have assessed the feasibility and impact of
various robotic systems aimed at improving UE functions in
patients with stroke [23-30]. Augmented reality game–based
devices focus on enhancing the range of motion in the shoulder,
elbow, and wrist. However, these devices are not able to detect
hand and finger movements with the required amount of
precision. The camera-motion and sensor-based devices cannot
detect movement with real-life objects. Thus, these devices can
only detect active gross movements, neglecting object
manipulation. A few robotic devices such as soft or hard gloves
and exoskeletons do assist with finger and thumb
flexion-extension; however, they primarily feature custom
software applications that involve activities performed in digital
settings rather than real object manipulations.

Given the above considerations, a low-cost, portable,
multipurpose robotic manipulandum device (RMD) equipped
with smart monitoring and assistive technologies for game-based
rehabilitation of manual dexterity was developed. The RMD
functions as a responsive, high-resolution computer mouse. In
this paper, we first describe the RMD hardware and gaming

software, its functionality, and related applications to provide
both treatment and assessment of recovery programs targeting
the manual dexterity of people after a stroke. The objective of
this study is to present the results of a proof-of-principle pilot
study conducted on 5 patients with stroke to examine the
feasibility and benefits of a 6-week game-based exercise
program using the RMD. The RMD described in this paper
explains an integrated controller to generate forces that can aid
voluntary movements necessary during gaming exercises,
making it suitable for patients with limited movement control
and those with a restricted active range of motion.

Description of the RMD and Software
Referring to Figure 1, the RMD features a compact, integrated
3D-printed chassis that contains the interface board, actuator,
sensors, power train, and rotary drive shaft. Various 3D-printed
therapy handles of different shapes and sizes can be attached
to the shaft. These handles are designed to help users practice
a wide range of manual dexterity skills involving thumb and
finger movements as well as wrist, elbow, and shoulder
functions. The RMD connects to a computer using a standard
USB cable. An optical encoder tracks the shaft rotation, which
corresponds to the movements of the handle and controls the
motion of a computer cursor or game sprite in any single-axis
computer game. In this context, the rotation of the shaft is
mapped to pixel coordinates on the screen. An Arduino
Leonardo microprocessor manages the RMD and its interaction
with the games. Additionally, the RMD features a 3-cm LED
display that shows several adjustable control parameters, which
the user can modify:

• Gameplay orientation: mouse horizontal or vertical motion.
Many common and modern video games are played with
horizontal game sprite motion, but some require vertical
motion.

• Working range: users can select an active range of motion
for exercises, for example, from wrist neutral to 10, 20, or
30 degrees of extension or flexion ranges of motion,
depending on individual patient needs, and map this to the
full-screen mouse position.

• Mouse sensitivity: this setting determines the amount of
movement required to navigate the mouse across the entire
display range.

• Force: the RMD is designed to facilitate various assistive
and resistive movement patterns. One of its applications
involves a unidirectional force field mode, where a
consistent force is exerted on the output shaft in a specific
direction, with both the magnitude and direction adjustable.
Many patients exhibit greater impairments in finger and
wrist movement in 1 direction (eg, wrist extension), making
the assistance of a constant force beneficial. Conversely,
the opposite movement (eg, wrist flexion) can be met with
a resistive force. This context-sensitive assistive or resistive
mode can enhance even minimal voluntary movements in
severely affected individuals, creating opportunities for
progressive exercise that increases movement demands.
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Figure 1. General view of the robotic manipulandum device and examples of various handles used for game-based rehabilitation of manual dexterity.

Since the RMD operates as a USB plug-and-play computer
mouse, it is compatible with digitally any commercially
available computer game. The inclusion of gaming elements
motivates patients, providing an enjoyable way to engage in
repetitive movements that are often necessary for rehabilitation.
The therapeutic benefits from the types of object manipulation
tasks involved vary in physical and anatomical requirements.
The selected computer games provide graded responses in
movement amplitude, speed, and precision. Table 1 outlines
several common computer games that have been extensively
tested with the RMD among patients of various ages.
Additionally, a specially designed rehabilitation repetitive task
practice (RTP) game has been created by the University of

Manitoba and validated [31-33]. This simple game records the
movements of the computer mouse curser or game paddle to
assess the quality of movements. This game automatically tracks
patients’ goal-directed object manipulation tasks during both
local and remote game–based therapy sessions, allowing for
performance quantification in each session. This feedback can
provide immediate results to the patient and help clinicians
monitor progress over time. In practice, RMD-assisted exercises
would initially use the RTP game software for therapeutic
purposes. The RTP software is customizable, enabling
adjustments to all game elements to suit the skill levels of
patients with varying degrees of sensory-motor impairments.
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Table . Big Fish Games were used in this study [34].

Type or activityDistractorPrecisionClickerResponse timeStart difficultyAxis playGame

Color matching
by directional
aiming

NoModerateYesSelf-paced (time
limited)

ModerateHorizontalAbundante

Brick busterYesModerateYesFastModerateHorizontalAction Ball

Brick busterYesModerateYesModerateEasyHorizontalAqua Ball

Color matching
by directional
aiming

NoModerateYesSlowModerateHorizontalAstro Bugz Re-
venge

Color matching
by directional
aiming

NoModerateYesModerateModerateHorizontalBirds Town

ShootingYesLowYesFastEasyVerticalBrave Piglet

Brick busterYesModerateYesFastModerateHorizontalBricks of Egypt

Color matching
by directional
aiming

NoModerateYesModerateModerateHorizontalButterfly Escape

Brick busterYesModerateYesFastModerateHorizontalEgyptian Ball

Brick busterYesModerateYesFastModerateHorizontalInvadazoid

Color matching
by directional
aiming

NoModerateYesSelf-paced (time
unlimited)

EasyHorizontalJar of Marbles

Steering and
jumping

YesHighYesFastDifficultHorizontalJet Jumper

Color matching
by directional
aiming

NoModerateYesModerateModerateHorizontalLuxor HD

Brick busterYesModerateYesFastModerateHorizontalRicochet
Recharge

aMatching and shooting games require participants to use a small wireless optical computer mouse, pressing the left mouse button when needed. Precision
is determined by the size of the paddle and the size of the target objects. Difficulty levels include game speed, the number of distractors, and matching
choices.

Figure 2 illustrates a snapshot of the RTP game, highlighting
game movement responses when using the RMD. Game objects
appear randomly at the top of the display, moving at
unpredictable speeds and directions toward the bottom. Players
aim to maneuver the game paddle to catch these moving targets,
with the RMD handle rotation controlling the paddle’s motion.
Distractor objects are included to increase challenge and can
be toggled on or off. Configurable features include movement
speed, precision (eg, sizes of game objects and paddles),
movement amplitude, and the incorporation of distractors to
assess the interplay between motor and cognitive processing as
well as dual-task interference effects. Throughout gameplay,

the RTP software logs the timing of each game object’s
appearance and disappearance, defining game events, along
with tracking the position of the paddle and other game objects
to establish movement context. Panels C and D in Figure 2
demonstrate typical movement trajectories within the game.
Various performance metrics can be captured using the RTP
game, offering immediate feedback for both patients and
therapists. Additionally, electronic outcome measures are
recorded to monitor progress and dose-response relationships
in specific exercise programs over time, including success rates
(SR), response times, movement durations, accuracy, and
movement variability.
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Figure 2. Illustration of RTP game software using the robotic manipulandum device. Panel (A) shows a healthy adult rotating a handle to move the
game “paddle” and catch the “target” object while avoiding the “distractor” object. Panel (B) shows a screenshot of the game, where target and distractor
objects appear at the top of the display and move to the bottom. Note that the addition of distractors is optional. Panel (C) presents single-game movement
trajectories (game paddle coordinates) for all game movement responses in one session. In this example, each game event takes 2 seconds (from target
appearance to disappearance), and the game is played for 60 seconds. The location of each successive target appearance is randomized. Approximately
half of the 30 game events occur in each direction (leftward or rightward). Panel (D) presents overlay plots of the segmented and sorted game movement
trajectories for all 30 game events; upward traces indicate leftward game movements, and downward traces indicate rightward game movements. RTP:
repetitive task practice.

It is important to note that with standard commercial games,
automatic performance logging is typically unavailable.
Therefore, for any training sessions—particularly those
conducted at home or remotely—the RTP game developed
in-house serves as a valuable resource, providing automated
monitoring and quantification of players’ motor skills while
engaging in a range of game-based exercises for hand and arm
coordination (also referred to as telemonitoring).

Figure 3 presents game movement trajectories of a representative
able-bodied adult and a patient with stroke playing the RTP
game using various handles. As can be seen in the plots, the
trajectories of the 5 different manipulation tasks are similar.

The SR was 100% for all manipulation tasks. For the patient
with stroke, the SR ranged from 50% (thumb-finger
flexion-extension) to 80% (elbow flexion-extension). Movement
consistency among the 10‐12 game movement responses of
the able-bodied adult was similar, as was movement onset time
(MOT). Many of the movement trajectories of the patient with
stroke were not smooth, exhibited small amplitudes, and
demonstrated several target overshoots. It is also evident that
the MOT is delayed in the participant with stroke compared to
the able-bodied participant. It is, therefore, seen that the platform
presented here is functional and can produce meaningful data
for further analysis and treatment decisions.
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Figure 3. Repetitive task practice game movement trajectories of an able-bodied adult and a patient with stroke using various robotic manipulandum
device handles, as described in Figure 2. The plots show segmented and sorted game movement responses for 1 direction of movement. The y-axis
represents movement amplitude as a percentage of screen width (0% to 50%).
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Another key feature of the RMD and the associated RTP game
software is that it is designed for use at home (telerehabilitation),
not just in clinics. At present, the cost of the device is estimated
to be less than US $70. The software automatically collects
various objective outcome measures to monitor a patient’s
ongoing progress instantaneously and can be traced over a period
of time. These data support the development of sustainable,
individualized, long-term rehabilitation protocols. Furthermore,
clinical support for home and remote outreach programs can
facilitate the creation of more targeted and personalized
solutions for patients.

The objective of this pilot study was to evaluate the
implementation, usability, acceptability, and benefits of the
game-based exercise program using the developed RMD
presented in this paper. The experience of participants with
stroke who completed a 6-week game-based exercise program
was first assessed with semistructured interviews. Interviews
were conducted to investigate participants’ perspectives and
opinions about expectations, acceptability, challenges, and
benefits of the game-based exercise program for UE
rehabilitation. Quantitative analysis pre- to postintervention
was conducted next, which included the Wolf Motor Function
Test (WMFT) and a computerized performance-based
assessment of manual dexterity.

Methods

Recruitment
Participants were recruited at the clinical rehabilitation research
facility of the University of Manitoba. In total, 5 individuals
who had a single stroke (onset between 6 months and 5 years)
and were aged 40 to 70 years participated in the study. All
participants had adequate vision to see images on a standard
computer monitor. Exclusion criteria were (1) excessive
spasticity of the fingers and wrist (grade 2 and above on the
Modified Ashworth Scale [35], (2) significant cognitive
impairment (Montreal Cognitive Assessment scores less than
25 [36], and (3) any other neurological disorder except a single
stroke before testing.

Ethical Considerations
The University of Manitoba Ethics Board reviewed and
approved the study (approval HS25163), and all participants
provided informed consent. The consent process ensured
participants comprehended the study’s objectives, procedures,
potential risks, benefits, and their right to discontinue at any
time. To maintain participant anonymity, all collected data were
anonymized and stored in a secure, locked location. No
compensation was provided, and no photographic or video
recordings of participants were taken.

Exercise Program
Participants attended 12 treatment sessions twice a week for 6
weeks. Each session lasted 45 minutes. As shown in Figures 1
and 3, a variety of 3D-printed “therapy” handles of different
shapes and sizes were used. They were designed to practice a
broad range of manual dexterity skills. The exercise programs
were established based on the participants’ personal goals, the
degree of their hemiparesis, and functional status. A typical

session involved exercise with 4 to 5 different handles, several
computer games, and assistive forces of different magnitudes.
Each handle-game-force combination was practiced for 2- to
3-minute intervals and repeated 2 to 3 times. Different handles
required different modes of manipulation. Game movement
responses were produced by thumb, finger, wrist, or elbow
movements. Task demands were adjusted by changing the mouse
sensitivity movement range and by adding assistive-resistive
forces. Additionally, different games were selected to adjust
movement speed and precision. Most participants were
competitive and became frustrated if they were not successful
in gameplay. Therefore, the difficulty level (movement
amplitude, speed, and precision) was adjusted for all
combinations of handles, game settings, and game types so that
participants were successful in gameplay for at least 60% of the
game events or activities. Table 1 presents a list of common
computer games used in this study. Big Fish Games are selected
based on the level of difficulty participants reported and their
personal likes and dislikes. The choices of games presented to
them were based on columns 3 to 7 of Table 1. Games with an
easy level of difficulty (based on the level of precision required,
the presence of distractors, and the type of executive functions
required) were introduced before the moderate and difficult
games. Task difficulty was also adjusted by increasing the
assistive and resistive forces applied to the RMD handles.

The exercises and choice of games were updated on a regular
basis, based on the participants’ improvements and personal
preferences for game selection. Numerous affordable and readily
accessible computer video games offer therapeutic benefits. For
instance, computer games downloaded from Big Fish Games
feature hundreds of arcade-style games across various genres
(Table 1). Many of these games align well with the game-based
RMD exercise program. In addition to requiring speed and
accuracy, these games incorporate several cognitive elements,
such as speed versus accuracy dynamics, distractor objects, and
object-matching activities. The commercial computer games
used in this pilot study are listed in Table 1. The wide variety
of games ensures that the individual preferences of participants
can be fulfilled. Regularly introducing new games and increasing
the difficulty levels can help maintain the challenge, providing
the psychological feedback necessary to keep participants
engaged and motivated.

Qualitative Analysis
At the end of the 6-week exercise program, all participants were
invited to participate in an interview. They were asked a series
of open-ended questions, and their responses were documented:
(1) when you agreed to participate, how did you hope you would
benefit from the therapy program? (2) Were there things about
the game or exercise program you liked and things you did not
like? (3) What did you think about the computer games that you
were asked to play? Did you enjoy the game? Were there games
that you did not enjoy? (4) Did you feel that this therapy
program helped you? (5) If you were provided with the right
settings, would you continue with these exercises?

The duration of the interviews varied among the 5 participants,
lasting between 20 and 30 minutes. Participants were invited
to share their thoughts, ideas, opinions, and personal experiences
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in detail. The analytical framework of interpretive description
was used for thematic analysis [37]. All interviews were
recorded, and the interviewer’s notes and comments were added
to the transcriptions separately for triangulation purposes. One
researcher (AK) reviewed the translated transcripts and created
a coding system, while a second researcher (TJS) oversaw the
process and added any additional codes for credibility purposes.
A second researcher (TJS) then examined the coded data to
identify any unique responses.

The content of each interview was analyzed by paraphrasing,
generalizing, and abstracting. A continuous iterative process
was maintained until no new themes emerged from the data.
The 2 researchers then compared their analyses and resolved
any disagreements in a final coding system organized into final
themes and subthemes.

Quantitative Analysis

Overview
The following outcome measures were obtained before and after
the intervention of the 6-week exercise program:

1. Quantitative assessments of UE motor ability were
conducted using the WMFT [38,39]. Participants were
instructed to complete the 15 tasks of the WMFT within a
120-second time limit, and the time taken to complete each
task was recorded. Additionally, the quality of movement

for each task was evaluated using an ordinal scale ranging
from 0 to 5, where 0 indicates no performance and 5
indicates normal movement. The final WMFT scores were
the total time taken for the 15 tasks and the summed
movement quality grades of the 15 tasks.

2. The RTP game was used to guide and evaluate different
object manipulation tasks. In this application, several test
objects with different physical properties and anatomical
demands were instrumented with a wireless IB mouse. The
rotation of each test object (ie, the instantaneous angular
position of the IB mouse) controlled the motion of the game
paddle. For a detailed description of the assessment tool,
see references [20,33]. All tasks required precision in object
manipulation using the finger-thumb or hand palmar
surface.

Test Objects
In the context of the RTP game assessment, the following test
object manipulation tasks were evaluated, as illustrated in Figure
4: (1) participants grasped a coffee mug to move it with
concentric pronation and eccentric supination. (2) Participants
held a wine glass between the thumb, index, and middle fingers.
It was rotated forward and backward using radial and ulnar
deviation. (3) Participants grasped a tennis ball with the thumb
and fingertips tethered to a wooden block via a wooden dowel
to eliminate the gravity effect. This task required the participant
to rotate the tennis ball left and right.

Figure 4. Illustration of the computer game–based upper extremity assessment tool. (A) Three test objects, each equipped with an inertial-based mouse,
were used to control the repetitive task practice game paddle movements. (B) Example overlay plots of the segmented and sorted game movement
responses for both movement directions: pronation-supination using a coffee mug, ulnar-radial deviation using a wine glass, and leftward-rightward
rotation using a tennis ball.

The assessment presented here allows one to determine if there
is a transfer of improvement in manual dexterity with objects
used in daily life. Moderate to high test-retest reliability of the
assessment tool has been reported in a group of 30 patients with
stroke [20] and a group of 35 children with cerebral palsy [21].

Test Protocol
Participants were seated with test objects positioned within a
comfortable reaching distance on an adjustable-height table. A
50-cm wide computer monitor was placed 1 m in front of them
at eye level to perform the assessment game tasks. Participants
received a demonstration of the game tasks and were allowed
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to practice trials using their unaffected arms. Figure 4 presents
typical overlay plots of game movement trajectories for both
movement directions for 1 game session.

Outcome Measures
The following outcome measures were derived from the
recorded game data of the assessments: SR and average MOT.
The percentage of the total number of target objects caught in
1 game trial is the SR. The time from target appearance to the
start of the game paddle movement is the average MOT. MOT
values are determined for each game movement response. The

average is then computed over the group of game movement
responses for each direction.

Results

Participants
Table 2 presents the demographic and clinical data of the 5
participants. All participants, who experienced a single stroke,
agreed to take part in the study and provided informed consent.
They were all right-handed and fully completed the 6-week
program, which included 2 exercise sessions per week, each
lasting at least 45 minutes.

Table . Demographic and clinical characteristics of participants.

Hand dominanceAffected sideDuration (months)Type of strokeSexAge (years)Participant

RightLeft24IschemicMale67Participant 1

RightLeft16IschemicMale68Participant 2

RightLeft12IschemicMale57Participant 3

RightLeft4IschemicFemale43Participant 4

RightLeft56HemorrhagicMale51Participant 5

Qualitative Results
The following 4 themes capture the range of participants’
experiences and viewpoints regarding the prototyped RMD

exercise program: expectations, difficulties with technology,
engagement with therapy, and future expectations. Table 3
presents examples of participants’ direct quotes for each
interview question (theme).

Table . Typical participant responses to interview questions.

ResponseTheme

Expectations • “I get into problems while handling day-to-day things. I often have
trouble gauging how much distance and pressure I need. The other
day I squeezed the soda cup too hard and spilled everywhere. I am
hoping to improve the finer aspects” [Participant 1].

• “My consultant physician told us that I was never going to use my
fingers. When we heard about this program, we thought it might help”
[Participant 3].

Difficulties with technology • “Learning how to use the RMD was hard at first. Learning how to
move the mouse when my arm is so restricted, you know?” [Partici-
pant 3].

• “I am not a tech-savvy person. It took a while to get used to the games
and the robot (RMD)” [Participant 4].

• “Coming to therapy twice a week and getting a ride in winter was a
lot. But the home-based therapy was not working, so we decided to
do it” [Participant 5].

Engagement with therapy • “I am very competitive. I like that the computer games challenged
me. It was fun” [Participant 1].

• “It (conventional therapy) did not show much improvement. It did
not seem like it was worth the trouble. I wanted to check out this
option (computer games-based protocol) because it sounded new,
something fun” [Participant 4].

• “I could comb my hair again. That was something!” [Participant 2].
• “My hand felt completely immobile earlier; now I can use it to support

my other hand for different tasks” [Participant 3].
• “I was happy to see that you guys created a steering wheel handle

for me to relearn driving” [Participant 5].

Future expectations • “Honestly, I think we could have done this from home if you had
enough of these (RMDs). We can just download these games on my
laptop” [Participant 5].
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Expectations
All participants indicated that the primary reason for their
participation in this exercise program was to improve their hand
function, particularly in handling and manipulating objects. One
participant agreed to participate because his therapist
recommended the program. It is noteworthy that it had been
several weeks to over 3 years since the participants last received
physiotherapy or occupational therapy.

Difficulties With Technology
In total, 3 of the 5 participants reported that they had not played
computer games before. However, they noted that the games
were easy to learn. All participants found it intuitive to use the
RMD as a game controller. They all considered the exercise
program challenging and expressed that it was difficult to play
the games by manipulating the RMD handle. Nevertheless, with
practice, the exercises became significantly easier. All
participants exhibited competitiveness and experienced
frustration when they could not successfully play the games.
This was taken into account, and the games were carefully
selected to match the skill levels of each participant.

Engagement With Therapy
All participants stated that they had previously undergone
physiotherapy and occupational therapy for several weeks. They

expressed appreciation for the one-to-one therapy sessions,
noting that receiving immediate feedback and guidance from
the therapist was very helpful. Participants also reported that it
was beneficial to know which games to use and why. They
indicated a preference for certain games and appreciated the
variety available to them during therapy. Furthermore, all
participants commented that it was more enjoyable and easier
to perform game-based exercises than conventional exercises.

Future Expectations
All participants expressed a desire to continue the program and
inquired whether it would be possible to use the device at home.

Quantitative Results
Table 4 presents the pre- and postintervention test scores for
the WMFT, highlighting the changes observed from pre- to
postintervention. In patients with stroke, the minimal clinically
important difference (MCID) for the functional ability score
has been reported to range from 3 to 6 points, while the MCID
for the total time of the WMFT is 22 seconds [40]. All 5
participants in this study demonstrated postintervention
improvements that exceeded the reported MCID for the
functional ability measure (with a range of improvement
between 9 and 16 points). In total, 4 of the 5 participants
exhibited improvements in total time that surpassed the MCID
(with a range of improvement between 23 and 28 seconds).

Table . Pre- and postexercise Wolf Motor Function Test scores and magnitude of change.

Total time (seconds)Functional ability score (maximum: 75)Participant

ChangePostPreChangePostPre

487111992819Participant 1

3484118153419Participant 2

116273142713Participant 3

3371104162812Participant 4

24658914239Participant 5

30 (14)71 (8)101 (20)14 (3)28 (4)14 (4)Average (SD)

Figure 5 displays example plots of game movement responses
using the 3 test objects, recorded at baseline and after the
completion of the 6-week exercise program from different
participants. Visual inspection reveals a clear improvement in
movement quality, amplitude, and consistency. As indicated in
Table 5, substantial improvements were observed in SR and

response time for all 5 patients. For SR, the average
improvement was 23% (SD 12%), while for response time,
there was an average decrease of 105 (SD 44) milliseconds. It
is noteworthy that typical response times were approximately
600 milliseconds.
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Figure 5. Examples of repetitive task practice game movement responses (1 direction) from different participants using the 3 assessment test objects,
taken at pre- and postintervention time periods.

JMIR Neurotech 2025 | vol. 4 | e67779 | p.24https://neuro.jmir.org/2025/1/e67779
(page number not for citation purposes)

Kanitkar et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table . Pre- and postexercise test scores and magnitude change of object manipulation tasks for all participantsa.

Response time (milliseconds)Success rate (%)Participant and test object

ChangePostPreChangePostPre

Participant 1

193530723499142Object 1

55423478248965Object 2

95697792176851Object 3

114 (71)550 (138)664 (165)30 (17)83 (13)53 (12)Average (SD)

Participant 2

−45325285010050Object 1

7870278086254Object 2

3504217716710033Object 3

141 (185)552 (142)693 (143)42 (30)87 (22)46 (11)Average (SD)

Participant 3

34811845226442Object 1

7477184557570Object 2

−11805794127361Object 3

32 (43)796 (22)828 (29)13 (9)71 (6)58 (14)Average (SD)

Participant 4

86490576318554Object 1

271515786.55550Object 2

59725784148066Object 3

139 (115)577 (129)715 (121)17 (13)73 (16)57 (8)Average (SD)

Participant 5

40783823127866Object 1

218588806209272Object 2

38722760167256Object 3

99 (103)698 (100)796 (33)16 (4)81 (10)65 (8)Average (SD)

aValues are the average of left and right game movements. Object 1: coffee mug; object 2: wine glass; and object 3: tennis ball (Figure 5).

Discussion

Principal Findings
This paper introduced a rehabilitation device that provides
flexible, game-based RTP targeting manual dexterity and
includes means to automatically record and assess patients’
manual dexterity skills using the RTP software. The 6-week
exercise program resulted in clinically significant improvement.
In terms of the WMFT, on average, participants showed an
improvement of 14 (SD 3) points in functional ability score and
a reduction of 30 (SD 14) seconds in total time. Additionally,
for the computer game–based UE assessment, the average
improvement in success rate was 23% (SD 12%), while the
average decrease in response time was 105 (SD 44)
milliseconds. The proposed system not only addresses patients’
exercise needs but also integrates enjoyment and learning
through a gaming platform.

The change in WMFT scores exceeded the MCID for all
participants. The WMFT measures daily activities involving
fingers, such as picking up small objects and using hand tools.
Significant improvements in the WMFT were observed, even
though these specific tasks were not practiced during the
game-based manipulation program. The WMFT also assesses
visual perceptual skills for tasks like stacking blocks and
drawing figures. The RMD game tasks, which require precision
movements based on visual feedback, showed substantial
improvements in both the WMFT tasks and object manipulation
tasks in the RTP game. Participants with stroke noted that the
game-based exercises were challenging yet engaging and
enjoyable.

Handles of different sizes and shapes were used to target
precision, goal-directed movements of the thumb, fingers, and
wrist as well as combinations of UE movements. In addition to
the types of handles used, computer games also possess
therapeutic value. Different commercial video games require
varying levels of movement speed, accuracy, and amplitude.
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For example, participants with severe impairments were able
to successfully play computer games when the selected games
involved slow movements and low precision (ie, large game
paddles and target game objects). Participants with moderate
to mild impairments could engage with computer games that
required faster speeds and greater precision.

The games also involved various executive cognitive functions,
including visual search and spatial processing of moving targets
and distractors. The diverse range of games and regular updates
to difficulty levels are important for maintaining engagement
and challenge.

The RMD is configured to function exactly as a plug-and-play
computer mouse and, therefore, can be used to play many
commercial computer games. This allows easy access to a large
source of commercial games. To meet the needs of each
individual, the RMD can be customized to suit specific
rehabilitation needs and preferences. This adaptability allows
patients to engage with a variety of gaming experiences tailored
to their specific motor and cognitive rehabilitation goals. A key
feature of the program is to increase the number of repetitions
of goal-directed movements at varying speeds and accuracy
levels. High intensity and a high number of repetitions are
crucial to drive neuroplasticity and functional improvement in
patients with stroke [41-45].

Each game-handle combination was played for 3 to 5 minutes,
and typically, each game event took approximately 2 seconds.
Therefore, participants made 90 to 150 goal-directed game
movement responses during this time period. Each session lasted
45 minutes and included 7 to 8 different handles, resulting in
several hundred game-handle combinations. The goal-directed
game movement responses varied in amplitude, speed, and
direction. During gameplay, visual feedback of the game sprite
or paddle relative to the game target and distractor objects was
used to initiate and guide each contextual game movement
response, supporting implicit learning of eye-hand coordination.
Additionally, the selected video games featured unpredictable
trajectories for game target motion, promoting variable practice.

Interestingly, significant improvements were observed in a
participant who was 5 years after a stroke, which was
unexpected given that most studies include participants less
than 2 years after a stroke. Although some studies have reported
significant improvements in UE function 3 to 5 years after a
stroke, this finding is based on only 1 participant. Future
randomized controlled trials are needed to examine the
effectiveness of game-based task-specific exercises for
participants 3 to 5 years after a stroke.

Recovery programs can be extensive, involving RTP for many
months. A key feature of the RMD is its design for home use

(telerehabilitation). In this regard, the cost of the electronic
components, motor housing, and handles is less than US $70.
Additional costs, several times this amount, will likely be
required for the commercialization of the RMD system. The
RMD can initially be used in a supervised clinical setting and
then transitioned to home use while being monitored by
clinicians. The telemonitoring capabilities of the system (ie,
RTP game) could allow clinicians to track changes in function
and compliance, facilitating the development of sustainable and
individualized programs. Prompt clinical assistance for home
and remote outreach programs will foster more tailored and
effective solutions for patients, facilitating the intended training
outcomes. This will require further development to produce a
secure content management system for individual electronic
game data to be updated and stored for processing as well as to
generate queries and reports for registered eHealth stakeholders
(eg, therapists, physicians, and third-party insurance providers).

Limitations
The unidirectional force mode, while assisting movement in 1
direction, results in resistance forces in the opposite direction,
which may not be desirable. A real-time intelligent control
scheme is under development, involving communication
between the RMD software and the RTP game. In the upcoming
system, the controller will receive coordinates for both the game
targets and the paddle, which is controlled by handle rotations.
This information about movement directions and amplitudes
can then be used. The system will determine the direction and
magnitude of the force necessary to rotate the handles effectively
to move the game paddle within the RTP game. Notably, this
closed-loop assistance can be offered in both movement
directions during gameplay. This context-sensitive assistive
mode helps facilitate limited voluntary movements in severely
affected individuals.

Conclusions
The results of the pilot study indicate the feasibility,
acceptability, and positive outcomes of the RMD game–based
system for enhancing manual dexterity in people with stroke
who have moderate UE motor impairments. The intervention
resulted in clinically significant improvements, with all
participants showing enhanced performance in the WMFT
beyond the MCID. These findings suggest that the system has
the potential to advance rehabilitation treatments for finger,
thumb, and wrist recovery in people with stroke. The long-term
effects of this training on manual dexterity will need to be
evaluated in future randomized controlled trials. However, the
current findings are encouraging and provide a strong basis for
further research and development.
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Abstract

Background: Speech features are increasingly linked to neurodegenerative and mental health conditions, offering the potential
for early detection and differentiation between disorders. As interest in speech analysis grows, distinguishing between conditions
becomes critical for reliable diagnosis and assessment.

Objective: This pilot study explores speech biosignatures in two distinct neurodegenerative conditions: (1) mild traumatic brain
injuries (eg, concussions) and (2) Parkinson disease (PD) as the neurodegenerative condition.

Methods: The study included speech samples from 235 participants (97 concussed and 94 age-matched healthy controls, 29
PD and 15 healthy controls) for the PaTaKa test and 239 participants (91 concussed and 104 healthy controls, 29 PD and 15
healthy controls) for the Sustained Vowel (/ah/) test. Age-matched healthy controls were used. Young age-matched controls were
used for concussion and respective age-matched controls for neurodegenerative participants (15 healthy samples for both tests).
Data augmentation with noise was applied to balance small datasets for neurodegenerative and healthy controls. Machine learning
models (support vector machine, decision tree, random forest, and Extreme Gradient Boosting) were employed using 37 temporal
and spectral speech features. A 5-fold stratified cross-validation was used to evaluate classification performance.

Results: For the PaTaKa test, classifiers performed well, achieving F1-scores above 0.9 for concussed versus healthy and
concussed versus neurodegenerative classifications across all models. Initial tests using the original dataset for neurodegenerative
versus healthy classification yielded very poor results, with F1-scores below 0.2 and accuracy under 30% (eg, below 12 out of
44 correctly classified samples) across all models. This underscored the need for data augmentation, which significantly improved
performance to 60%‐70% (eg, 26‐31 out of 44 samples) accuracy. In contrast, the Sustained Vowel test showed mixed results;
F1-scores remained high (more than 0.85 across all models) for concussed versus neurodegenerative classifications but were
significantly lower for concussed versus healthy (0.59‐0.62) and neurodegenerative versus healthy (0.33‐0.77), depending on
the model.

Conclusions: This study highlights the potential of speech features as biomarkers for neurodegenerative conditions. The PaTaKa
test exhibited strong discriminative ability, especially for concussed versus neurodegenerative and concussed versus healthy
tasks, whereas challenges remain for neurodegenerative versus healthy classification. These findings emphasize the need for
further exploration of speech-based tools for differential diagnosis and early identification in neurodegenerative health.

(JMIR Neurotech 2025;4:e64624)   doi:10.2196/64624

KEYWORDS

speech biosignatures; speech feature analysis; amyotrophic lateral sclerosis; ALS; neurodegenerative disease; Parkinson's disease;
detection; speech; neurological; traumatic brain injury; concussion; mobile device; digital health; machine learning; mobile health;
diagnosis; mobile phone
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Introduction

Overview
The fields of health care and medical diagnostics have witnessed
a significant shift toward noninvasive and accessible methods
for early detection, assessment, and monitoring of medical
conditions. This shift has been driven by technological
advancements and growing research interest in digital health
solutions [1]. Among these, speech analysis has emerged as a
promising avenue, with studies identifying speech as a potential
biosignature for a variety of neurodegenerative conditions [2,3].
The ability to reliably distinguish between conditions or detect
coexisting disorders is critical for accurate diagnosis, tracking
disease progression, and evaluating treatment effectiveness [4].

This pilot study investigates speech-based biosignatures of 2
distinct neurodegenerative conditions, that are,
neurodegenerative diseases and mild traumatic brain injuries
(mTBIs), specifically concussions. Speech patterns often reflect
neurodegenerative health, with specific speech features showing
promise for distinguishing between these conditions. The dataset
includes individuals with concussions, patients with Parkinson
disease (PD), and age-matched healthy controls for both groups
(15 samples for each test). These groups were selected to ensure
demographic compatibility while addressing the unique speech
patterns associated with each condition.

Neurodegenerative diseases, such as PD, are characterized by
the progressive loss of neurons in the brain and spinal cord,
leading to impairments in motor and cognitive functions [5,6].
PD involves the degeneration of dopaminergic neurons, resulting
in clinical symptoms such as tremors, rigidity, bradykinesia,
and postural instability [7]. These symptoms worsen over time
and lack curative treatments, necessitating reliable diagnostic
tools for early intervention [8]. On the other hand, concussions,
a form of mTBI, result from sudden trauma to the brain, causing
temporary cognitive impairments, disruptions in brain function,
and neurochemical changes. Repeated concussions are
associated with a heightened risk of neurodegenerative disorders,
such as dementia, later in life [9]. Despite their prevalence,
approximately 90% of concussions go unreported, leading to
inadequate medical attention and potentially catastrophic
consequences [10].

Traditional diagnostic methods for neurodegenerative diseases
and concussions often rely on observable motor symptoms, such
as tremors, gait disturbances, or muscle rigidity, as well as
subjective assessments of cognitive impairments [11]. However,
emerging research has identified speech as a valuable biomarker
for neurodegenerative health. Dysarthria and dysphonia,
characterized by changes in articulation and motor speech
production, are prevalent in both concussions and
neurodegenerative conditions like PD [12-14]. Speech features,
such as mel frequency cepstral coefficients (MFCCs), jitter,
shimmer, harmonics-to-noise ratio (HNR), and other temporal
and spectral attributes, have been shown to correlate with
underlying neurodegenerative conditions.

In this study, we analyzed speech data from 2 well-established
medical speech tasks, the PaTaKa task and the Sustained Vowel

task. These tasks are widely used in clinical settings for
assessing speech impairments. The objective of this study is to
explore the potential of speech features in differentiating
between concussions and neurodegenerative conditions, as well
as their respective healthy controls, and to assess the feasibility
of using these features as biomarkers for diagnosis. By
addressing this objective, we aim to contribute to the
development of speech-based diagnostic tools for early and
accurate identification of neurodegenerative health conditions.

This study evaluated 37 speech-based features (25 temporal and
12 spectral), applying machine learning models such as support
vector machine (SVM), decision tree (DT), random forest (RF),
and Extreme Gradient Boosting (XGBoost) to classify between
the groups.

The remainder of this paper describes our methodology, feature
extraction and analysis, machine learning approaches, and results
for the binary classification tasks across the 2 speech tests.

Related Work
Diagnosing brain injuries and neurodegenerative diseases can
be challenging; for instance, concussions may present subtle
features that are difficult to detect, including using third person
witness accounts of the injury, clinical examinations, and
laboratory testing, where diagnostic accuracy is not always
perfect [15]. Recent work has explored the diagnosis of
concussions in athletes using mobile technologies [16] and
speech analysis [17,18], while digital assessments, coupled with
speech analysis, are also increasingly being used for individuals
with neurodegenerative diseases [19]. In a study by Tsanas [19],
various speech tasks have been used to distinguish between
healthy people and individuals with PD, with relatively high
accuracy. Other previous research has investigated the overall
symptom severity of individuals with a neurodegenerative
condition [11,20], the effectiveness of voice rehabilitation [21],
and how to distinguish PD from other conditions such as
essential tremor or atypical parkinsonism [22].

The choice of speech task is critical to obtaining speech samples
that can be used for subsequent feature extraction and analysis.
One commonly used speech task is to ask an individual to
produce sustained phonation of vowels. For instance, the study
by Mallela et al [23] presents an automatic voice assessment
approach for separating healthy individuals from patients with
amyotrophic lateral sclerosis (ALS). Although our study focuses
exclusively on PD as the representative neurodegenerative
condition, references to ALS studies are included to highlight
the broader research landscape on neurodegenerative speech
biosignatures and their diagnostic significance. Linear
discriminant analysis is used to classify phonation, with the
most successful model achieving more than 90% accuracy.
Similarly, a study by Rueda and Krishnan [24] obtained
sustained vowel data from 57 PD patients and 57 healthy
individuals, and the study used 5 hierarchical and 1
partition-based clustering techniques to compare and cross-check
PD patients at different phases. In some cases, researchers have
relied on existing voice recordings, for example, obtained
through the Parkinson’s Voice Initiative project (the largest
speech-PD dataset so far) to analyze voice impairment due to
PD [25].
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Daudet et al [18] developed a mobile app to diagnose
concussions, using data from 47 high-schools and colleges in
the Midwest. The study used several speech tasks such as
repetition of a sequential motion rate, alternating motion rate,
multisyllabic words (words with 4 syllables containing front,
middle, and back vowels, and bilabial, alveolar, velar, and glide
consonants). The work by Vashkevich et al [26] presented
features for detecting pathological changes in acoustic speech
signals for ALS diagnosis. It used recordings from 48 people
(26 with ALS) and investigated vowel harmony. The features
obtained an 88% correct classification performance using linear
discriminant analysis. Various speech-based indicators, such
as shimmer, jitter, HNR, and other temporal and spectral
indicators, have also been explored as dysphonia measures in
individuals with neurodegenerative diseases [27]. Finally, in a
study by Benba et al [22], the authors investigated the most
effective acoustic elements for accurately identifying symptoms
of PD, combining shimmer, jitter, pitch, harmonicity, pulses,
and voicing by using K-Nearest Neighbor classifiers with
different types of kernels (ie, radial basis functions, linear,
polynomial, and multilayer perceptron).

Machine learning–based solutions have become the standard
for most health care decision-making processes, for example,
most previous works focus on differentiating diseased
individuals from healthy controls. For example, the work by
Tsanas and Arora [28] evaluated 2289 individuals (2023 healthy
controls and 246 PD patients) and analyzed 15,227 voice tasks
(9994 for healthy controls and 5233 for PD patients). Similarly,
the work Bongioanni [29] compared speech-based automatic
classification of patients with ALS and healthy people using
sustained phoneme generation, diadochokinetic task, and
spontaneous speech. They classified voice samples from 25
patients with ALS and 25 healthy participants using SVMs and
deep neural networks. More recently, more focus has been given
to multiclass scenarios, for example, the study by Benba et al
[22] used a Convolutional Neural Network Long Short-term
Memory to categorize ALS, PD, and healthy controls. The study
analyzed speech data from 60 people, focusing on sentence
reading, sound repetition, and sustained vowels.

Though there are studies that had investigate speech features
pertaining to neurodegenerative disorders or acquired
neurodegenerative disorders like mTBI, there are not many
studies exploring speech feature variations between those
populations which might co-occur and impact speech production
differently.

The aim of this study is to investigate whether distinct
speech-based biomarkers, derived from commonly used tasks
like the PaTaKa and Sustained Vowel tests, can effectively

differentiate between concussed individuals, neurodegenerative
conditions (focused on PD), and healthy controls.

Methods

Data Collection
This study focused on 2 widely used speech tasks, the sequential
motion rate task (PaTaKa test) and the Sustained Vowel test.
The PaTaKa test evaluates speech-motor function by asking
participants to take a deep breath and repeatedly articulate
“Pa-Ta-Ka” as steadily as possible in 1 breath, providing insights
into the rate and precision of sequential articulatory actions.

In the Sustained Vowel test, participants were instructed to
sustain the vowel sound “ah” for as long as possible, offering
valuable information about voice quality and potential vocal
tremor. Both tasks were assigned to four participant groups,
that are (1) individuals with concussions, (2) individuals with
neurodegenerative conditions (specifically PD), (3) healthy
controls age-matched to the concussed group, and (4) healthy
controls age-matched to the neurodegenerative group.

Individuals diagnosed with a concussion were evaluated by
physicians or athletic trainers using standardized neurocognitive
assessment tools, such as ImPACT (Immediate Post-Concussion
Assessment and Cognitive Testing) by ImPACT Applications,
Inc, SCAT (Sport Concussion Assessment Tool), an open-access
tool , and SAC (Standardized Assessment of Concussion) by
researchers at the University of North Carolina’s Sports
Medicine Research Laboratory, within 48 hours of the suspected
injury. Individuals with neurodegenerative conditions (ie, PD)
were diagnosed by licensed neurologists or family physicians.
All participants with PD were in the early stages of disease
progression (Hoehn and Yahr stage 1‐2) and were assessed
using tools such as the MDS-UPDRS (Movement Disorder
Society - Unified Parkinson’s Disease Rating Scale) and Hoehn
and Yahr Scale.

Healthy controls were divided into two groups: (1) young
healthy individuals age-matched to the concussed group and
(2) older healthy individuals age-matched to the
neurodegenerative group. This separation ensures more accurate
comparisons between the groups, minimizing the confounding
effects of age-related speech differences.

Participants completed the speech tasks using a mobile app
(smartphone or tablet) that provided both visual and auditory
instructions. The app also recorded the audio samples digitally
for subsequent analysis. Audio data were collected from a total
of 235 and 239 participants for the PaTaKa and Sustained Vowel
tests, respectively, as shown in Table 1.
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Table . Description of collected samples.

Age (years), mean
(SD)

SexSamples, nTest name and population

Female, nMale, n

PaTaKa

17 (3)118697Concussed

17 (3)138194Healthy control
(young)

63.67 (4.95)121729Neurodegenerative

(PDa)

63.67 (4.95)10515Healthy control (older)

Sustained Vowel

17 (3)98291Concussed

17 (3)1490104Healthy control
(young)

63.67 (4.95)121729Neurodegenerative
(PD)

63.67 (4.95)10515Healthy control (older)

aPD: Parkinson disease.

The PaTaKa test dataset includes speech samples from 97
concussed participants, 29 participants with neurodegenerative
conditions (ie, PD), 97 age-matched young healthy controls,
and 15 age-matched older healthy controls. Similarly, the
Sustained Vowel dataset consists of speech samples from 91
concussed participants, 29 participants with neurodegenerative

conditions (ie, PD), 91 age-matched young healthy controls,
and 15 age-matched older healthy controls.

In the remainder of this section, we describe the 4 key
components of the proposed analysis methodology, shown in
Figure 1, that are data preprocessing, feature extraction, model
training, and evaluation.

Figure 1. Overall visualization of the 4 methodological steps: data preprocessing, feature extraction, model training, evaluation. DT: decision tree;
mfcc: mel frequency cepstral coefficient; RF: random forest; SV: Sustained Vowel; SVM: support vector machine; XGBoost: Extreme Gradient Boosting.

Data Preprocessing
The voiced portions of speech signals typically carry the most
critical information for analysis. Therefore, to enhance the
quality and efficiency of feature extraction, it is essential to
eliminate unnecessary components, such as silence intervals
and extraneous noise, during the preprocessing phase. In this
study, silence intervals were removed at 2 points in each speech
recording using the free software developed by Muse group
named “Audacity”. Specifically, silence was cut from the
beginning of the recording to the onset of vocalization and from
the offset of vocalization to the end of the recording.

In addition, recordings that did not meet the study’s
requirements, such as those where participants failed to produce

the expected utterances (eg, “PaTaKa” in 1 continuous breath
or sustained vowel production without interruptions), were
excluded from further analysis. This step ensured a high-quality
dataset for feature extraction and classification, thereby
improving the reliability of the results.

Data Augmentation
To address the challenges of imbalanced datasets and improve
classification performance, data augmentation was applied to
specific data subsets, particularly those with limited samples,
such as the neurodegenerative (ie, PD) and age-matched healthy
datasets. The augmentation process involved adding Gaussian
noise to the raw audio signals. The noise factor was set to 0.005
to ensure that the original speech characteristics were preserved
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while introducing subtle variations to increase sample diversity.
For each audio file, a noise vector was generated using a
Gaussian distribution, scaled by the specified noise factor, and
added to the original signal. The augmented audio signals were
then normalized to ensure they remained within the acceptable
amplitude range for further processing.

This step increased the dataset size from 29 PD and 15 healthy
samples to 58 PD and 30 healthy samples, resulting in a notable
improvement in classification accuracy from under 30%
(original data) to 60%‐70% (augmented data).

Feature Extraction
Feature extraction is the process of transforming raw audio data
into numerical features while retaining the critical information
embedded within the original signal. Among various methods
for converting speech into numerical data, temporal and spectral
features are widely used in speech-processing research
[22,26,27,30]. In these studies, both types of features were
extracted using Python’s Librosa library [31].

Temporal features describe the changes in an audio signal over
time, such as amplitude and pitch variation. This study extracted
25 temporal features, including 4 fundamental frequency
measures (eg, mean and SD of F0), 5 jitter measures, 6 shimmer
measures, and the HNR. These features provide insights into
voice quality and stability, commonly associated with motor
speech dysfunctions. The full list and descriptions of these
temporal features are provided in Multimedia Appendix 1.

Spectral features analyze the frequency components of the
speech signal and are commonly used in applications such as
speech recognition and speaker identification. This study
extracted 12 spectral features, including MFCC, spectral
centroid, chroma features, and spectral flatness. These features
capture frequency-domain characteristics that are sensitive to
articulation and vocal tract configurations. Detailed descriptions
of these spectral features are presented in Multimedia Appendix
1.

All 37 extracted features (25 temporal and 12 spectral) were
included in the training and evaluation of machine learning
models. By retaining the full feature set, we ensured that
potentially valuable information was preserved, particularly
given the small sample size. Data augmentation techniques,
such as adding noise to the audio samples, were used to improve
the robustness of the models and enhance performance,
especially for the classification between neurodegenerative and
healthy controls, where the original dataset resulted in poor
classification performance.

Model Training
In recent years, the trend in digital health care has been to use
machine learning models to classify input data (speech samples)
into 2 or more classes based on extracted features. In this work,
we employed several popular machine learning techniques, such
as SVM, DT, RF, and XGBoost [18]. These models were chosen
due to their interpretability, robustness, and ability to handle
small datasets effectively, which is essential for clinical
applications.

SVM, a supervised learning algorithm proposed by Boser et al
[32], is grounded in statistical learning theory and is particularly
effective for high-dimensional data [33]. It uses hyperplanes
and margins to separate data into classes, with its performance
being highly dependent on data scaling and the choice of kernel
functions. DTs, on the other hand, divide feature space into
regions by recursively splitting data and assigning classes to
leaf nodes [34]. Despite their simplicity, DTs are prone to
overfitting, especially on small datasets.

RFs mitigate this issue by employing an ensemble of DTs
trained on bootstrapped datasets, with each tree built using a
random subset of features [35]. The final class prediction is
based on a majority vote across all trees, which reduces variance
and enhances model robustness. Finally, XGBoost, a gradient
boosting implementation, constructs DTs sequentially,
optimizing performance by correcting errors from previous
iterations [36]. It is known for its computational efficiency and
scalability, making it a popular choice for structured datasets.
For a given sample, the final prediction can be calculated by
summing up the scores of overall leaves, which is illustrated in
Multimedia Appendix 2.

Given the limited size of our dataset, we prioritized traditional
machine-learning models over deep learning methods. While
deep learning algorithms have demonstrated exceptional
performance on large datasets, their effectiveness diminishes
with smaller datasets due to overfitting and computational
requirements. Traditional machine learning models, such as
SVM and RF, offer superior interpretability, which is critical
for clinical decision-making [28]. For instance, the study by
Pishgar et al [37] found that on a small voice disorder dataset,
SVM outperformed a deep neural network in terms of sensitivity
and specificity.

In this study, all 37 extracted features (25 temporal and 12
spectral) were used without any feature selection or filtering.
Data augmentation was applied to address the limited sample
size, particularly for the neurodegenerative versus healthy
dataset, where the augmented dataset improved model
performance.

To train and evaluate the machine learning models, we applied
a 75‐25 stratified split of the dataset into training and test sets,
ensuring that class distributions were preserved. Stratified 5-fold
cross-validation was used to evaluate model performance more
reliably, and Grid Search was used to fine-tune hyperparameters
for all algorithms.

Evaluation
In this study, we assessed the performance of our classification
models using multiple evaluation metrics, with a particular focus
on the F1-score due to its robustness in handling unbalanced
datasets. The F1-score is particularly well-suited for situations
where there is an imbalance in the class distribution, as it
provides a harmonic mean of precision and recall, balancing
the trade-off between these 2 metrics. The F1-score is defined
as follows in Multimedia Appendix 2.

Both precision and recall are crucial in medical applications,
where the consequences of false positives or false negatives can
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be severe. The F1-score offers a balanced view of a model’s
performance when neither precision nor recall can be prioritized
over the other. A higher F1-score (ranging from 0 to 1) indicates
a better-performing model.

In addition to the F1-score, we evaluated our models using
precision, recall, and accuracy to provide a comprehensive view
of model performance. These metrics helped compare the
performance of models across different speech tasks (PaTaKa
and Sustained Vowel) and combinations (eg, concussed vs
healthy, concussed vs neurodegenerative, neurodegenerative vs
healthy). The results section discusses these findings in detail,
highlighting the implications of our model’s performance for
clinical applications.

Ethical Considerations
This research was conducted in compliance with ethical
standards and approved by the Institutional Review Board at
the University of Notre Dame. The approval numbers for this
study are 18-01-4338 and 18-01-4340 for PD and concussion,

respectively. All participants provided informed consent
(Multimedia Appendices 3 and 4), and their confidentiality was
ensured throughout the study.

Results

Overview
The performance of the models was evaluated using precision,
recall, F1-score, and accuracy across 3 participant combinations
(ie, concussed vs healthy, concussed vs neurodegenerative, and
neurodegenerative vs healthy) for 2 widely used speech tasks,
PaTaKa and Sustained Vowel. The results provide insights into
the discriminative ability of each test and highlight the
comparative effectiveness of different classifiers in
distinguishing between participant groups. While the PaTaKa
task generally demonstrated robust performance across all
combinations, the Sustained Vowel test showed varying levels
of accuracy, particularly for certain groups and classifiers. The
performance for each combination and test, along with
discussions on their implications are illustrated in Figure 2.

Figure 2. Performance metrics by test type, model, and combination. SVM: support vector machine; XGBoost: Extreme Gradient Boosting.
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Concussed Versus Healthy

PaTaKa Test
The models performed exceptionally well, achieving
near-perfect precision, recall, F1-score, and accuracy across all
classifiers. DT and RF slightly outperformed SVM and
XGBoost, consistently achieving 0.95. There are no sources in
the current document across all metrics. These results highlight
the PaTaKa test’s robustness in distinguishing between
concussed and healthy participants.

Sustained Vowel Test
Performance dropped significantly compared with the PaTaKa
test. SVM and XGBoost achieved slightly higher metrics, with
F1-scores around 0.59‐0.62. DT and RF had the lowest
performance, with metrics around 0.56. The reduced
performance might indicate that sustained vowels are less
effective for distinguishing concussed participants from healthy
individuals.

Concussed Versus Neurodegenerative

PaTaKa Test
All models performed perfectly, achieving precision, recall,
F1-score, and accuracy of 1.0. This demonstrates the
effectiveness of the PaTaKa test for differentiating concussed
participants from those with neurodegenerative conditions.
Consistency across all classifiers reinforces the reliability of
this task for this combination.

Sustained Vowel Test
Similar to the PaTaKa test, most models achieved perfect scores
across all metrics. However, DT and XGBoost showed slightly
reduced performance, with F1-scores of 0.87 and accuracy of
0.92. Despite slight variability, the Sustained Vowel test remains
a strong indicator for distinguishing these groups.

Neurodegenerative Versus Healthy

PaTaKa Test
Results varied significantly across classifiers. RF and XGBoost
outperformed others, achieving F1-scores of 0.63 and 0.72,
respectively. DT and SVM performed poorly, with F1-scores
around 0.52‐0.55. These results indicate that the PaTaKa test
has moderate effectiveness for this group but requires careful
classifier selection.

Sustained Vowel Test
Similar trends were observed. XGBoost achieved the highest
F1-score (0.40) and accuracy (0.67), while other models showed
significantly lower performance. This underscores the challenge
of distinguishing neurodegenerative participants from healthy
controls using sustained vowel tasks.

Feature Set Analysis
Understanding the importance of individual features in
classification tasks is crucial for interpreting the predictive
power of machine learning models. In this study, we examined
feature importance across all tests and combinations to identify
the most influential speech features contributing to the
classification of concussed, neurodegenerative, and healthy
individuals. Feature importance was calculated for each model
(SVM, DT, RF, and XGBoost) using a combination of metrics,
such as Gini importance, SHAP values, or permutation
importance, depending on the model.

To identify globally significant features, we analyzed the
frequency of features ranked among the top 5 across all 24 tests.
A summary of the top 10 most frequent features is presented in
Table 2, while Table 3 provides combination-specific feature
importance values. The most frequently identified features were
temporal and spectral characteristics, which are known to
capture both short-term and long-term speech patterns.

Table . Top 10 most frequent features across all tests.

Mean importanceFrequencyFeatureRank

0.2915duration1

0.3313zero_crossing_rate2

0.3012spectral_flatness3

0.2511mfcca4

0.427spectral_bandwidth5

0.076spectral_centroid6

0.075spectral_contrast7

0.325chroma_stft8

0.064HNRb9

0.044f4_median10

amfcc: mel frequency cepstral coefficient.
bHNR: harmonics-to-noise ratio.
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Table . Combination specific feature importance value.

ValueFeatureCombination and test

Concussed versus healthy

1.9DurationPaTaKa

0.47Zero-crossing ratePaTaKa

0.12Spectral flatnessSustained Vowel

Concussed versus neurodegenerative

1.3Spectral bandwidthPaTaKa

2.9MFCCaSustained Vowel

Neurodegenerative versus healthy

0.43HNRbPaTaKa

0.76Spectral flatnessSustained Vowel

aMFCC: mel frequency cepstral coefficient.
bHNR: harmonics-to-noise ratio.

Among the top 10 features, duration, zero-crossing rate, and
spectral_flatness were the most influential, appearing
consistently across multiple tests and combinations. These
features reflect critical aspects of speech production, including
articulation rate, periodicity, and frequency smoothness. For
instance:

• Duration: This feature provides insights into motor control
and speech articulation by measuring the length of
utterances.

• Zero-crossing rate: Indicative of voice signal periodicity,
this feature is particularly significant in distinguishing
voiced and unvoiced speech segments.

• Spectral_flatness: This feature quantifies the uniformity of
the speech spectrum, distinguishing between harmonic and
noise-like components.

Combination-specific patterns further highlight the variability
in feature importance depending on the test (PaTaKa or

Sustained Vowel) and the target classification task (concussed
vs healthy, concussed vs neurodegenerative, and
neurodegenerative vs healthy). For example, (1) in the concussed
versus healthy classification, features like mfcc and spectral
bandwidth were highly impactful, particularly in the PaTaKa
test, (2) in the Concussed concussed versus neurodegenerative
classification, spectral_centroid and chroma_stft played a
significant role in distinguishing between the 2 groups, and (3)
for the neurodegenerative versus healthy classification, features
such as f4_median and HNR were key discriminators,
particularly in the Sustained Vowel test.

The distribution of feature importance values across
combinations and tests is visualized in Figure 3, while the
detailed numerical values for each combination and test are
available in Table 3. These findings emphasize the variability
of feature contributions across different tasks and highlight the
importance of task-specific feature analysis for robust
classification.
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Figure 3. Top 10 most frequent features across all tests. mfcc: mel frequency cepstral coefficients.

Discussion

Principal Findings
The findings of this study provide valuable insights into the use
of speech-based features for differentiating between
neurodegenerative conditions, particularly mTBI (concussions)
and neurodegenerative diseases (eg, PD). By leveraging 2
commonly used speech tasks, the PaTaKa test and the Sustained
Vowel test, and a variety of machine learning models, we
achieved classification accuracies ranging from 60% to 90%,
with RF and XGBoost models consistently outperforming others.
In addition, we identified key speech features, such as duration,
zero-crossing rate, and spectral flatness, as critical biomarkers
for distinguishing between these conditions. These results
underscore the potential of speech features as noninvasive
biomarkers for neurodegenerative health assessment and
highlight the complementary roles of the PaTaKa and Sustained
Vowel tests in revealing task-specific and globally significant
features.

Key Observations
First, task-specific performance. The PaTaKa test consistently
outperformed the Sustained Vowel test across all combinations.
This may be attributed to the sequential articulatory movements
required in the PaTaKa test, which can better capture subtle
motor and speech deficits. For example, in the concussed versus
healthy classification, F1-scores for PaTaKa exceeded 0.9 across
all models, whereas the Sustained Vowel test achieved F1-scores
below 0.6 for the same classification. These findings highlight
the importance of task selection in speech analysis and suggest

that diadochokinetic tasks may provide richer diagnostic
information.

Second, model-specific trends. Among the machine learning
models, RF and XGBoost consistently performed well,
demonstrating their ability to handle complex, nonlinear
relationships in speech data. This aligns with previous research
highlighting the robustness of ensemble learning methods in
biomedical and speech signal processing tasks [38].

Third, the high interpretability of DTs also provides an
advantage for clinical applications, particularly in scenarios
where transparency is critical for adoption in health care settings.

Fourth, despite its slightly lower performance in some scenarios,
DT models remain valuable due to their simplicity and ease of
implementation.

Fifth, interestingly, SVMs displayed strong performance in
balanced datasets, particularly in the concussed versus
neurodegenerative classification, where precision and recall
consistently reached 1.0 for the PaTaKa test. This finding is
consistent with previous studies showing that SVMs are
effective for high-dimensional data, especially when datasets
are carefully preprocessed and balanced [39]. The performance
of SVM in this classification task further underscores its utility
in distinguishing nuanced differences between distinct
neurodegenerative conditions using speech features.

Finally, feature importance. The analysis of feature importance
revealed that a small subset of features consistently played a
dominant role across tests and combinations. Temporal features
such as duration and zero-crossing rate were particularly
influential, likely reflecting disruptions in motor control and
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speech rhythm caused by both concussions and
neurodegenerative conditions. Spectral features, including
spectral_flatness, mfcc, and spectral_bandwidth, were also
critical, highlighting their utility in capturing frequency-domain
variations associated with speech pathologies. These results
align with previous research, which has emphasized the role of
both temporal and spectral features in detecting
neurodegenerative impairments.

Comparison With Previous Studies
Our findings corroborate and extend existing literature on
speech-based biomarkers for neurodegenerative conditions.
Previous research has demonstrated the utility of features such
as MFCC and jitter for detecting PD [4], as well as features like
zero-crossing rate and duration for identifying concussions [19].
However, this study uniquely emphasizes the differentiation
between neurodegenerative diseases like PD and mild traumatic
brain injury (eg, concussions), a task that remains relatively
underexplored in existing literature.

Furthermore, the inclusion of both PaTaKa and Sustained Vowel
tests enables a more comprehensive analysis of task-specific
feature relevance. While previous studies have evaluated the
diagnostic utility of individual speech tasks (eg, sustained
phonation for ALS in studies by Allison et al [13] and Tsanas
et al [27]), this work highlights how combining multiple tasks
can reveal unique and complementary insights into speech
biosignatures associated with diverse neurodegenerative
conditions.

In addition to confirming the significance of widely used
features such as spectral flatness and zero-crossing rate, our
study identifies new combinations of features, including spectral
contrast and chroma-based features, as being critical for
distinguishing between these groups. These results align with
recent advancements in the field, where ensemble learning
models, such as RF and XGBoost, are increasingly used to
capture the intricate, nonlinear relationships within speech data
[23].

By addressing age-related variability and introducing data
augmentation to mitigate the challenges of limited datasets, this
study not only validates previously established findings but also
sets the stage for future research aimed at improving the
diagnostic accuracy of speech-based assessments across distinct
but potentially overlapping neurodegenerative conditions.

Implications for Clinical Practice
The results of this study highlight several practical implications
for clinical applications.

First, noninvasive diagnostics. The reliance on speech features,
which can be collected using readily available devices like
smartphones, opens up possibilities for remote and noninvasive
diagnostics. This is particularly valuable in resource-constrained
settings where access to advanced imaging or neurophysiological
tests may be limited.

Second, early detection. The ability to detect subtle speech
impairments associated with neurodegenerative conditions could
enable earlier diagnosis, allowing for timely interventions.

Finally, task selection. The superior performance of the PaTaKa
test suggests that it should be prioritized in future speech-based
diagnostic protocols, particularly for distinguishing between
concussions and neurodegenerative conditions.

Limitations
Despite the promising results, there are several limitations to
this study.

First, small dataset—the dataset size, particularly for
neurodegenerative diseases, was relatively small. This may limit
the generalizability of the findings to larger, more diverse
populations.

Second, demographic differences—the age gap between the
concussed (younger) and neurodegenerative (older) populations
poses a potential confounding factor. While age-matched healthy
controls were included, the results could be influenced by
inherent age-related differences in speech production.

Third, feature engineering and contextual factors—while the
study identified important features, the reliance on manual
feature extraction may overlook nuanced patterns. Advanced
techniques, such as deep learning–based feature discovery, could
reveal hidden characteristics in speech data. Future research
should also account for comorbidities and age-related factors,
as these can influence speech biosignatures and potentially
confound results. Age-normalized datasets and statistical
adjustments can further enhance the robustness of classification
models.

Future Directions
This study demonstrates the potential of speech-based features
to differentiate between concussed, neurodegenerative, and
healthy individuals. While promising, the findings also highlight
several areas for improvement and expansion, which we aim to
address in future work.

First, dataset expansion and diversity. The current dataset
includes limited samples from each group, particularly for
neurodegenerative diseases. Future studies will expand the
dataset to include larger and more diverse populations, ensuring
broader generalizability of the results. In addition, we aim to
achieve a more balanced age distribution across all participant
groups, enabling more robust analyses and minimizing potential
biases.

Second, age-related effects. While we mitigated some
confounding effects of age by including 2 distinct healthy
control groups (age-matched for concussed and
neurodegenerative participants), future studies will incorporate
more advanced strategies to address age-related variations in
speech features. These include (1) explicitly including age as a
covariate in statistical models to control its effects and quantify
its influence on the results, (2) conducting age-matched
subgroup analyses to validate that classification performance
is not driven by age-related biases but by the underlying
neurodegenerative conditions, and (3) expanding the dataset to
improve the representation of younger and older age groups
across all conditions.

JMIR Neurotech 2025 | vol. 4 | e64624 | p.39https://neuro.jmir.org/2025/1/e64624
(page number not for citation purposes)

Rubaiat et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Third, feature engineering and discovery. While this study
focused on predefined temporal and spectral features, advanced
deep learning models such as autoencoders or transformer-based
models could uncover latent features that may better distinguish
between neurodegenerative conditions. In addition, further
exploration of task-specific feature relevance could reveal
complementary insights into speech patterns for different health
conditions.

Fourth, longitudinal data analysis. Future work should explore
longitudinal data to track changes in speech biosignatures over
time. This would help identify temporal patterns associated with
disease progression and recovery, providing valuable insights
for monitoring treatment efficacy and early diagnosis.

Fifth, integration with clinical practice. To enhance the clinical
utility of this research, future efforts should focus on integrating
speech-based diagnostic tools into real-world health care
settings. This includes (1) developing user-friendly mobile apps
or web applications for noninvasive speech analysis and (2)
collaborating with clinicians to validate the models and evaluate
their effectiveness in clinical decision making processes.

Finally, evaluation metrics and benchmarking. Expanding the
evaluation metrics to include area under the receiver operating

characteristic curve and precision-recall curves would provide
a more comprehensive understanding of model performance.
In addition, benchmarking against existing speech-based models
or alternative diagnostic tools could further contextualize the
findings and demonstrate the added value of the proposed
methods.

By addressing these areas, future research can build upon the
findings of this study to further advance the field of speech
analysis in neurodegenerative health, improve diagnostic
accuracy, and pave the way for noninvasive, scalable diagnostic
tools.

Conclusion
This study demonstrates the potential of speech features,
particularly those derived from the PaTaKa test, as effective
biomarkers for distinguishing between concussed,
neurodegenerative, and healthy individuals. By identifying
task-specific and globally important features, the findings lay
the groundwork for developing noninvasive, speech-based
diagnostic tools that can be readily implemented in clinical
practice. Further research addressing the study’s limitations
could pave the way for broader applications of speech analysis
in neurodegenerative health.
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Abstract

Background: A 12-month longitudinal observational study was conducted on 43 children aged 2‐18 years to evaluate the
effectiveness of the CognitiveBotics artificial intelligence (AI)–based platform in conjunction with continuous therapy in improving
therapeutic outcomes for children with autism spectrum disorder (ASD).

Objective: This study evaluates the CognitiveBotics software’s effectiveness in supporting children with ASD through structured,
technology-assisted learning. The primary objectives include assessing user engagement, tracking progress, and measuring efficacy
using standardized clinical assessments.

Methods: A 12-month observational study was conducted on children diagnosed with ASD using the CognitiveBotics AI-based
platform. Standardized assessments, include the Childhood Autism Rating Scale (CARS), Vineland Social Maturity Scale,
Developmental Screening Test, and Receptive Expressive Emergent Language Test (REEL), were conducted at baseline (T1)
and at the endpoint (T2). All participants meeting the inclusion criteria were provided access to the platform and received standard
therapy. Participants who consistently adhered to platform use as per the study protocol were classified as the intervention group,
while those who did not maintain continuous platform use were designated as the control group. Additionally, caregivers received
structured training, including web-based parent teaching sessions, reinforcement strategy training, and home-based activity
guidance.

Results: Participants in the intervention group demonstrated statistically significant improvements across multiple scales. CARS
scores reduced from 33.41 (SD 1.89) at T1 to 28.34 (SD 3.80) at T2 (P<.001). Social age increased from 22.80 (SD 7.33) to 35.76
(SD 9.09; mean change: 12.96, 56.84% increase; P<.001). Social quotient increased from 53.26 (SD 11.84) to 64.75 (SD 16.12;
mean change: 11.49, 21.57% increase; P<.001). Developmental age showed an improvement from 30.93 (SD 9.91) to 45.31 (SD
11.20; mean change: 14.38, 46.49% increase; P<.001), while developmental quotient increased from 70.94 (SD 10.95) to 81.33
(SD 16.85; mean change: 10.39, 14.65% increase; P<.001). REEL scores showed substantial improvements, with receptive
language increasing by 56.22% (P<.001) and expressive language by 59.93% (P<.001). In the control group, while most
psychometric parameters showed some improvements, they were not statistically significant. CARS scores decreased by 10.62%
(P=.06), social age increased by 52.27% (P=.06), social quotient increased by 19.62% (P=.12), developmental age increased by
44.88% (P=.06), and developmental quotient increased by 11.23% (P=.19). REEL receptive and expressive language increased
by 34.69% (P=.10) and 40.48% (P=.054), respectively.

Conclusions: Overall, the platform was an effective supplement in enhancing therapeutic outcomes for children with ASD.
This platform holds promise as a valuable tool for augmenting ASD therapies across cognitive, social, and developmental domains.
Future development should prioritize expanding the product’s accessibility across various languages, ensuring cultural sensitivity
and enhancing user-friendliness.

(JMIR Neurotech 2025;4:e70589)   doi:10.2196/70589
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Introduction

Autism, otherwise known as autism spectrum disorder (ASD),
is a neurodevelopmental disorder with a wide continuum of
associated cognitive and neurobehavioral deficits including, but
not limited to, 3 core defining features: impairments in social
interaction and impairments in verbal and nonverbal
communication, combined with restricted and repetitive patterns
of behaviors [1]. Such impairments can impede an individual’s
social level of interaction, learning aptitude, and employability,
leading to poor long-term outcomes, difficulties in socializing,
poor job performance, and difficulties in activities of daily living
[2-5]. The estimated prevalence of ASD has increased from 1
in 10,000 in the 1960s to at least 1 in 36 today [6,7].

The cause for the rise of children diagnosed with ASD is
unknown [8]. What is clear is that early and consistent
intervention is crucial for positive long-term outcomes [9].
Currently, there are no medical treatments that can effectively
cure individuals with ASD, with most interventions involving
applied behavioral analysis (ABA), speech and language
therapy, and sensory integration to address the core symptoms
of ASD [10,11]. To provide adequate and quality therapy to
children with autism, a team of trained professionals ranging
from pediatricians, child psychiatrists; occupational, behavioral,
and speech therapists; psychologists, specialist teachers, and
dedicated caregivers are necessary [12]. Providing therapy to
children with autism can be rewarding but challenging due to
several factors. Figure 1 provides an insight into the challenges
faced by the stakeholders in the care and support of children
with autism [13-20].

Figure 1. Challenges in providing therapy to individuals with autism spectrum disorder [13-20].

As is, the solution to many of today’s challenges may be the
leveraging of cutting-edge technologies to enhance autism
intervention; these technologies include the use of machine
learning, deep learning in artificial intelligence (AI), animated
gaming, and data analytics. Computer-assisted interventions
(CAIs) are particularly appealing to underresourced schools due
to the potential to provide cost-effective individualized
instruction and allow teachers to offer concurrent group
instruction. Several available CAIs have integrated
evidence-based interventions and complement current therapies
for individuals with ASD [21].

Research suggests that CAIs, when applied effectively, can
enhance learning by fostering four key components of the
learning process: (1) active engagement, (2) group participation,
(3) regular interaction and feedback, and (4) integration with
real-life settings [22]. Furthermore, the convenient access of
CAIs among parents and therapists allows ease of access to
these technologies right in the palm of their hands [23]. During

the recent COVID-19 pandemic, there was significant disruption
and reduction in conventional therapies. As a means to continue
therapy, many therapists sought to use CAIs, leading to a jump
in usage from 15% to 61% [24].

Through the use of intelligent systems–based AI technologies,
therapists and parents alike can provide supplementary and
consistent therapy to individuals with ASD and enhance
outcomes [25-28]. In 2 recent articles, the prospect of integrating
AI into standard practices for autism therapy has great potential
to improve social and communication outcomes in individuals
with autism [29,30].

The integration of video modeling in ABA allows the individual
to observe a recorded video of a specific task, gradually enabling
independent performance by clearly presenting the instructions
and essential stimuli needed to complete the task. Several studies
have demonstrated the effectiveness of this strategy across
various complex social tasks, such as acquiring conversational
skills, commenting, complimenting, and enhancing pragmatic
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abilities, as well as initiating and maintaining social relationships
[31].

Gaming systems provide a sensory stimulus, where numerous
studies have found an attraction factor for participation through
a framework or application that provides additional animation
and images [32,33]. AI-driven games can improve cognitive
skills, social interaction, and emotional regulation. Such games
can be modified to the specific needs of individuals with autism,
offering personalized learning objectives. Studies have suggested
that integrating AI-based interventions into standard therapy
can improve the behavioral patterns of children with autism
[34,35]. Animation games use engaging animated characters
and scenarios to teach essential skills, making learning enjoyable
and less stressful for children with autism, thus improving their
attention span and resulting in a greater retention of learned
skills. Studies using animation-based interventions have
observed significant improvements in language acquisition and
social skills [36,37]. All these technology-driven solutions have
been shown to significantly enhance outcomes and bridge the
limitations of therapists and parents in managing challenging
behaviors among children with ASD.

As a result, CognitiveBotics, an AI-powered assistive
technology, was designed and developed. The platform allows
children with autism and their parents and therapists to
effortlessly access its program anytime, anywhere, since it only
requires a gadget (eg, a laptop or tablet) and access to an internet
connection. The development process involved a
multidisciplinary approach, combining insights from clinical
psychology, child development, and technology experts. The
platform provides a “digital” VARK (visual, auditory,
read/write, and kinaesthetic) opportunity range to help children
acquire social, communication, emotional, and behavioral skills,
while automatically recording progress for therapists [38]. For
parents, the platform is an easy-to-use digital tool offering
training sessions on strategies and techniques, ensuring
continuity of therapy at home. For further information on the
platform, visit [39].

During the COVID-19 pandemic, a survey was conducted
among therapists working with children diagnosed with ASD.
Due to the reduction in conventional therapies, the therapists
observed a moderate to severe impact on individuals’ learning
(73%), while parents were impacted emotionally and
psychologically (85%). Before the pandemic, only 22% of
therapists expressed a willingness to use any digital technology
in autism intervention, however, this number tripled to 65%
due to the constraints imposed by the lockdown [40]. There was
an urgent need for standardizing digital health technologies that
can be parent-mediated [41]. An initial pilot study was
conducted between November 2020 and April 2021 to assess
the software’s capabilities using a set of 19 different skills.
Throughout the study, the software effectively collected and
recorded data during the user interaction, demonstrating its
effectiveness in real-time data collecting and analysis [40].

Subsequently, to further evaluate the effectiveness of the
CognitiveBotics AI-based platform in augmenting therapies for
individuals with ASD, an observational, longitudinal study with
an adequate sample size was conducted to assess different

domains—the social/emotional, language/communication, and
cognitive development of individuals who used the platform
for 12 months. The initial study revealed minor glitches, which
were promptly addressed, and parents of the individuals
expressed a willingness to continue using the app, highlighting
its potential impact.

Methods

Overview
The observational, longitudinal study was designed to evaluate
the effectiveness of the CognitiveBotics AI-based software over
a 12-month period. By understanding the practical challenges
and assessing the software’s effectiveness, the study provides
a foundation for the future development and design of a trial.

The primary objectives of the study are as follows:

1. User engagement: assess the ability of both children and
parents to effectively use the software and follow web-based
instructions.

2. Progress tracking: evaluate the software’s capability to
automatically log the child’s daily progress and provide
visual graphical feedback on the dashboard.

3. Efficacy measurement: using established clinical parameters
to evaluate progress at T1 and T2 across multiple measures.

Scoring Systems
Qualified therapists conducted assessments at baseline and at
a 1-year follow-up, using the following specific parameters to
evaluate progress over time.

The Childhood Autism Rating Scale (CARS) score is a factor
analysis–based scale used for assessing the presence and severity
of symptoms of autism spectrum disorders [42]. Scores between
30 and 37 are considered as mild to moderate autism and scores
between 38 and 60 are considered as a severe level of autism.
According to Russell et al [43], CARS has an acceptable level
of sensitivity and specificity in Indian populations.

The Vineland Social Maturity Scale (VSMS) scores were
compared between groups, assessing changes in social age (SA)
and social quotient (SQ). This scale has been used to measure
the adaptive behaviors of children with or without ASD by
measuring their developmental profile in 8 domains and scoring
SA and SQ. Originally developed by Doll in 1935 [44], VSMS
was adapted by Malin in 1956 [45] to better suit the Indian
population, ensuring its cultural relevance and applicability.
This adaptation was further modified by Bharatraj in 1992,
incorporating additional changes [46].

The Developmental Screening Test (DST), which measures
developmental age (DA) and developmental quotient (DQ),
assesses the developmental progress of children across various
domains, including motor skills, language, social behavior, and
cognitive abilities. It helps in determining the DA and DQ of
the participants, which reflects their level of functioning in
comparison to typical developmental milestones [47].
Recognizing that many developmental assessments at that time
were standardized on Western populations, in 1977, Bharatraj
adapted the DST to be more sensitive to the developmental
norms of Indian children [48].
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The Receptive and Expressive Emergent Language (REEL) test
is designed to identify infants and toddlers who have language
impairments or who have other disabilities that affect language
development. It has 2 core subtests, receptive language age
(RLA) and expressive language age (ELA), which are based on
caregiver reports and converted into age-equivalent scores. A
study conducted with Hindi-speaking children found the REEL
assessment to be valid, reliable, and effective in assessing
language outcomes [49].

Recruitment
Recruitment for the study took place from January to April 2023
and the completion of the study was 12 months after the last

participant was recruited. Parents whose children were
diagnosed with ASD and attending Rainbow Hospital in India
were identified by the clinical team. Recognizing that individuals
with ASD may have a higher chronological age but a lower
social or developmental age, participants were accepted if their
social or developmental age was between 2 and 18 years. The
parent information sheet regarding the study was provided to
all identified parents. Parents who expressed interest in their
child’s participation were contacted by the principal
investigator’s team. Textbox 1 shows the inclusion, exclusion,
and withdrawal criteria of the study.

Textbox 1. Inclusion, exclusion, and withdrawal criteria for participants.

Inclusion criteria

Children who met all the following inclusion criteria were enrolled in the study:

1. Children diagnosed with autism spectrum disorder using assessment scales such as the Childhood Autism Rating Scale.

2. Children aged between 2 and 18 years.

3. Children with associated comorbidities were included on the condition that the child can use the platform.

4. Children with the ability to understand and respond to instructions given in English.

5. Children with access to a device on which the software can be accessed using an internet connection.

6. Children with parents who consented for their child to use the software.

Exclusion criteria

1. Children with parents who were not willing to consent to the study.

2. Children without access to a tablet, computer, or internet connection.

3. Children unable to understand English.

Withdrawal criteria (removal of participants from the therapy or assessment)

Any participant was allowed to voluntarily discontinue participation in the study at any time after giving informed consent and before the completion
of the last visit of the study. This would not affect the care provided by their clinical team. The reasons for participant withdrawal were recorded and
included but were not limited to the following:

1. Participant was no longer willing to continue in the study.

2. Study termination by sponsor or independent ethics committee.

3. Investigator’s discretion (for safety reasons).

When a participant withdrew from the study, the investigator clearly documented the reason in the medical records and completed the appropriate
case report form describing the reason for discontinuation. In addition, every effort was made to complete the appropriate assessment.

During this stage, the study objectives and procedures were
thoroughly explained, and any questions from the parents were
addressed. Informed consent was obtained from those who
agreed to participate, and documentation was appropriately
maintained. At baseline, clinical assessments including the
CARS, DST, VSMS, and REELs were administered. Parent
training sessions, conducted either online or offline, were
arranged to familiarize parents with the platform and its usage.
Parents who had training were granted access to the software
and instructed to ensure their children used the software for at
least 20 minutes per session, with a minimum of 3 sessions per
day over 12 months, followed by home-based activities to
reinforce learning. At the beginning of the study, we requested
parents to use the software in addition to the standard care they
were providing to their children and for ethical reasons did not
ask them to stop any other treatments or therapies.

Participants were scheduled for 3 visits during the active study
period:

• Visit 1 (day 0, T1): baseline clinical assessments were
conducted.

• Visit 2 (6 months): clinical parameters were reassessed.
• Visit 3 (12 months, T2): final clinical assessments were

conducted.
• Data from the software tracking the child’s progress were

collected for statistical analysis at each stage.

Additionally, a follow-up phone call was made every 15 days
between the physical visits to verify the child’s regular usage
of the software and address any concerns. This telephonic
follow-up ensured adherence to the study protocol and provided
support for parents throughout the trial.
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Software-Delivered Program
Using tablets or a computer, the platform offers evidence-based
therapeutic interventions through a high-quality, patented
software program that addresses a broad spectrum of learning
difficulties by teaching small, key behaviors incrementally. This
aims to improve learning outcomes and developmental progress
in individuals with ASD by providing a comprehensive digital
platform that supports various learning styles and therapeutic
needs. It is designed to personalize learning, adjust difficulty
levels, and provide real-time feedback and support to both
parents and children.

Upon initially using the platform, parents were registered in the
system and requested to complete an auto-generated
individualized learning plan (ILP) questionnaire generated by
the software. This enabled the software to ascertain the child’s
current developmental state and learning needs. If there were

any difficulties or queries from the parents regarding the
questionnaire, a study coordinator was available to assist with
the onboarding process. Parents were then requested to attend
a webinar session, where an interactive orientation on the
software and its features was given, and any queries were
addressed. Additionally, parents received a user manual and a
navigation video for reference. Participation in this webinar
session was mandatory before an ILP was assigned to the child.

Based on the parental responses and child assessments, an ILP
consisting of 3 target goals was generated by AI models focusing
on 4 domains (social/emotional, language/communication,
cognitive, and movement/physical development). Table 1
contains the lesson plan within the software and its advantages
in providing adjunct therapy to children with ASD. The content
is personalized and mapped to individual learning objectives,
guided by therapist-defined developmental goals.

Table . Lesson plan structure and associated advantages of the platform.

Methodology and advantagesTask/learning objectiveGoal/skill domain

Gamified, visually engaging content designed
for children with neurodiverse profiles. Encour-
ages sustained visual attention through interactive
elements.

Looking at the objectEye contact/attention

Multimodal cues and visual prompts enhance
auditory responsiveness and social awareness.

Responding to nameEye contact/attention

Structured video models guide imitation in a low-
anxiety, judgment-free digital space.

Imitating arm, leg, or facial movementsImitation skills

Tasks scaffold foundational academic concepts
in a playful, exploratory manner.

Number identification, shape recognitionCognitive skills

Activities promote expressive and receptive
communication. Coviewing with caregivers en-
hances language modeling.

Labeling objects, requesting helpCommunication/language

Before engaging in any lessons, parents were encouraged to
watch the objective videos to improve the reasoning of mastering
each goal. A practice session was available for skill
reinforcement; however, the scores in these practice sessions
were not recorded for progression to the next stage. Each daily
practice session lasted 20 minutes, after which the software

automatically concluded the learning session and redirected the
child to the dashboard. If the caregiver determined that the child
was prepared for an additional session, they had the option to
initiate a new session., Overall, there are 227 activities or tasks
organized under goals. Figure 2 presents the technologies and
features of the CognitiveBotics platform.
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Figure 2. The technologies and features in the software. AI: artificial intelligence.

The session begins with the caregiver launching the daily
schedule on the CognitiveBotics app. This schedule presents a
sequence of personalized tasks aligned with the child’s
developmental goals. Each task is supported by engaging,
gamified digital content designed specifically for children with
ASD. Caregivers are encouraged to coview and participate in
the learning process, fostering emotional bonding and
reinforcing engagement through shared experience.
Alternatively, under parent supervision, the child may explore
the content independently, depending on their comfort and
developmental level.

Once the child achieved 3 goals, a new ILP with a new set of
3 goals was created. To achieve each goal, the child is taught
through 4 modalities:

• Audiovisual stimulation: Concepts are introduced through
video modeling with interactive questions embedded within
the content, increasing with complexity across four levels
(level 0, 1, 2, and 3). Prompts are provided to guide the
child’s learning and are gradually reduced as the child
becomes more proficient.

• Chatbot: This feature uses interactive questions to reinforce
learning and promote generalization. The feature is
particularly effective in fostering verbal engagement and
enhancing the child’s communication skills. An example
of a chatbot goal is given in Figure 3.

• AI-based interactive games: Learning is facilitated through
AI-driven interactive games that are tailored to each child’s
learning style, making the learning engaging and adaptive
to individual needs.

• Home-based parent training videos: To support home-based
activities, parents are provided with instructional videos
that demonstrate how to apply the skills learned by their
child in various settings, thus reinforcing learning outside
the therapy center. The child’s performance is assessed
using 3 metrics captured by the software: first-time rights
(accuracy of initial responses), correct questions (total
number of correctly answered questions), and number of
questions attempted (total engagement with the learning
material). Once the lesson is mastered, the software
automatically assigns the next set of goals.

If a child is not progressing toward their goals, the system
proactively alerts the parents and therapists. Separately, parents
are instructed to record a video of the lesson and submit it to
the study coordinator or therapist team for review. In response,
therapists will simplify the web-based goals to better suit the
child’s needs. Should the child continue to struggle, parents
will receive a notification prompting them to resubmit the ILP
checklist. Following this, the system will reassign 3 new goals,
which will be carefully verified by therapists to ensure they
align with the child’s learning trajectory.
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Figure 3. A screenshot of a lesson and an example transcript of a child-software interaction.

Other Core Features of the Platform
Other core features of the CognitiveBotics platform include the
following:

• ILP progression: The software adjusts the level of difficulty
of the ILP based on the child’s progress, providing
necessary assistance and notifications to parents and
therapists.

• Personalization: Personalization is a unique feature, where
all learning goals are delivered in a personalized and
customized manner, tailored to the specific needs of each
child. During interactive sessions, the system personalizes
by using the child’s name while asking the interactive
questions, drawing the child’s attention.

• Dashboard: A daily progress graph is displayed on the
child’s dashboard, which is accessible to both parents and
therapists, offering real-time insights into the child’s
development.

• Two-way communication: The software includes a fun
activity that detects and encourages body part interactions,
in addition to occupational therapy tasks, promoting overall
development from a young age.

• Objective videos: Parents are empowered through videos
that outline the objectives of each task, enabling them to
actively participate in and support their child’s learning.

• Data capture and progress tracking features: Aim to
automate monitoring and capture the child’s progress based
on key learning principles—attention, retention, and

JMIR Neurotech 2025 | vol. 4 | e70589 | p.49https://neuro.jmir.org/2025/1/e70589
(page number not for citation purposes)

Atturu et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


generalization, such as “eye gaze detection.” These data
are presented in a user-friendly format on a dashboard,
facilitating easy comprehension for both parents and
therapists.

Fidelity of Implementation Data
The fidelity of implementation was assessed via a multitiered
approach to ensure attendance to the session lessons. The
software has an automated session notification and progress
tracker to prompt parents to complete assigned goals within the
learning plan. To progress to the next learning level, mandatory
successive mastering of goals is required. This ensures that all
lesson components were completed as intended. Additionally,
therapist-led monitoring and follow-up calls were conducted to
monitor progress, reinforce engagement with the intervention,
and address any caregiver-reported concerns to ensure fidelity.

Caregivers underwent a structured training program on
reinforcement strategies aimed at ensuring consistency in their
interactions with the child beyond software-guided sessions.
This training equipped caregivers with evidence-based
behavioral techniques that align with the principles of ABA and
developmental learning models, such as immediate
reinforcement or reward systems. Furthermore, to encourage
parental involvement, caregivers were provided zero-fee
in-person therapy sessions at the center, on the condition their
child is actively engaged with the platform.

Lastly, software usage was collected at the back end, tracking
metrics such as log-in frequency, time spent on lessons, and
completion rates. This allowed the software programmer to
evaluate the platform utilization and adherence. Any deviations
from the lesson plans were brought to the attention of the
therapist. Together, these mechanisms ensured consistent
implementation and provided opportunities for timely
intervention when necessary.

Statistical Analysis
After completion of the study, the data were analyzed to
compare the effectiveness of the CognitiveBotics platform
between the intervention and control groups. For each group
and clinical assessment parameter, the mean scores and standard
deviations were calculated at 2 stages: the start of the study (T1)
and the end of the study (T2). The mean change and percentage
mean change from T1 to T2 were also computed. To determine
the statistical differences, the P values were calculated using
the Mann-Whitney U test, with a P value of <.05 being
considered as statistically significant.

Ethical Considerations
This study was conducted in accordance with the study protocol,
the New Drugs and Clinical Trials Rules 2019 issued by the
Government of India, the ethical principles that have their origin
in the Declaration of Helsinki (64th World Medical Association
General Assembly, Fortaleza, Brazil, October 2013), the
International Council for Harmonisation Good Clinical Practice,
and all applicable local regulatory requirements. The
investigators agreed to conduct the study according to the
principles of the International Council for Harmonisation Good
Clinical Practice, as well as in accordance with the ethical

principles that have their origin in the Declaration of Helsinki,
the protocol, and all national, state, and local laws or regulations.
The medical care given to and medical decisions made on behalf
of study participants were always the responsibility of a principal
(site) investigator. Each individual involved in conducting the
study was qualified by education, training, and experience to
perform his or her respective task(s).

Informed consent was obtained from the parents or legal
guardians of all participants. The study details were thoroughly
explained, including the study’s purpose and procedures and
the voluntary nature of participation. Parents were informed
that they and their children were free to withdraw from the study
at any time, with no impact on their routine activities or any
other services received. As this study included human
participants, the collection of data from medical records, as well
as software usage, it adheres to all institutional ethical
guidelines. Ethical approval for this observational study was
obtained from the Institutional Ethics Committee of the Rainbow
Children’s Medicare (registration number
EC/RENEW/INST/2021/10510).

Before any collection of data, the study protocol, participant
information sheets, and informed consent forms were reviewed
and approved. The data were maintained throughout the study,
with all reports and communications relating to participants
being kept confidential. Names and other identifiable details
were removed, and all records were coded using unique
identification acronyms. No images or video recordings of
participants are included in the manuscript. No monetary
compensation was provided to the participants or their families.
However, participants in both the intervention and control
groups received free access to the software platform, as well
compensation for travel expenses when coming to the center
for assessments.

Results

Participant Selection and Characteristics
The results of this study examine the impact and utility of the
CognitiveBotics platform for children with ASD over a
12-month observational period. Key outcomes focus on
quantitative measures of behavioral, developmental, and
language-based parameters. An intervention versus control
analysis was performed, organized by baseline (T1) and
end-of-study (T2), to ascertain the software’s impact across
multiple functional and developmental domains, namely CARS,
VSMS, DST, and REEL scores. This approach provided
structured insights into the software’s influence on each
parameter and allowed for comparative analysis of outcomes
over time.

Figure 4 illustrates the study’s recruitment and retention flow.
Of an initial total of 88 enrolled participants, 43 completed the
study, while 35 continued to use the software for the entire
1-year duration, and 5 did not use the software but participated
in the 1-year follow-up assessments, and were categorized as
the control group. A further 3 participants were labeled as
outliers and were excluded from further analysis. Table 2 shows
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the key baseline demographic characteristics of the 40 participants who completed the study.

Figure 4. Flowchart of participants in the study.

Table . Comparison of baseline demographics of participants in the intervention and control groups.

Overall (n=40)Control (n=5)Intervention (n=35)Parameter and statistics

Age (years)

43.83 (SD 15.23)44.60 (SD 14.98)43.71 (SD 15.48)Mean (SD)

39.0039.0039.00Median

31.75; 54.5033.00; 54.0031.50; 52.00Quantile

25.00‐87.0031.00‐66.0025.00‐87.00Range

Gender, n (%)

36 (90)3 (60)33 (94)Male

4 (10)2 (40)2 (6)Female

The participants in the intervention group were stratified into
3 developmental groups based on chronological age:

• Toddler group (n=12): children aged 2‐3 years
• Preschool group (n=15): children aged 4‐6 years
• School-aged group (n=8): children aged 7‐8 years

The purpose was to assess the impact of the intervention across
different developmental ages, considering variations in
cognitive, language, and social skills.

Based on the study location, the majority of participants were
of South Indian descent and from families with a higher
educational background. All participants showed delays across
multiple developmental domains, necessitating structured
therapeutic intervention. Their academic skill levels in reading,
writing, and mathematics were rudimentary, with significant

challenges observed in social/emotional,
language/communication, cognitive, and movement/physical
development.

Intervention and Control Group–Based Analysis Using
Different Parameters
The study evaluated outcome measures in the intervention and
control groups across T1 (baseline) and T2 (12 months),
assessing CARS, SA, SQ, DA, DQ, and REEL scores.

Table 3 shows the outcome measures of 35 participants in the
intervention group, which were compared across T1 and T2.
For the CARS score, there was a significant decrease from 33.41
(SD 1.89) at T1 to 28.34 (SD 3.80) at T2, showing a mean
change of 5.07 and a percentage change of 15.18% (P<.001).

JMIR Neurotech 2025 | vol. 4 | e70589 | p.51https://neuro.jmir.org/2025/1/e70589
(page number not for citation purposes)

Atturu et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table . Comparison of outcome measures in the intervention group only at baseline (T1) and end of study (T2).

Intervention group (n=35)Parameters

P valuecMean change, %Mean changeT2b, mean (SD)T1a, mean (SD)

<.00115.185.0728.34 (3.80)33.41 (1.89)CARSd

<.00156.8412.9635.76 (9.09)22.80 (7.33)SAe

<.00121.5711.4964.75 (16.12)53.26 (11.84)SQf

<.00146.4914.3845.31 (11.20)30.93 (9.91)DAg

<.00114.6510.3981.33 (16.85)70.94 (10.95)DQh

<.00156.2212.4234.51 (14.93)22.09 (8.94)RLAi

<.00159.9311.2029.89 (15.60)18.69 (8.52)ELAj

aT1: start of the study.
bT2: end of the study.
cP value was calculated using the Mann-Whitney U test.
dCARS: Childhood Autism Rating Scale.
eSA: social age.
fSQ: social quotient.
gDA: developmental age.
hDQ: developmental quotient.
iRLA: receptive language age.
jELA: expressive language age.

In the SA score, there was a significant improvement from 22.80
(SD 7.33) at T1 to 35.76 (SD 9.09) at T2, with a mean change
of 12.96 and a percentage change of 56.84% (P<.001).

In the SQ score, there was an improvement from 53.26 (SD
11.84) at T1 to 64.75 (SD 16.12) at T2, with a mean change of
11.49 and a percentage change of 21.57% (P<.001).

In the DA score, there was an improvement from 30.93 (SD
9.91) at T1 to 45.31 (SD 11.20) at T2, showing a mean change
of 14.38 and a percentage change of 46.49% (P<.001).

In the DQ score, there was an improvement from 70.94 (SD
10.95) at T1 to 81.33 (SD 16.85) at T2, showing a mean change
of 10.39 and a percentage change of 14.65% (P<.001).

In the REEL score, the RLA showed a substantial increase from
22.09 (SD 8.94) at T1 to 34.51 (SD 14.93) at T2, with a mean
change of 12.42 and a percentage change of 56.22% (P<.001).
Similarly, the ELA exhibited a significant increase from 18.69
(SD 8.52) to 29.89 (SD 15.60), showing a mean change of 11.20
and a percentage change of 59.93% (P<.001).

Table 4 shows the outcome measures of 5 participants in the
control group, which were compared across T1 and T2. For the
CARS score, there was a significant decrease from 33.90 (SD
1.24) at T1 to 30.30 (SD 3.68) at T2, showing a mean change
of 3.6 and a percentage change of 10.62% (P=.06).
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Table . Comparison of outcome measures in the control group only at baseline (T1) and end of study (T2).

Control group (n=5)Parameters

P valuecMean change, %Mean changeT2b, mean (SD)T1a, mean (SD)

.0610.623.630.30 (3.68)33.90 (1.24)CARSd

.0652.2711.1932.60 (8.24)21.41 (5.44)SAe

.1219.629.6458.77 (14.73)49.13 (5.45)SQf

.0644.8812.741.00 (7.04)28.30 (6.69)DAg

.1911.237.3772.97 (7.22)65.60 (11.68)DQh

.1034.696.8026.40 (9.53)19.60 (7.13)RLAi

.05440.486.8023.60 (6.23)16.80 (4.60)ELAj

aT1: start of the study.
bT2: end of the study.
cP value is calculated using Mann-Whitney U test.
dCARS: Childhood Autism Rating Scale.
eSA: social age.
fSQ: social quotient.
gDA: developmental age.
hDQ: developmental quotient.
iRLA: receptive language age.
jELA: expressive language age.

In the SA score, there was a significant improvement from 21.41
(SD 5.44) at T1 to 32.60 (SD 8.24) at T2, with a mean change
of 11.19 and a percentage change of 52.27% (P=.06).

In the SQ score, there was an improvement from 49.13 (SD
5.45) at T1 to 58.77 (SD 14.73) at T2, with a mean change of
9.64 and a percentage change of 19.62% (P=.12).

Similarly, in the DA score, there was an improvement from
28.30 (SD 6.69) at T1 to 41.00 (SD 7.04) at T2, showing a mean
change of 12.7 and a percentage change of 44.88% (P=.06).

In the DQ score, there was an improvement from 65.60 (SD
11.68) at T1 to 72.97 (SD 7.22) at T2, showing a mean change
of 7.37 and a percentage change of 11.23% (P=.19).

In the REEL score, the RLA showed a substantial increase from
19.60 (SD 7.13) at T1 to 26.40 (SD 9.53) at T2, with a mean
change of 6.80 and a percentage change of 34.69% (P=.10).
The ELA exhibited an increase from 16.80 (SD 4.60) to 23.60
(SD 6.23), showing a mean change of 6.80 and a percentage
change of 40.48% (P=.054).

Overall, the intervention group presented substantial
improvements across all outcome measures, particularly in
CARS, SA, and language scores (RLA and ELA), with the
majority of these changes reaching statistical significance. This
indicates that the platform may enhance social, cognitive, and
language outcomes in the intervention group. In contrast, the
control group of 5 participants showed positive changes but
with less significance and the changes were statistically weaker
across measures.

Discussion

Principal Findings
This study demonstrated that CognitiveBotics, an AI-powered
assistive technology, has made significant gains in
developmental and social parameters over the course of 12
months in children diagnosed with autism. Both parents and
therapists have reported minimal negative behavioral changes
while using the platform, including screen addiction and sleep
disturbances. In intervention versus control analysis, there were
significant improvements in the intervention group, particularly
in those with higher baseline levels of functioning, underlining
the efficacy of the software in reducing autism severity and
enhancing developmental skills in children with ASD.
Accompanied by highly significant P values, the intervention
group showed an improvement in symptoms, as well as marked
enhancements in social skills, developmental age, and language
abilities.

The CognitiveBotics software, like many other available
ABA-assistive technologies, was observed to have various
benefits and advantages specifically for individuals with ASD
[50]. Supported in laptops and tablets, the platform is commonly
available, affordable, and socially acceptable, making it an ideal
tool for parent-mediated interventions [51,52]. Using the
platform, parents played a crucial role in supporting their
children’s learning, observing better improvements compared
to the control group using only traditional therapy. The software
helps enhance attention span and motivation during learning
activities, offering engaging, interactive experiences that
increase children’s participation [53,54].
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Within a learning environment, the software increases
interaction and participation and improves the learning process
[55]. Additionally, the software provides real-time feedback on
key skills and is customizable to focus on individual needs,
similar to the benefits seen in the Picture Exchange
Communication System and other visual aids, texts, and sounds
[56,57]. The portability of the devices can allow parents to
provide learning at times when the child is most receptive,
despite the unavailability of therapists. Furthermore,
parent-implemented technologies can be the most readily and
affordably deployed, and such assistive technology enables
parents to offer the most opportunities for social contact [58].
The software incorporates interactive games that improve
social-emotional functioning and behavior. The interactive
feature allowed the participants to recognize emotions, use
deconfliction strategies, collaborate with others, and address
issues like greeting known people like teachers or neighbors.
In a recent study, parents who used social skills programs
incorporating features similar to those in the CognitiveBotics
platform found significant improvements in social skills and
reductions in problematic behaviors, in contrast to those in the
control group [59].

There may be certain shortfalls with the use of ABA assistive
technologies, but as with any problem, there are solutions that
can overcome such shortfalls. The first area of concern is
increased screen time, possibly leading to restricted or repetitive
behaviors, lack of socializing, and concerns over metabolic and
sleep disturbances [60,61]. In such circumstances,
CognitiveBotics has incorporated a preset screen time feature
of 20 minutes, after which the session concludes and takes the
user to the dashboard. It is also advisable to provide minimal
access in a group setting to reduce potential isolation [62].
Devices may also be misused to view passive content, in which
case supervised coviewing with parents is advised [63].
Furthermore, the choice of content has to be predetermined,
whereby highly interactive and engaging media is most
beneficial to the child as it promotes engagement, motivation,
and learning outcomes [64]. Another issue is the potential for
tantrums if the device is removed. As is the case in other
situations, when access to preferred items is interrupted, parents
and therapists should be trained to control such behaviors.

In recent years, there have been numerous studies on the
proposed use of tablets or computers in autism interventions.
A meta-analysis conducted by Sandbank et al [65], reviewed
252 separate trials examining the efficacy of technology in
autism interventions. The findings suggest an overall
improvement in social communication skills and reductions in
difficult behaviors, particularly when used by parents. This
aligns with the intentions behind the CognitiveBotics platform,
which aims to support individuals with autism and their families.
Furthermore, a low incidence of adverse events reported when
using such interventions supports adoption of the software in
both home and clinical settings.

Novack et al [66] conducted a study to assess the effectiveness
of mobile apps on the principles of ABA, particularly in
assessing the impact on the receptive language skills of
individuals. Randomized into an immediate-treatment or a
delayed-treatment control group, the results indicated significant

improvements in receptive language skills in the former group.
However, the study had limitations, particularly with the absence
of psychometric parameters to assess outcomes. Although
improvements in receptive language skills were observed, the
study is incomplete. Our 12-month study demonstrated how
CognitiveBotics leverages AI to improve receptive language
skills, offering prolonged benefits using personalized
ABA-based interventions and addressing limitations in
traditional psychometric assessments. Another study aimed at
addressing social engagement by using a proposed 3D complex
facial expression recognition system to recognize facial
emotions; it found that, in 3 weeks, users had a marked
improvement in identifying facial cues compared with the
control group, with surprise and shy expressions being the
easiest to identify [67]. Similarly, CognitiveBotics contains
activities that enable children to better recognize and respond
to social and emotional cues, significantly boosting their social
communication skills within a short intervention period.

A study conducted in Saudi Arabia assessed the effectiveness
of AI-driven apps in a traditional education setup. Apps such
as “My School” and “Alfaz” were chosen for their adaptive and
interactive content that aligned with the academic curriculum.
Participants who received 60-minute sessions twice weekly for
5 weeks showed significant improvements in reading and math
skills compared to those in the control group [68]. Similarly,
our software incorporates real-time feedback, task adaptation,
and data-driven insights to ensure that children receive targeted,
engaging, and effective support, ultimately enhancing their
cognitive and functional independence.

Lastly, a meta-analysis conducted by Moon et al [23] aimed to
review the effectiveness of mobile apps in the treatment of
individuals with ASD. After a review of 1100 randomized
controlled trials, only 7 studies were deemed suitable for further
analysis, suggesting a very methodological approach. Using the
Mullen Scales of Early Learning, the results favored the
intervention group, indicating a significant improvement in the
participants’ early learning and developmental outcomes
compared to control groups. Moreover, the analysis found
minimal heterogeneity (P>.10) across different studies or no
significant evidence of publication bias. Correspondingly, our
platform aligns with these findings by offering a
technology-based, interactive tool specifically designed to
enhance learning and developmental progress in individuals
with autism. With an emphasis on providing individualized
interventions that target key skills, CognitiveBotics uses
validated clinical parameters to monitor improvements, reducing
inaccuracies, similar to the studies highlighted in Moon’s
analysis [23].

Limitations of the Study
Although evidence from our longitudinal study shows significant
improvement in outcome measures for individuals with ASD
using the software, a few limitations have to be discussed. First,
the small sample size of 40 participants is a critical limitation,
suggesting inadequate generalization of the findings. However,
most studies regarding children with autism often face
challenges in recruiting adequate numbers of participants.
Limited research has explored effective strategies for efficiently
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recruiting participants with ASD, a challenge that poses a barrier
to larger and more comprehensive studies in this field [69].

Second, the participants were recruited from a single center and
predominantly came from literate and urban families. Such a
demographic is not representative of the entire population of
individuals with ASD, particularly in India. The benefits
observed in using the software may not translate to individuals
with a lower socioeconomic status or those located in rural
areas, who may face different challenges and have different
needs. Further studies should be conducted to include
participants from rural areas and various socioeconomic
backgrounds. This includes incorporating features that reflect
local languages and cultural sensitivities to ensure the software
is relevant and effective for a wider range of users.

Third, the study experienced a 59% attrition rate, which could
be attributed to several factors, including language barriers or
the demanding schedules of caregivers, which may have limited
their ability to fully engage with the platform. Such high levels
of attrition are commonly observed in digital therapeutics for
mental health. Similarly, a recent meta-analysis found more
than half of the users discontinued using smartphone apps aimed
at treating depressive symptoms [70].

Finally, while randomized controlled trials are considered the
gold standard for assessing the effectiveness of interventions,
their feasibility in such a population remains challenging. To
address this, future research should explore methodologies that
balance scientific rigor with practical implementation to further
validate the software’s effectiveness among different subgroups.

Conclusions
This 12-month study demonstrated that the CognitiveBotics
platform delivering parent-mediated interventions significantly
improved multiple developmental and social parameters in
participants. Furthermore, it highlights that these digital
technologies using audiovisuals, AI-based interactive games,
animation games, and chatbots have an attraction factor that
keeps the interest of children with ASD. Particularly, the
incorporation of AI into digital technology has been shown to
enhance social communication skills, especially in younger
participants with learning difficulties, helping them reach their
specific learning objectives.

Most assistive technologies are not intended to satisfy the needs
of individuals with ASD as a whole, as they have variable needs.
Despite being in its infancy, such digital technologies have been
proposed to address the wide array of learning needs and work
on the core symptoms of ASD. Further research must be
conducted to include a larger number of children with different
levels of social and developmental delays and ASD severity
along with regional, linguistic, and sociocultural variations.

In conclusion, the promising results of this study underscore
the potential of AI software interventions in revolutionizing
holistic support for children with ASD. As these technologies
continue to evolve, aligning the software not just to the needs
of the child but also to those of parents and therapists offers
hope for more personalized and effective strategies for not just
children on the autism spectrum but also all neurodiverse
children.
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Abstract

Background: Neuromodulation of the auricular branch of the vagus nerve using low-intensity focused ultrasound (LIFU) is an
emerging mode of treatment for anxiety that could provide a complementary or alternative treatment modality for individuals
who are refractory to conventional interventions. The proposed benefits of this technology have been largely unexamined with
clinical populations. Further research is required to understand its clinical potential and use in improving and managing moderate
to severe symptoms.

Objectives: The aim of this study was to do a preliminary investigation into the efficacy, safety, and usability of the wearable
headset that delivers LIFU to the auricular branch of the vagus nerve for the purpose of alleviating anxiety disorder symptoms.

Methods: This study was a pre-post intervention study design for which we recruited 28 participants with a Beck Anxiety
Inventory score of 16 points or greater. Participants completed 5 minutes of treatment daily consisting of LIFU neuromodulation
delivered to the auricular branch of the vagus nerve. Participants did this for a period of 4 weeks. Assessments of anxiety symptom
severity (Beck Anxiety Inventory), depression symptom severity (Beck Depression Inventory), posttraumatic stress disorder
symptom severity (Post Traumatic Stress Disorder Checklist for the Diagnostic and Statistical Manual of Mental Disorders [Fifth
Edition]), and sleep quality (Pittsburgh Sleep Quality Index) were taken prior to starting treatment and weekly for 4 weeks of
treatment. Usability and safety were also assessed using an exit questionnaire and adverse event logging.

Results: After completing 4 weeks of LIFU neuromodulation to the auricular branch of the vagus nerve, the average Beck
Anxiety Inventory score decreased by 14.9 (SD 10.6) points (Cohen d=1.06; P<.001), the average Beck Depression Inventory
score decreased by 10.3 (SD 7.8) points (Cohen d=0.81; P<.001), the average Post Traumatic Stress Disorder Checklist for the
Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) score decreased by 20.0 (SD 20.5) points (Cohen d=0.94;
P<.001), and the average Pittsburgh Sleep Quality Index score decreased by 2.2 (SD 3.1) points (Cohen d=0.65; P=.001). On the
exit questionnaire, participants rated the treatment highly for ease of use, effectiveness, and worthiness of the time invested. Only
1 adverse event was reported throughout the entire trial, which was mild and temporary.

Conclusions: This preliminary study provided justification for further research into the efficacy, safety, and feasibility of using
LIFU to modulate the auricular branch of the vagus nerve and reduce the symptoms of anxiety, depression, and posttraumatic
stress disorder.

Trial Registration: ClinicalTrials.gov NCT06574971; https://clinicaltrials.gov/study/NCT06574971

(JMIR Neurotech 2025;4:e69770)   doi:10.2196/69770

KEYWORDS

low-intensity focused ultrasound; auricular branch of the vagus nerve; anxiety; depression; posttraumatic stress disorder

Introduction

Anxiety is the “anticipation of real or imagined future threat or
danger” [1], which manifests itself with a mix of emotional
signals, such as hyperarousal and panic, and physiological ones,
including increased heart rate, shortness of breath, sweating,
and chest pain [2]. The emotional and physiological responses
experienced with anxiety result from the activation of the
hypothalamus, which engages the sympathetic nervous system

(SNS) [3,4]. This sympathetic activation is adaptive in short
bursts and enables us to handle threats and stressors, but in
anxiety disorders, the SNS may be overly sensitive or
chronically activated, leading to distress and health challenges
over time [5,6]. Clinically significant anxiety symptoms are
disproportionate to the future threat, endure after it has passed,
and cause substantial distress or incapacitation [1,7]. The
etiology of anxiety disorders is complex, with heritability
ranging from 30% to 67% depending on the research study and
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anxiety disorder type [1]. However, trauma, chronic stress, and
other environmental factors play an important role in the
development of maladaptive anxiety [7].

The complex etiology of anxiety opens opportunities for
intervention at multiple points in the course of the illness from
a variety of disciplines. There are also several multidisciplinary
approaches that offer a more holistic care plan. The primary
goal of preventative strategies is to lower the risk of developing
disordered anxiety responses prior to onset. Preventative
psychoeducational interventions for adolescents and adults have
been shown to reduce the risk of anxiety onset [8] with small
to moderate effect sizes [1,8]; however, studies of these
interventions tend to end their follow-ups after only 9 months,
so the long-term stability of their benefits after intervention
completion is still in question [1]. Once an active anxiety
disorder has developed, psychotherapeutic treatments for it
range in intensity from self-guided programs to highly intense
weekly sessions with a licensed therapist. Self-guided treatments
derived from evidence-based psychotherapies are more effective
than active controls but show smaller effect sizes than
therapist-guided programs [9]. Cognitive behavioral therapy is
widely considered to be the gold standard for anxiety disorder
treatment, particularly in adults, although Haller et al [10] found
mindfulness-based cognitive therapy and acceptance and
commitment therapy to be similar in efficacy. In recent years,
virtual psychotherapy modalities have emerged as a compromise
that balances the convenience of self-help approaches and the
rigor and guidance of a traditional in-person therapy session.
Thus, recent advances in telehealth have paved the way for
approaches that afford convenience and accessibility without a
loss of efficacy [11,12].

Pharmacotherapy is similar in efficacy to psychotherapy, and
both pharmacotherapy and psychotherapy are considered
first-line treatments for anxiety disorders in most standard care
plans [1]. Selective serotonin reuptake inhibitors, serotonin and
norepinephrine reuptake inhibitors, benzodiazepines,
antipsychotics, and β-blockers are all used to treat anxiety.
Despite this wealth of options, anxiety disorders remain chronic
and refractory to treatment in many individuals, with 15%‐40%
achieving less than 50% remission in symptoms [13]. Studies
of combinations of psychotherapeutic and pharmacological
approaches to anxiety treatment are sparse, leaving confusion
surrounding which combinations are most efficacious [1]. Taken
as a whole, while current neurobiological and psychosocial
treatment approaches to anxiety disorders are sufficient for a
large portion of affected individuals, there is still a substantial
proportion of patients who would benefit from additional
treatment options.

Low-intensity focused ultrasound (LIFU) is an emerging mode
of treatment for anxiety that could provide an alternative
treatment modality. LIFU can stimulate or inhibit neural activity,
depending on the parameters of the energy applied to neural
tissue. Also referred to as acoustic neuromodulation, the use of
LIFU to modulate the activity of neural structures is a promising
method for noninvasive treatment of neurological disorders
[14]. While the majority of investigations featuring LIFU
neuromodulation have primarily focused on modulation of
neural structures within the central nervous system, disorders

affecting the peripheral nervous system stand to benefit from
this powerful tool as well [15]. LIFU neuromodulation of the
peripheral nervous system is accomplished through a
nonthermal, noncavitation bioeffect produced by setting the
parameters to the intermediate intensity range. At intensities

between 1 and 200 W/cm2, ultrasound is able to noninvasively
and reversibly enhance peripheral neural activities by activating
low-threshold mechanosensitive nerve endings, opening
mechanosensitive ion channels to evoke action potentials [15].
Ultrasound of intermediate intensity also enhances the neural
activity of peripheral nerve axons, leading to increased nerve
conduction velocities in both A- and C-type fibers, which is
likely caused by mechanical gating of other ion channels [16].
In addition, enhanced neural activity could be attributed to a
direct effect of acoustic radiation forces on the lipid-bilayer
neural membrane. Plausible mechanisms for this include a
transient capacitive current from rapid changes of local
membrane capacitance and transmembrane pore formation to
allow sodium and potassium ions to pass through [15,16].

The vagus nerve, also known as cranial nerve X, is the longest
cranial nerve and its branches enable the organs to adjust to the
demands of a person’s internal state and external environment.
The vagus nerve is a primary component of the parasympathetic
nervous system, which, paired with the SNS, constitutes the
autonomic nervous system [4,17]. Normally, sympathetic and
parasympathetic nerve pathways act synergistically to create a
state of equilibrium appropriate to meet the demands of the
current internal state and external challenges. Disruption of the
balance of sympathetic and parasympathetic activity in favor
of sympathetic activity is one indicator of anxiety disorders
[4,18].

The many branches of the vagus nerve are increasingly seen as
pathways for promoting or restoring health and ameliorating
the physiologic unease that gives rise to anxiety and other
negative mental states [19]. The vagus nerve operates
bidirectionally, meaning states of homeostasis and calm can be
induced from the bottom up or the top down. The brain can use
cognitive strategies to dissipate states of bodily unease (top
down) or activate vagal nerve pathways to create psychological
comfort and a sense of safety (bottom up) [20]. In addition to
its role in regulating the parasympathetic nervous system, the
vagus nerve also projects to the amygdala and hippocampus,
both of which are important to extinction learning techniques
commonly used in the treatment of anxiety and posttraumatic
stress disorder (PTSD) [21,22]. Stimulation of the vagus nerve
can downregulate sympathetic activity, restoring visceral order
and psychological calm [23,24].

Early research into the clinical applications of vagus nerve
stimulation (VNS) primarily centered on epilepsy and depression
[17], but the vagus nerve is an attractive target for antianxiety
therapies as well. In addition to its role in regulating the
parasympathetic nervous system, the vagus nerve also projects
to the amygdala and hippocampus, both of which are important
to extinction learning techniques commonly used in the
treatment of anxiety and PTSD [21,22]. Preliminary clinical
studies have demonstrated VNS’s therapeutic applications to
treatment-resistant anxiety disorders [23] and long COVID-19
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symptoms [25]. Physiological changes as an effect of VNS are
also well known in the literature. Wittbrodt et al [26] discovered
that transcutaneous cervical VNS increased activation of the
anterior cingulate and hippocampus during exposure to traumatic
scripts. Lamb et al [27] found that transcutaneous auricular
vagal nerve stimulation (taVNS) improved respiratory sinus
arrhythmia and skin conductance during exposure to physical
and emotional stress. Bremner et al [28] found that
transcutaneous cervical VNS decreased inflammatory markers
and sympathetic tone while increasing medial prefrontal function
during exposure to trauma-specific and neutral stressors.

While VNS is traditionally done electrically, ultrasound’s
noninvasiveness and specificity make it ideal for VNS [29].
Ultrasound has been successfully used for vagus nerve
neuromodulation in rats [30] and for peripheral nerve [29] and
suborgan [31] stimulation in humans. With a recent study
showing the feasibility of transauricular VNS as an at-home
intervention [20,22], transauricular ultrasound VNS has emerged
as a noninvasive, yet potentially effective, at-home treatment
for the management of anxiety symptoms. In response to this,
we have developed a wearable headset with an ultrasound
transducer that delivers LIFU to the auricular branch of the
vagus nerve that can be used at home for treatment of anxiety
symptoms. The purpose of this study was to do a preliminary
investigation into the efficacy, safety, and usability of the
wearable headset that delivers LIFU to the auricular branch of
the vagus nerve for the purpose of alleviating the symptoms of
anxiety. Because depression [32] and PTSD [33] frequently
co-occur with anxiety, we also investigated the efficacy of
transauricular ultrasound VNS for alleviating the symptoms of
depression and PTSD in individuals with anxiety.

Methods

Study Design
This was a pre-post-intervention study in which all participants
received the intervention daily, at home, for a period of 4 weeks.
The clinical trial is registered at ClinicalTrials.gov
[NCT06574971]. Informed consent was obtained from each of
the 28 participants prior to screening. All activities were
completed remotely and a ZenBud device with a user manual
and participant instructions was shipped to each participant’s
home. Participants completed 5 minutes of LIFU to the auricular
branch of the vagus nerve each day using the ZenBud device.
Treatment could be completed at any convenient time of day
and did not have to be completed at the same time every day,
as long as the treatment was completed within every 24-hour
period. Assessments were completed on the web on the day
before the first treatment session and then weekly. The final
assessment was completed on the day of the final treatment
after the final treatment session. The battery of assessments
included 4 validated clinical outcome measures: Beck Anxiety
Inventory (BAI), Beck Depression Inventory (BDI), PTSD

Checklist for Diagnostic and Statistical Manual of Mental
Disorders (Fifth Edition) (DSM-V) (PC5), and Pittsburgh Sleep
Quality Index (PSQI). The details of these assessments are
further described in the data collection section.

Participant Recruitment
Adults in the United States were recruited through web-based
social media advertising mentioning a study investigating a new
treatment for anxiety disorders. Interested individuals filled out
a study registration form containing only contact information
and were then contacted by a member of the research team via
email with further details of the study and a link to sign the
informed consent. Upon completion of the informed consent,
candidates were then screened for inclusion and exclusion
criteria using web-based questionnaires. Interested individuals
were included if they scored 16 or higher on the BAI, were older
than 18 years, and did not have any additional conditions that
were contraindications for VNS or ultrasound. Conditions that
were contraindications for VNS included a history of vagotomy,
heart arrhythmias, schizophrenia, or rapid cycling bipolar
disorder. Conditions that were contraindications for ultrasound
included presence of a pacemaker, pregnancy, active cancer,
decreased sensation or open wounds in the ear, ear infection,
or metal implants in or around the ear. A BAI score of 16 was
chosen as the cutoff threshold because a score of 16 or higher
in the BAI classifies an individual as having moderate to severe
anxiety symptoms [34]. We did not exclude individuals who
were receiving other treatments for their anxiety as long as the
treatment was not initiated or ceased within the past month.

A total of 100 individuals completed the interest form, 63 signed
the informed consent and were screened, and 28 were enrolled
in the study. Each participant was assigned a unique identifier
code so that participant information could be managed in a
confidential manner throughout the study and the data could be
deidentified upon completion of the study. Only the principal
investigator and the study coordinator had access to the unique
identifier code assignments.

Ultrasound Device
ZenBud, the device used for this trial, is a proprietary
Conformité Européenne–compliant over-the-ear wearable
headset that was developed by NeurGear (Figure 1A and B).
The ZenBud delivers LIFU to the auricular branch of the vagus
nerve through several layers of skin. The ZenBud is designed
to mimic a standard headset so that users can integrate the use
of the device into their routine with minimal effort and
discomfort. When the user plugs the ZenBud device into the
battery pack it immediately turns on. There is a hardware limit
in the circuitry so that the device shuts down after running for
29 minutes, limiting the duration of use. The ZenBud device
specifications include a center frequency of 5.3 MHz, a pulse
repetition frequency of 41 Hz, a duty cycle of 50%, and an
average intensity of 1.03 MPa.
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Figure 1. (A) The ZenBud headset, powerpack, power brick, and bottle of gel. The ultrasound transducer is located in the round earpiece on the right
side of the headset. (B) The ZenBud device as depicted properly placed on a model human head.

A detailed instruction manual was provided in the package with
every device. A copy of the manual is provided as Multimedia
Appendix 1. The participants were instructed to use the device
once a day for 5 minutes unless instructed otherwise by a health
care professional. There were no stipulations set for the time of
day that treatment could be completed and participants were
free to choose a time that was convenient for them. For
step-by-step set up and use, participants were instructed to apply
a pea-sized amount of the aqua sonic gel to the blue part of the
device located directly above the headset (Figure 2A), position

the blue circular pad against the skin just above the ear canal
(Figure 2C), adjust the headset until they felt a moderate
pressure (without pain) just above the ear canal where the blue
circular pad was positioned (Figure 2B), and begin stimulation
by plugging the USB cable into the battery pack (Figure 2D).
Once the headset is plugged into the battery pack the device
starts working and a low humming noise can be heard. The
manual instructs users to listen for the humming sound to
indicate that the device is working properly.
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Figure 2. Images extracted from the ZenBud user manual depicting step-by-step setup and operation of the device. (A) Application of the ultrasonic
gel. (B) Placement of the headset with the headset located over the right ear. (C) Correct placement of the headset on the ear. (D) Treatment is started
upon inserting the USB cable into the battery pack.

Data Collection
Assessments were done using a battery of 4 validated clinical
outcome measures. These were taken on the day before the first
treatment session, weekly, and on the day of the final treatment
session after the final treatment session was completed. The
following 4 clinical outcome measures were used.

Beck Anxiety Inventory
The BAI is a rating scale used to evaluate the severity of anxiety
symptoms in individuals aged 17 years and older. It contains
21 self-report items that reflect common physiological symptoms
of anxiety such as numbness or tingling, feeling hot, and
trembling. Participants indicate how much they have been
bothered by each symptom, from “not at all” to “severely,”
using a 4-point Likert scale. The item scores are then summed,
with possible scores ranging from 0 to 63. A total score of 0‐7
is classified as minimal anxiety, 8‐15 as mild, 16‐25 as
moderate, and 26‐63 as severe [35,36]. The BAI has a
Cronbach α value of 0.91, a good test-retest reliability (κ=0.65,
95% CI 0.61-0.69), and correlates moderately (Pearson r=0.51)
with the revised Hamilton Anxiety Rating Scale (HAM-A)
[34,35,37,38].

Beck Depression Inventory Version II
Depression and anxiety are highly comorbid, with 60% of
patients with anxiety disorders also having depression [32].
Long-term activation of the stress response may explain this
overlap [39], implying that inhibiting overactivation of the stress
response may alleviate depressive symptoms in addition to
anxiety and stress. The BDI-II is a valid and reliable self-report
measure for depression that quantifies depressive symptoms
over the last week [40]. For each of the 21 items, respondents
are asked to choose the statement they most agree with out of
a group of 4 choices. Each statement corresponds to a score
ranging from 0 to 3 and total scores range from 0 to 63
[35,41,42]. The scores are classified as minimal depression
(0‐13), mild depression (14-19), moderate depression (20-28),
and severe depression (29-63) [38,41]. The BDI is positively
correlated with the Hamilton Depression Rating Scale with a
Pearson r of 0.71, showing good agreement. The test was also
shown to have a high 1-week test-retest reliability (Pearson
r=0.93), suggesting that it was not overly sensitive to daily
variations in mood and high internal consistency (α=.91)
[38,41].
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PTSD Checklist for DSM-V (PCL-5)
While the DSM-V does not classify PTSD as an anxiety-related
disorder, both PTSD and anxiety disorders involve dysregulation
in neural structures dealing with fear, arousal, and anticipation
of future threats [33]. Thus, there is reason to believe that VNS
simulation could be beneficial for PTSD-related symptoms. The
PCL-5 is a self-report questionnaire that helps assess the
presence and severity of PTSD symptoms. The PCL-5 can be
used to screen for PTSD, assist in making a provisional
diagnosis, and monitor symptoms over time [43] . The measure
asks participants to rate how much they were bothered by certain
PTSD symptoms over the past month on a 5-point Likert scale
ranging from “not at all” to “extremely” [44]. Total scores range
from 0 to 60 and scores ranging from 31 to 33 are widely
accepted as the cutoff for diagnosing PTSD [45]. In a systematic
review of PCL-5 validation studies, Forkus et al [45] concluded
that the full 20-item version showed good to excellent internal
consistency across studies (Cronbach α values ranging from
0.83 to 0.97) and acceptable temporal stability (correlations
≥0.60) across time points within 1‐5 weeks of one another.
Scores were also moderately to highly correlated with other
measures of PTSD as well as measures of anxiety, depression,
suicidal ideation, and sleep.

Pittsburgh Sleep Quality Index
Anxiety and sleep disturbance are frequently co-occurring [46]
such that sleep disturbance is a DSM-V criterion for generalized
anxiety disorder. Studies have found correlations between BAI
scores and subjective sleep quality among college students [47],
indicating that measuring sleep quality could provide insight
into the burden of anxiety on well-being. The PSQI is a validated
and widely used global measure of sleep quality [48,49]. It
comprises 19 self-report items and 5 items to be reported by a
sleeping partner, but the 19 self-report items are commonly
used on their own in research contexts [50]. The different items
call for responses in different formats (bedtimes, number of
hours, Likert scales, etc), thus the instrument is scored with the
use of 7 component scores that are summed for 1 total score
ranging from 0 to 21 [48]. The original creators of the PSQI
found that a score of 5 or greater differentiated between “good”
and “poor” sleepers, with a sensitivity of 89.6% and a specificity
of 86.5% [48]. Research since has generally supported the
validity of this cutoff. Mollayeva et al [49] did a meta-analysis
of the psychometric properties of the PSQI and found that it
showed acceptable internal reliability for within-group
comparisons across studies (Cronbach α values ranging from
0.70 to 0.83). They also found that intraclass correlations for
PSQI scores across timepoints met the cutoffs for use in
within-group comparisons (0.70 or greater) [49].

Exit Survey
In addition to the clinical outcome measures, participants also
completed an exit survey on the final day of the trial. This survey
asked questions regarding overall satisfaction with the treatment,
impact on daily functioning and quality of life, ease of use,
symptom improvement, side effects, and how quickly effects
from the treatment were perceived to be felt. The purpose of
this questionnaire was to provide further insight into the
perceived experiences of the participants during the treatment

period, which is important information for full and complete
understanding of the treatment’s impact.

Adverse Event Tracking
Adverse events (AEs) and device deficiencies were documented
and categorized in accordance with ISO14155:2020. These AEs
were documented based on reports provided by the participants
through email or on the exit survey. The investigators closely
tracked the AEs and their resolution throughout the study. Each
AE was categorized by type and seriousness according to the
definitions provided in ISO14155. Whether an AE was related
to the device or procedures was also distinguished. All available
details for each AE were recorded in the participant case report
forms, including relationship to the investigational device,
severity (mild, moderate, or severe), onset date, resolution status,
any action taken, and if there were any sequelae. For the
causality assessment of all AEs, the MDCG 2020-10/1 guideline
was followed. This guidance is specifically aimed at severe
adverse events; however, it was extrapolated to all AEs for this
study.

According to MDCG 2020-10/1, causal relatedness was defined
as an AE associated with the investigational device beyond
reasonable doubt. Probably device-related was defined as having
a relationship with the use of the investigational device that
seems relevant or the event cannot be reasonably explained by
another cause. “Possibly device related” was defined as having
a relationship with the use of the investigational device that was
weak but cannot be ruled out completely. “Not device related”
was defined as an event not having a temporal relationship with
the device or not following a known response pattern to the
device. The AEs were then further classified into mild,
moderate, or severe categories. Mild severity AEs correspond
to awareness of easily tolerated and mildly irritating signs or
symptoms, with no or minimal loss of time from normal
activities; these symptoms are transient and do not require
therapy or a medical evaluation. Moderate cases are events that
introduce a low level of inconvenience or concern to the
participant and may interfere with daily activities; moderate
experiences may cause some interference with functioning.
Severe cases are events that substantially interrupt the
participant’s normal daily activities and generally require
systemic drug therapy or other treatment; these events are
usually incapacitating.

Statistical Analysis
The primary and secondary end points of the study are
thoroughly described in the “Data Collection” section. These
end points included pre- to posttreatment changes from baseline
to the end of treatment at 4 weeks for the BAI as the primary
end point and the BDI, PCL-5, and PSQI as secondary end
points. Baseline scores were defined as the BAI, BDI, PCL-5,
and PSQI scores on the first day of treatment, prior to the first
treatment session. The within-group analyses were based on a
per-protocol estimand and tested with paired 2-tailed t tests,
where the normality assumption was confirmed with the
Shapiro-Wilk test and α value was set to .05. The effect sizes
reported in this paper are based on Cohen d and calculated as
the mean score at the end of treatment minus the mean score at
baseline, divided by the pooled SD for the 2 scores. The use of
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per-protocol estimand ensured that the changes in outcome
measures within each treatment arm were reflective of scenarios
where the participants used the treatment as directed and thus
included only the participants who were compliant to treatment.
The usage criteria for inclusion in the per-protocol analysis was
set at 5-29 minutes of treatment per day 6-7 days per week
across the intended 4-week treatment period. There were only
2 missing scores, 1 in week 2 and 1 in week 3. Because these
data are a time series that exhibits a trend line and the number
of missing values was very small, these were filled using a linear
interpolation between the score from the previous week and the
score from the following week. There was no missing baseline
or final scores.

To determine the appropriate sample size a power analysis was
performed assuming a dependent t test with a significance level
of 5%, power of 80%, and moderate effect size of 0.6 between
pairs. This gave us a necessary sample size of 25 participants.
Accounting for a potential dropout rate of 20% gave us a target
sample size of 30 participants. All analyses were performed
using GraphPad Prism 10.3.0 (507; Dotmatics).

Ethical Considerations
Ethical approval for this trial was obtained from the
WIRB-Copernicus Group (WCG) institutional review board

(reference no. 20233919), and the study was conducted in
compliance with the principles outlined in the Declaration of
Helsinki. Signed and documented informed consent was
obtained from all participants prior to starting the study. For
their time, participants were given a US $25.00 Amazon gift
card.

Results

Study Participants
Between October 22, 2023, and October 2, 2024, 100 individuals
completed the web-based interest form (Figure 3). A total of
63 participants consented to the trial, with 26 of these not
satisfying the criteria of having a BAI score of 16 or greater, 4
not responding to requests to complete the screening
questionnaire, and 1 not responding to requests for confirmation
of their shipping address. A total of 32 participants were shipped
a device, with 3 of these not responding to requests to complete
the baseline assessments and 1 participant failing to respond to
requests to take the reassessments after week 2. In total, 28
participants completed all LIFU sessions and weekly
assessments (28/32, 87.5%). Data for all 28 participants who
completed the trial are included in the analysis.
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Figure 3. Flowchart of study participants through the trial.

The average age of the participants was 48.1 (SD 15.6) years.
The group was heavily weighted toward women, with 22 women
and 6 men. The National Institutes of Health reports that
generalized anxiety affects approximately 2.7% of American
adults, with women experiencing the disorder at a higher rate
(3.4%) versus men (1.9%), making the fact that the sample
contained a higher percentage of women a reflection of actual
population distributions. The self-reported average duration of
time suffering with anxiety was 16.5 (SD 11.8) years. There
were also 8 participants currently receiving treatment for their
anxiety and 20 who were not receiving any treatment.

Beck Anxiety Inventory
After 4 weeks of treatment with the ZenBud, the average BAI
score decreased by 14.9 (SD 10.6) points from 26.5 (SD 12.5)

to 11.5 (SD 11.1) (Figure 4). This change in score was both
statistically significant (P<.001, 2-tailed dependent t test) and
clinically meaningful. While there is no consistently defined
definition of clinical improvement for the BAI, based on the
categorical definitions of severity for the scores, there was a
great deal of progression into decreased severity levels of
anxiety throughout the treatment period. As seen in Figure 5,
at the start of the study, 22 participants had BAI scores in the
moderate or severe anxiety ranges and only 6 participants had
BAI scores in the mild or minimal severity ranges. After 4 weeks
of using the ZenBud, 22 participants had BAI scores into the
mild or minimal severity rages, and only 6 participants had
scores in the moderate or severe ranges. In terms of Cohen d,
the effect size was large at 1.06.
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Figure 4. The progression of Beck Anxiety Inventory scores through 4 weeks of treatment with ZenBud. The thin lines represent each individual
participant. The thick line represents the group mean.
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Figure 5. Categorical movement across degrees of severity based on the Beck Anxiety Inventory (BAI) definitions. At the start of the study, 20
participants had BAI scores in the moderate or severe anxiety ranges and only 6 participants had BAI scores in the mild or minimal severity ranges.
After 4 weeks of using the ZenBud, 20 participants had BAI scores into the mild or minimal severity ranges, and only 6 participants had scores in the
moderate or severe ranges.
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Beck Depression Inventory
After 4 weeks of treatment with the ZenBud, the average BDI
score decreased by 10.3 (SD 7.8) points from 24.2 (SD 10.5)
to 13.9 (SD 12.6) (Figure 6). Similar to results seen for the BAI,
this change in score was both statistically significant (P<.001;

2-tailed dependent t test) and clinically meaningful. A 17%
reduction in score on the BDI is considered clinically meaningful
[3]. Based on this definition, as seen in Table 1, 71.4% (20/28)
of participants demonstrated a clinically meaningful reduction
in score by the end of the trial. In terms of Cohen d, the effect
size was large at 0.81.

Figure 6. The progression of Beck Depression Inventory scores through 4 weeks of treatment with ZenBud. The thin lines represent each individual
participant. The thick line represents the group mean.

Table . The number of participants who experienced clinically significant reductions in Beck Depression Inventory score following 4 weeks of treatment
with the ZenBud.

Participants, n (%)Degree of score change

20 (71)Clinical decrease

5 (18)Nonclinical decrease

3 (11)Nonclinical increase

Post Traumatic Stress Disorder Checklist for the
DSM-V

After 4 weeks of treatment with the ZenBud, the average PCL-5
score decreased by 20.0 (SD 20.5) points from 38.8.8 (SD 18.0)
to 18.8 (SD 18.9) (Figure 7). Similar to results seen for the BAI
and BDI, this change in score was both statistically significant

(P<.001; 2-tailed dependent t test) and clinically meaningful.
A 10-point reduction in score on the PCL-5 is considered
clinically meaningful [43,51]. Based on this definition, as seen
in Table 2 , 71.4% (20/28) of participants demonstrated a
clinically meaningful reduction in score by the end of the trial.
In terms of Cohen d, the effect size was large at 0.94.
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Figure 7. The progression of PCL-5 scores through 4 weeks of treatment with ZenBud. The thin lines represent each individual participant. The thick
line represents the group mean.

Table . The number of participants who experienced clinically significant reductions in PCL-5 score following 4 weeks of treatment with the ZenBud.

Participants, n (%)Degree of score change

20 (71)Clinical decrease

3 (11)Nonclinical decrease

4 (14)Nonclinical increase

1 (4)Clinical increase

Pittsburgh Sleep Quality Index
After 4 weeks of treatment with the ZenBud, the average PSQI
score decreased by 2.2 (SD 3.1) points from 12.1 (SD 3.2) to

9.9 (SD 3.2) (Figure 8). While this change in score was
statistically significant (P=.001; 2-tailed dependent t test), it
was not clinically meaningful. In terms of Cohen d, the effect
size was medium at 0.65.
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Figure 8. The progression of PSQI scores through 4 weeks of treatment with ZenBud. The thin lines represent each individual participant. The thick
line represents the group mean. PSQI: Pittsburgh Sleep Quality Index.

Satisfaction and Acceptability
After the final treatment and assessment, battery participants
completed an exit survey asking questions regarding satisfaction
with the treatment, acceptability, and quality-of-life impact.
When asked about satisfaction with ease of use, 89.3% (25/28)
of participants responded with very satisfied or satisfied (Figure
9A). In addition, 82.1% (23/28) of participants reported that
they would continue using the device if offered the opportunity
(Figure 9B). When asked whether the treatment was worth the
time invested in the trial, 82.1% (23/28) of participants strongly

agreed or agreed that the time invested was worth it (Figure
9D). When asked about the impact on quality of life, 78.6%
(22/28) of participants reported that the treatment somewhat or
greatly impacted their quality of life (Figure 9E). When asked
how long it took to feel initial effects, 53.6% 15/28) of
participants noticed effects in less than 1 week and 32.1% (9/28)
felt initial effects by 1 week (Figure 9C). When asked whether
they would recommend the treatment to someone with a similar
condition, 75.0% (21/28) of participants responded with very
likely or likely (Figure 9F).
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Figure 9. Results of the exit survey. (A) Responses of the participants when asked “How satisfied were you with the ease of using the device?” (B)
Responses of the participants when asked “Would you continue using this device for treatment?” (C) Responses of the participants when asked “How
quickly did you feel the effects of the ZenBud device during your trial?” (D) Responses of the participants when asked “Do you feel the device was
worth the time invested in the trial?” (E) Responses of the participants when asked “How did the device impact your overall quality of life?” (F)
Responses of the participants when asked “How likely are you to recommend this device to others with similar conditions?.”

Adverse Events
Only 1 AE was reported throughout the duration of the trial.
On the exit survey following completion of the 4 weeks of
treatment, 1 participant reported that the treatment would make
them feel jittery for a short period of time afterward. This effect
was short-lived and classified as a mild AE that was probably
device related. The participant reported that this side effect was
not enough of an effect to make them stop treatment or drop
out of the study. Overall, the high satisfaction rates as described
in the “Satisfaction and Acceptability” section combined with
the low rate of AE support a strong benefit-to-risk profile for

the ZenBud. However, this study was done with a small sample
size and these results need to be further validated with a larger
sample size.

Discussion

Principal Findings
The main objective of this study was to provide preliminary
evidence of the efficacy, safety, and usability of the ZenBud
for treating symptoms of anxiety in humans. Overall, the study
represents one of the first clinical trials supporting the safety,
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patient tolerability, and efficacy of using LIFU to the auricular
branch of the vagus nerve for the treatment of anxiety symptoms.

Among the 28 participants, 92.9% (26/28) demonstrated
improvements in anxiety symptoms, 89.3% (25/28)
demonstrated improvements in depression symptoms, 82.1%
(23/28) demonstrated a reduction in symptoms of PTSD, and
65.5% (18/28) demonstrated improvements in sleep quality
after 4 weeks of treatment. The average score reduction on the
BAI was clinically meaningful at 14.9 points (SD 10.6, P<.001;
2-tailed dependent t test), reflecting a general movement from
severe anxiety symptoms to mild [35,36]. The average score
reduction on the BDI was clinically meaningful at 10.3 points
(SD 7.8, P<.001; 2-tailed dependent t test), which was a 42.6%
decrease in score, far greater than the 17% clinically meaningful
threshold [3]. The average score reduction on the PCL-5 was
clinically meaningful at 20.0 points (SD 20.5, P<.001; 2-tailed
dependent t test) [43]. It is also noteworthy to mention that the
PCL-5 is commonly used to determine whether an individual
meets a provisional diagnosis of PTSD and requires further
assessment to confirm the diagnosis. The cutoff score for
meeting the criteria for a provisional PTSD diagnosis is 31‐33.
Based on using a cutoff score of 32, at the start of the study 18
participants exceeded the threshold score for a provisional PTSD
diagnosis. Upon completion of the study, 14 of these participants
(77.8%) had dropped their score below the threshold score of
32 and no longer met the requirements for a provisional PTSD
diagnosis. The average score reduction on the PSQI was 2.2
(SD 3.1, P=.001; 2-tailed dependent t test) which, while
statistically significant, was not clinically meaningful, indicating
that the improvements in anxiety, depression, and PTSD
symptoms did not carry over into improved sleep quality. The
effect sizes were also large for the BAI (Cohen d=1.06), BDI
(Cohen d=0.81), and PCL-5 (Cohen d=0.94) indicating that the
observed score improvements were substantial enough to have
a meaningful impact beyond just statistical significance.

The extent of improvement in anxiety, depression, and PTSD
observed in this study is comparable with the clinically
meaningful results reported in other clinical trials featuring
noninvasive VNS as a treatment intervention. Srinivasan et al
[52] conducted a randomized controlled trial of taVNS with 60
retired schoolteachers who had been diagnosed with anxiety
during the COVID-19 pandemic. The participants did 30-minute
sessions 4 times per week (16 total sessions) and demonstrated
significantly greater reductions in Generalized Anxiety
Disorder-7 (GAD-7) scores and salivary cortisol levels compared
with control group participants. Zhang et al [53] investigated
the effect of taVNS on anxiety symptoms and neural functioning
in 30 individuals with Parkinson disease and anxiety compared
with 30 controls with no anxiety. They treated patients with
Parkinson disease with taVNS for 2 weeks and measured
progress using the HAM-A and nerve activation in the bilateral
prefrontal cortex during a verbal fluency task. After 2 weeks of
taVNS treatment, the group demonstrated a significant decrease
in HAM-A scores (P<.001) and increased activation of the left
triangle portion of the inferior frontal gyrus. Ferreira et al [54]
treated college students with chronic anxiety with a week of
taVNS. Immediately postintervention and 2 weeks
postintervention the students demonstrated substantial reductions

in pain perception, Beck Anxiety Inventory scores, and masseter
activation. Rong et al [55] treated 91 patients with mild to
moderate depression with taVNS for 30 minutes twice a day
for 12 weeks. Upon completion of treatment the average
reduction in score in the 24-item Hamilton Depression Rating
Scale (HAM-D-24) was both statistically significant and
clinically meaningful, the responder rate was 80%, and the
remission rate was 39%. In our study, we saw similar results in
only 4 weeks, making an investigation into longer treatment
periods with LIFU an important area of future research.

The results of this study are also consistent with the results of
studies investigating the use of transcranial focused ultrasound
(tfUS) targeting the amygdala for the treatment of generalized
anxiety disorders. Mahdavi et al [56] recruited 25 participants
with treatment-refractory generalized anxiety disorder and
treated them with tfUS targeting the right amygdala for 8 weekly
10-minute sessions. The results showed an average reduction
in BAI score of 12.88 (SD 10.42) points and an average
reduction in HAM-A scores of −12.64 (SD 12.51). Chou et al
[57] recruited 30 healthy individuals and compared activation
of the amygdala, hippocampus, and dorsal anterior cingulate
cortex during a fear task after treating them with active or sham
tfUS targeting the left amygdala. They found decreased
activation of the amygdala (P=.04), hippocampus (P=.05), and
dorsal anterior cingulate (P=.02) in the active tfUS group when
compared with the sham. They also found decreased
amygdala-insula (P=.03) and amygdala-hippocampal (P=.01)
resting state functional connectivity and increased
amygdala-ventromedial prefrontal cortex (P=.05) resting state
functional connectivity.

Limitations
While the results of this study are optimistic, this study was
preliminary and suffers from several limitations. This study did
not feature a control group, making it impossible to quantify
the possible impact of a placebo effect or distinguish the specific
effects of the ZenBud device from other factors that may have
influenced the results. The lack of a control group also limits
the ability to directly compare the efficacy of the ZenBud with
other interventions. Other than participant reports, there was
also no objective way of determining the exact amount of time
the device was used by each participant. While the majority of
participants were not receiving treatment during the study, there
was no control over concurrent therapeutic modalities
participants were receiving. The lack of control for these
additional therapies may have influenced the results, making it
difficult to attribute the observed effects exclusively to the
ZenBud device. Further research with larger sample sizes,
control groups, control over concurrent treatment modalities,
and physiological measurements needs to be done to validate
these findings and further negate the possibility of placebo
effects.

Conclusions
This preliminary study provided justification for further research
into the efficacy, safety, and feasibility of using LIFU to
modulate the auricular branch of the vagus nerve and reduce
the symptoms of anxiety, depression, and PTSD. Given the
wide prevalence of anxiety disorders, depression, and PTSD,
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and the shortfalls of current treatment options, this novel
treatment approach has potential to meaningfully improve

patient outcomes and continued research is warranted.
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Abstract

Background: Interest in using digital sensors to monitor patients with prior stroke for depression, a risk factor for poor outcomes,
has grown rapidly; however, little is known about behavioral phenotypes related to future mood symptoms and if patients with
and without previously diagnosed depression experience similar phenotypes.

Objective: This study aimed to assess the feasibility of using digital sensors to monitor mood in patients with prior stroke with
a prestroke depression diagnosis (DD) and controls. We examined relationships between physical activity behaviors and self-reported
depression frequency.

Methods: In the UK Biobank wearable accelerometer cohort, we retrospectively identified patients who had previously suffered
a stroke (N=1603) and conducted cross-sectional analyses with those who completed a subsequent depression survey follow-up.
Sensitivity analyses assessed a general population cohort excluding previous stroke participants and 2 incident cohorts: incident
stroke (IS) and incident cerebrovascular disease (IC).

Results: In controls, the odds of being in a higher depressed mood frequency category decreased by 23% for each minute spent
in moderate‐to‐vigorous physical activity (odds ratio 0.77, 95% CI 0.69‐0.87; P<.001). This association persisted in both
general cohorts and in the IC control cohort.

Conclusions: Although moderate‐to‐vigorous physical activity was linked with less frequent depressed mood in patients
with prior stroke without DD, this finding did not persist in DDs. Thus, accelerometer-mood monitoring may provide clinically
useful insights about future mood in patients with prior stroke without DDs. Considering the finding in the IC cohort and the lack
of findings in the IS cohorts, accelerometer-mood monitoring may also be appropriately applied to observing broader cerebrovascular
disease pathogenesis.

(JMIR Neurotech 2025;4:e56679)   doi:10.2196/56679

KEYWORDS

depression; cerebrovascular disease; remote monitoring; stroke; accelerometers; mobile phone

Introduction

Overview
Depression is an established risk factor for poor outcomes after
a stroke and transient ischemic attack (TIA), including
subsequent stroke and other cerebrovascular diseases (CeVDs)
[1,2]. Although poststroke depression (PSD) affects roughly
one-third of patients with stroke, screening for depression in
patients after a stroke is not routine, with less than 10% of
patients with stroke screened [3]. Furthermore, it remains
unclear when follow-up PSD screening should occur, as current

research suggests that not all patients will experience PSD
symptoms immediately after a stroke and, for those who do, the
majority will experience recurrent depression episodes in the
years after a stroke [4]. A reason for this gap in screening is the
shortage of neurologists, particularly those with diagnostic
training in identifying PSD [5]. Accelerated by the widespread
adoption of personal mobile devices, from computers to
smartwatches, it is critical to investigate the potential of such
devices to collect meaningful data outside of clinical settings,
aiding clinicians in identifying depressed mood in patients with
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stroke—and, potentially, those most at risk for subsequent stroke
and CeVDs [6].

Background
The prevalence of PSD remains unknown, partly due to its
heterogeneous nature, spanning unique somatic, behavioral,
cognitive, motivational, and emotional components [7]. The
severity of its manifestation ranges from mild symptoms to
clinical-grade depression, the former of which relies on
self-reported scoring methods inherently subject to bias,
especially in patients with cognitive impairment for whom
self-reported surveys may not be reliable [8]. Although
clinician-administered assessments, like the
Montgomery–Åsberg Depression Rating Survey (MADRS),
offer gold-standard assessments of symptoms, nurse and
physician shortages complicate the routine administration of
such instruments [9].

In some survivors, depression may emerge alongside the
incipient pathogenesis of cerebrovascular dysfunction, while
for others, depression may be a reaction to being conscious of
cognitive impairment or the putative manifestation of silent
cerebral infarcts [10,11]. As such, individual depression
phenotypes may vary greatly across survivors with identical
survey summary scores. Although investigations into the
associations between stroke location within the brain and
self-reported depression survey scores have yielded inconclusive
results, a recent cross-sectional study of patients with prior
stroke (n=200) found that symptoms assessed by MADRS
correlate with specific macrostructural characteristics [12].
Considering that clinician-administered assessments, like
MADRS, are more accurate than self-reported survey scores in
patients with prior stroke, the need for a modified approach to
monitoring patients with stroke for depression emerges.

In recent years, objective data from portable and wearable
sensors have demonstrated the feasibility of augmenting
self-reported mood surveys outside of clinics, a promising
approach for monitoring patients with symptomatic and
asymptomatic deteriorating brain health outside of standardized,
clinical environments [13-20]. In addition, accelerometer
measures of behavior have established a difference in PA
engagement stratified by depression severity, highlighting the
need for a thoughtful approach to PSD screening and monitoring
that ensures patients with emerging or mild depression
symptoms, unlike those with previous documented depressive
episodes, are not neglected [21].

While triaging patients with PSD for preventative intervention
could yield clinically meaningful functional recovery outcomes,
the potential of such an approach for preventing future CeVD
diagnoses remains to be seen. Numerous studies have found
that depressive symptoms are associated with an increased risk
of subsequent CeVD, from acute CeVDs, like stroke and TIA,
to more chronic conditions, like cerebral arterial stenosis and
vascular dementia [11,22-24]. Furthermore, recent research
suggests daily functioning and cognitive changes may be
observable up to 10 years before some types of CeVD [25].
Thus, particular attention should be paid to behavioral patterns
in patients with PSD to elucidate phenotypes with predictive
potential for functional outcomes and neurologic disorders.

Previous Work
Blending self-reported assessments of phenomena, like mood,
recorded through web browsers and smartphone apps, with
passive sensor data, like that from wearable accelerometers, is
gaining popularity in real-world settings [26,27]. Numerous
pilot studies have demonstrated the potential for wearable and
minimally invasive sensors to detect neurologic conditions;
however, these tools have neither been validated in population
cohorts nor combined with survey sampling of mood [28].

Early-stage evidence suggests that monitoring lifestyle behavior
and mood in PSD is feasible [29-31]. The results of a small
longitudinal study (n=40) suggest that self-reported
moderate-to-vigorous physical activity (MVPA) before stroke
is associated with improved mobility and self-care as well as
decreased discomfort after stroke [32]. While the study did not
sample mood outside of clinical environments, Reinholdsson
et al [33] used self-report surveys to expand on the above
findings, demonstrating that patients who engage in higher
levels of prestroke physical activity (PA) experienced less severe
PSD compared with patients who were physically inactive .

In addition, current literature on accelerometers in PSD suggests
that distinct behavioral patterns may identify patients with
depression within the first year after a stroke. In a 2022
prospective observational study of recently discharged patients
with minor ischemic stroke (n=76), participants wore
accelerometers in-hospital for 1 week. Analyses revealed that
only increased sedentary behavior (SB) and reduced light
physical activity (LPA) were linked with more intense
depression, assessed through a written Geriatric Depression
Scale survey, 3 months after hospitalization in this older adult
cohort [34]. In a small pilot study (n=40) of stroke survivors,
MVPA was linked with positive mood [35]. Although extensive
research has confirmed links between sleep disorders and both
depression and incident CeVD (IC), no research has observed
both depressive symptoms and objectively measured sleep after
stroke [36,37]. Furthermore, no previous accelerometer research
into PSD beyond the first year of stroke recovery has been
published.

Goal of This Study
The goal of this study is twofold: first, to investigate potential
associations between objectively measured behavior and future
depression frequency in patients with prior stroke assessed by
a remote approach and second, to explore whether that
association varies between patients with prior stroke with a
prestroke depression diagnosis (DDs) and those without
(controls).

We conducted a cross-sectional analysis with the UK Biobank
(UKBB), the most extensive lifestyle and mood cohort to date,
assessing the relationships between accelerometer-measured
sleep, SB, LPA, and MVPA and a subsequent depression
descriptor (depressed mood frequency). Given that depression
before stroke may yield behavioral phenotypes distinct from
those emergent in participants without a prestroke depression
diagnosis, we created 2 cohorts of patients with prior stroke:
those with a clinical depression diagnosis before stroke and
those without. As this analysis focuses on participants who may
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develop or have undiagnosed PSD, participants whose PSD
diagnosis was recorded were excluded. Adjusting for age, sex,
ethnicity, multiple relevant comorbidities, and time elapsed
between accelerometer monitoring and depression survey
submission, we hypothesized that increased LPA and MVPA
time would be associated with a reduction in the odds of being
in a more frequent depressed mood category while increased
SB time would be associated with a rise in the odds of being in
a more frequent depressed mood category. Considering the
established relationship between sleep and depressed mood, we
created a binary variable (yes or no) for guideline-recommended
sleep (7‐9 h/d). We hypothesized that guideline-recommended
sleep would be associated with a reduction in the odds of being
in a more frequent depressed mood category.

Methods

Recruitment
The UKBB enrolled middle-aged (40‐69 y) participants
(N=502,364) at 22 assessment centers across the United
Kingdom at a baseline assessment (2006‐2010), which
included in-person interviews, touchscreen surveys, and physical
examinations to extract lifestyle and environmental data used
in this study. Although all baseline participants (n=502,151)
were invited, only 72,652 enrolled in the 1-week accelerometer
study (2013‐2015) and completed the depression frequency
survey (2016‐2017). Hospital and other diagnostic registries
were linked to enrolled participants.

Participant Cohorts
Among participants who completed both remote monitoring
components, those with dementia (n=23) were excluded. Quality
control filtering demonstrated by Madjedi et al [38] was applied
(n=70,785), which excluded those with outlier acceleration
(>100 mg), more than 1% of readings exceeding ±8 g (clips),
accelerometer wear time less than 3 days, and missing data for
at least one 60-minute interval throughout 24-hour periods.
Only participants with a previous stroke, including ischemic
stroke, hemorrhagic stroke, and TIA (G45), were included
(n=1660). Retinal artery occlusion (H34) was included as a
stroke, as it is now considered a type of acute ischemic stroke
[39]. Participants who were diagnosed with depression after
stroke but before the accelerometer study (n=57) were excluded.

Among those meeting the inclusion criteria (n=1603),
participants were divided into two cohorts: (1) those with a
prestroke depression diagnosis at accelerometer study
commencement (n=155) and (2) controls, that is, those without
a prestroke depression diagnosis (n=1448) (Figure 1). No
participants were diagnosed with depression between the
accelerometer study and the follow-up depression survey.

Participants with a history of depression (International
Classification of Diseases, Tenth Revision [ICD-10] codes
F32-39) comprised the depression diagnosis (DDs) cohort.
Definitions (ICD-10 codes) used for inclusion and exclusion
criteria as well as diagnostic classification are available in
Multimedia Appendix 1.

Figure 1. Classification algorithm for participant cohorts.

Data Collection
Accelerometer study participants were instructed to wear the
Axivity AX3 commercial accelerometer wristwatch continuously
on their dominant arm for 1 week. The depressed mood
frequency question was administered through a link accessible

on smartphone, tablet or PC browsers as part of the standardized
Patient Health Questionnaire-2 (PHQ-2) survey: “Over the past
two weeks, how often have you felt down, depressed, or
hopeless?” Responses were ordinal scores indicating the
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frequency of depressed mood, with 1=“Not at all”; 2=“Several
days”; 3=“More than half of days”; and 4=“Nearly every day.”

Permanent covariables were obtained at baseline visit, including
sex and ethnicity. For each participant, age at the time of
accelerometer study was calculated. Time-to-assessment was
individually calculated by subtracting the accelerometer start
date from the date of submitting the depressed mood survey.
Comorbidity diagnoses before the accelerometer study were
obtained from linked patient and hospital databases.

Statistical Analysis
To compare continuous and categorical covariables, the
Mann-Whitney U test and χ² test, respectively, were used. A
cross-sectional analysis using ordinal logistic regression to
investigate the association between objective behavior predictors
and the ordinal outcome variable, depressed mood frequency
over the past 2 weeks, was conducted on data obtained at the
accelerometer study and remote follow-up survey.

For both DD and control cohorts, separate models were fitted
to evaluate whether the role of objective behavior predictors in
depressed mood frequency differed between cohorts.

Analyses were performed in R (R Foundation for Statistical
Computing), using polr from the library MASS. The effect sizes
of objective behavior predictors, adjusted for confounders, on
depressed mood frequency were plotted as odds ratios with 95%
CIs. The Likelihood Ratio Test was used to obtain all P values
and associated CIs. P<.05 was statistically significant.

Sensitivity Analysis
Three sensitivity analyses (also using ordinal logistic regression
models), each considering DDs and controls, were performed
using UKBB data. First, a general population dataset wasf
generated. This included all participants eligible for inclusion

in the accelerometer study and follow-up depression frequency
survey who did not have a previous stroke diagnosis.

Next, participants with an initial IC diagnosis (after the
depression frequency survey) were filtered into a separate
dataset. Ordinal logistic regression models were fitted to assess
the relationships between objective behavior predictors and
depressed mood frequency. Finally, participants in the IC cohort
who had an IS diagnosis were filtered into a separate dataset,
and ordinal logistic regression models were fitted to assess the
target relationship. The investigation of IC as a composite end
point reflects updated understanding of stroke as sharing
etiology with other neurologic rather than circulatory system
disorders, as defined in the most recent International
Classification of Diseases, Eleventh Revision (ICD-11) [37].

For each filtered cohort, sample characteristics were obtained
for review.

Ethical Considerations
National Health Service Research Ethics Committee
(11/NW/0382) granted ethical approval for the UKBB
population cohort study. Informed consent was obtained from
all UK Biobank participants under National Health Service
National Research Ethics Service (Ref 11/NW/0382). All UKBB
data are deidentified.

Results

Study Characteristics
For participants in the 2-stage remote monitoring study (Table
1), the DDs had a higher proportion of women compared with
controls (58.7% vs 40.7%). On average, DDs were younger (64
vs 66 y), slept slightly longer (9.2 vs 9.0 h/d), spent slightly less
time in MVPA (29.3 vs 37.3 min/d) and SB (580.1 vs 583.6
min/d), and spent slightly more time in LPA (281.4 vs 278.2
min/d).
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Table . Baseline characteristics of patients with previous stroke.

P valueControlsPrestroke depression

1448155Number of participants, n

<.00166 (6.5)64 (7)Age, mean (SD)

Gender, n (%)

<.001859 (59.3)64 (41.3)Men

Race, n (%)

.681418 (97.9)153 (98.7)White

<.0019.0 (1.8)9.2 (1.8)Sleep, mean (SD)

.27736 (50.8)71 (45.8)Sleep (7‐9 h/d), n (%)

<.001583.6 (112.8)580.1 (114.4)SBa, mean (SD)

<.001278.2 (102.4)281.4 (106.9)LPAb, mean (SD)

<.00137.3 (33.0)29.3 (31.2)MVPAc, mean (SD)

<.0011.8 (0.6)1.8 (0.7)Time-to-assessment, mean (SD)

.09130 (9.0)21 (13.5)Diabetes, n (%)

.14615 (42.5)76 (49)Hyperlipidemia, n (%)

11448 (100)155 (100)Hypertension, n (%)

.70348 (24.0)40 (25.8)Multiple strokes, n (%)

<.0019.8 (8.8)7.8 (6.4)Time since most recent stroke, mean (SD)

aSB: sedentary behavior.
bLPA: light physical activity.
cMVPA: moderate-to-vigorous physical activity.

All participants had a hypertension diagnosis. The average time
between accelerometer study start and depressed mood survey
submission (time-to-assessment) was 1.8 years for both cohorts.

The average time from the initial stroke to the accelerometer
study commencement was less for DDs than controls (7.8 vs
9.8 y).

Among DDs, 9 participants slept less than 7 hours while 75
slept more than 9 hours. In the control group, 79 participants
slept less than 7 hours while 633 slept more than 9 hours.

Cross-Sectional Analysis
No significant association persisted in both the DD and control
cohorts (Table 2). In controls, for each minute spent in MVPA
per day, the odds of being in a higher depressed mood frequency
category decreased by 23% (P<.001).

Table . Ordinal logistic regression assessing objective behavior predictors and depressed mood frequency.

ControlsPrestroke depressionPrevious stroke participants

P valueOR (95% CI)P valueORa (95% CI)

.410.88 (0.66‐1.19).060.49 (0.23‐1.03)Sleep (7‐9 hr/d)

.631.00 (1.00‐1.00).101.00 (1.00‐1.01)SBb (min/d)

.351.00 (1.00‐1.00).201.00 (0.99‐1.00)LPAc (min/d)

<.0010.77 (0.69‐0.87).330.86 (0.64‐1.17)MVPAd (min/d)

aOR: odds ratio.
bSB: sedentary behavior.
cLPA: light physical activity.
dMVPA: moderate-to-vigorous physical activity.

Models were adjusted for age, sex, ethnicity, time-to-assessment,
hyperlipidemia diagnosis, and diabetes diagnosis. Odds ratios
(ORs) with 95% CIs for frequency of depressed mood are

reported (Figure 2). ORs above 1 correspond to an increase in
the accelerometer-measured behavior associated with increased
depressed mood frequency.
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Figure 2. Forest plot of odds ratios for depressed mood frequency by accelerometer-measured behavior comparing participants with prestroke depression
diagnosis (DDs) and control cohorts. LPA: light physical activity; MVPA: moderate-to-vigorous physical activity. *** denotes statistical significance.

Sensitivity Analysis

Study Characteristics
In each filtered cohort (Multimedia Appendix 2), DDs were
younger than controls (general cohort: 60 vs 62 y; IS: 64 vs 66
y; IC: 65 vs 67 y) and had a greater proportion of females
(69.4% vs 56.8%; 60.0% vs 45.6%; 61.8% vs 45.1%). In the
general population cohort, DDs had a greater proportion of
White participants (97.7% vs 97%). On average, DDs also spent
less time across cohorts in MVPA (35.0 vs 42.9 min/d; 31.0 vs
39.5 min/d; 32.0 vs 38.4 min/d), less time in LPA (295.0 vs
300.3 min/d; 286.7 vs 291.0 min/d; 287.5 vs 287.7 min/d), and
more time asleep (9.1 vs 8.9 h/d; 9.1 vs 9.0 h/d; 9.04 vs 8.98
h/d).

While DDs in the general cohort spent slightly less time, on
average, in SB than controls (564.3 vs 564.4 min/d), DDs in
the IS and IC cohorts spent more time sedentary on average
(577.1 vs 569.9 min/d; 578.2 vs 575.3 min/d).

In the general cohort, DDs had a higher proportion of diabetes
(4.4% vs 2.9%) and hyperlipidemia (17.9% vs 14.9%) diagnoses
and a lower proportion of participants with optimal sleep
duration per day (49.5% vs 55.4%).

For the IS cohort, the average time from the completion of the
depression survey to first stroke diagnosis was slightly more
for DDs (1.9, SD 0.7 y) than controls (1.8, SD 0.6 y). In the IC
cohort, the average time from the completion of the depression
survey to first CeVD diagnosis was similarly more for DDs
(1.9, SD 0.7 y) than controls (1.8, SD 0.7 y).

Cross-Sectional Analysis
In the general model (Multimedia Appendix 3), for each minute
spent in MVPA, the odds of being in a higher depressed mood
frequency category decreased by 18.4% (P<.001) and 13.5%

(P<.001) for DDs (n=6096) and controls (n=62,589),
respectively.

Also in the general model, specific only to controls, getting
guideline-recommended sleep hours (7‐9 h) each day was
associated with a decreased odds of being in a higher depressed
mood frequency category (5.3%; P=.02).

No significant associations were identified for those in the
IS-only cohort (Multimedia Appendix 4).

For the final sensitivity analysis (Multimedia Appendix 5),
assessing only those participants with an IC diagnosis, including
stroke, the odds of being in a higher depressed mood frequency
category decreased by 12.2% for each minute increase in MVPA
(P=.03), only in controls (n=1526).

Discussion

Principal Findings
This investigation partially supports the hypothesis that objective
behavior predictors would be associated with future depressed
mood frequency. Although we found no significant associations
between depressed mood frequency and SB, LPA or sleep for
patients with prior stroke, regardless of prestroke depression
diagnosis, we did find that the odds of being in a higher
depressed mood frequency category decreased for each minute
spent in MVPA; however, this association was only observed
in participants without a prestroke depression diagnosis. This
finding supports the exploratory aim of this manuscript,
suggesting that participants with prestroke depression may
experience different behavioral patterns compared to those
without a prestroke depression diagnosis. Such a finding can
potentially help clinicians tailor programs monitoring patients
at risk of PSD.

The sensitivity analysis in the general cohort corroborates
established findings that MVPA confers a protective effect on
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mood, regardless of previous depression diagnosis. The lack of
findings for the sensitivity analysis including only IS cases may
be driven by the small sample sizes; however, the lack of
findings also brings into question the potential for
accelerometers to capture clinically actionable aberrations in
patients before a stroke. Given that the protective effect of
MVPA on depressed mood frequency was observed in the
control cohort of patients with IC, accelerometer monitoring
may be more appropriately directed to assess a broader range
of neurologic changes, not just those linked with strokes.

Overall, the results suggest that accelerometer-based monitoring
of behavior linked to depressed mood frequency may help
clinicians identify patients who would benefit from
resource-intensive screening, like the MADRS assessment. The
sensitivity analyses support a separate approach for monitoring
patients with a previous depression diagnosis, or more severe
depression, compared to those with no documented depression
or mild undiagnosed depression. When applied to predictive
monitoring, a remote accelerometer-mood survey approach may
be useful in cohorts of patients without a previous depression
diagnosis, considering that patients with IC without clinical
depression may experience observable behavior and mood
changes before a CeVD diagnosis while their clinically
depressed counterparts may not.

Limitations
A chief limitation of this study is that self-report data, like the
depressed mood frequency survey, are subject to inaccuracies.
Self-reported bias in survey responses may lead to
misclassification of depressive symptom frequency and could
influence different time-dependent results in our cohorts.
Furthermore, the frequency of depression measures was not
obtained by a clinician-graded protocol but, rather, by a survey
questionnaire. Also, as the accelerometer study was only
administered for one week and, on average, over a year before
the follow-up mood survey, the impact of time between the
objective measures and follow-up could have introduced
substantial changes. The lack of associations observed for DDs
may be due to the small sample size of participants with a
previous depression diagnosis across cohorts. Moreover, the
accelerometer study was only 1-week long and, therefore, may
not generalize well to accurately represent busier or less busy
weeks for patients. Accelerometer data collected on weekends
versus weekdays may be distinct; however, this was not
considered in this study.

The dichotomous investigation of clinically depressed and
control patients are study strengths. In addition, UKBB
participants were primarily White, limiting the generalizability
of our findings outside of European populations. This UKBB
study also primarily included participants aged 60 years and
older and, as such, may not generalize well to young or
middle-age adult populations. The majority of DDs were female
across cohorts, a frequent finding in studies; however, male
patients are less likely to seek out mental health resources, and
the cohort stratification may be impacted by this.

Also, in the main analysis of previous stroke patients,
participants diagnosed with clinical-grade depression after first
stroke were excluded from this analysis. Considering the long

gap in time from initial stroke to accelerometer study
commencement, participants with a more immediate PSD
diagnosis may either exhibit more intense symptoms or
experience an underlying pathogenesis distinct from participants
whose PSD symptoms are mild or emerge in the years after
stroke.

Combining stroke types together as a single end point, as was
done in the main analysis as well as the IS sensitivity analysis,
may not consider unique characteristics of each stroke type and,
as such, generated no significant results. Sleep was also assessed
as a daily composite value, without consideration for time spent
in a nap or broken sleep throughout the day. Together, these 2
limitations may have introduced confounding effects when
considering sleep and depressed mood frequency, as previous
research has shown short and long sleep to be associated with
increased risk of intracerebral hemorrhage and ischemic stroke,
respectively [40]. Furthermore, considering that all participants
in our cohorts were hypertensive, MVPA’s protective effect on
depressive mood frequency may occur through improved
cardiovascular health, rather than by conferring direct cerebral
effects.

Comparison With Previous Work
No previous study assessed objective behavior measures and
self-reported depressed mood frequency in patients with prior
stroke years after their initial diagnosis. A key problem inherent
in accelerometer research is that adherence to study designs is
less-than-satisfactory for most studies [41]. This study also
excluded participants with a more immediate PSD diagnosis,
considering only those with prestroke depression diagnoses or
those with no or mild depression after stroke. A self-report
survey study of recent patients with prior stroke found that
patients with high levels of PA before a stroke experienced less
severe PSD [33]. Although our study could not confirm this
analysis due to the design of the UKBB study, we extended
those results by confirming that MVPA confers a protective
effect on mood before a CeVD diagnosis in patients without a
previous depression diagnosis, but not before a stroke-only
diagnosis.

One plausible explanation for the lack of association between
MVPA and depressed mood frequency in DDs may be that
stroke survivors with a previous depression diagnosis have
persistently deficient levels of brain-derived neurotropic factor
(BDNF), a trophic factor released after exercise that is linked
with improved mood benefits. It is well established that stroke
patients in general have lower levels of BDNF, a marker of poor
functional recovery [42]. The lack of a link between improved
mood and MVPA in DDs may be driven by a less intense
“exercise high” due to reduced or impaired BDNF function. In
addition, other contributing factors, such as time spent in MVPA
or neuroinflammation, may play a role in modulating BDNF
expression in DDs. Of note, the lack of a significant association
between MVPA and depressed mood frequency in participants
with a previous depression diagnosis may be attributed to less
time spent in MVPA compared with controls across all cohorts
(patients with prior stroke, general population, IS, and IC). Time
spent in MVPA may need to exceed a time threshold in
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participants with previous depression diagnoses to improve
mood.

The significant findings for IC cases, compared with the lack
of findings for IS-only cases, are consistent with the updated
ICD-11 classification of CeVDs as a type of brain disease with
shared etiology, rather than circulatory system disorders [37].
The protective effect of guideline-recommendation sleep (7‐9
h/d) only observable in controls in the general cohort
corroborates established work; however, the lack of associations
across other cohorts may be explained by high levels of
individual variability in sleep patterns, that is, nighttime
disturbances, insomnia, and so on, previously identified in
patients with depression as well as those at high risk of stroke
[43,44].

A small pilot study of patients with minor ischemic stroke that
found SB was positively associated with depression intensity
and LPA was inversely associated with depression intensity
[34]. Considering that this accelerometer study was conducted
within the first 3 months after hospital discharge, our results
extend these findings to look at mood in the years after a stroke.
For instance, SB and LPA may be significant to monitor in the
months after a stroke, while MVPA may be appropriate to
monitor in the years after a stroke. Alternatively, MVPA may
be less useful to monitor in minor ischemic stroke cases.

Using a larger dataset, our study builds on the feasibility
demonstration of a small real-world study with patients with
prior stroke, years after diagnosis, collecting one week of
accelerometer data and ecological momentary assessments [45].
The results of our general cohort analysis considering
participants without a previous depression diagnosis align with
those from Sarris et al [46], who found that self-reported optimal
sleep and PA were linked with decreased frequency of depressed
mood in UKBB participants.

Conclusions
Our results highlight the importance of encouraging MVPA in
patients with prior stroke without a depression diagnosis.
Patients with prior strokes may be able to minimize short- and
long-term disability and improve outcomes by proactively
managing depressive symptoms. Applying MVPA to improve
mood provides the added benefits of exercise-induced
inflammation reduction and enhanced vascular elasticity while
simultaneously reducing the risk of developing comorbidities
and arterial stenosis or occlusion [47].

Considering that the only significant associations in the main
analysis and incident sensitivity analyses were those that
involved MVPA, it calls into question whether using
accelerometer and depressed mood frequency survey data
together can help clinicians identify patients who would benefit
from remote monitoring, that is, this approach may generate
more noise than signal over time. This study only considered a
brief (1-week) accelerometer study, and over a year, on average,
eclipsed between the in situ accelerometer study and the remote
mood follow-up survey. Since neither the main analysis
(previous stroke cohort) nor the incident sensitivity analyses
resulted in significant associations for participants with a
previous depression diagnosis, this underscores the need for
additional research to determine whether this type of monitoring
strategy can generate clinically actionable insights in participants
with a previous depression diagnosis. Behavioral monitoring
with accelerometer data and self-report surveys may not be
helpful in patients with severe, or clinical-grade, depression.
Future research should consider large sample sizes, longitudinal
study designs, and analyze results stratified by time-to-diagnosis.
Relevant to remote monitoring researchers, our findings
highlight behavioral differences for those developing exploratory
programs and clinically meaningful digital endpoints.

Overall, the cross-sectional analyses offer a robust perspective
into the appropriateness of depression monitoring by digital
sensors, using accelerometer wristwatches and smartphone,
tablet, or PC-linked sensors. These insights offer clinical teams
a strategy for translating digital health data, in this case,
objective and subjective behavior measures, into scientifically
valid frameworks for investigation. Future monitoring of patients
at risk of different CeVD types, including those with a previous
stroke diagnosis, should expand on our strategy and use both
active and passive data to investigate relationships between
objective digital sensor data and subsequent mood reports in
patients diagnosed with and screened for depression. Based on
our exploratory analysis, the potential for longitudinal data from
objective sensors to predict mood appears feasible. In addition,
PSD researchers should aim to characterize behavior measures
linked with depressed mood across defined and clinically
meaningful time periods, such as in the 3-month routine
monitoring period after a stroke or TIA, considering that
observable behaviors may evolve as CeVD or other neurologic
disorder pathogenesis progresses.
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