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Abstract

Background: The emergence of generative artificial intelligence (GenAI) presents unprecedented opportunities to redefine
conceptions of personhood and cognitive disability, potentially enhancing the inclusion and participation of individuals with
cognitive disabilities in society.

Objective: We aim to explore the transformative potential of GenAI in reshaping perceptions of cognitive disability, dismantling
societal barriers, and promoting social participation for individuals with cognitive disabilities.

Methods: This study is a critical review of current literature in disability studies, artificial intelligence (AI) ethics, and computer
science, integrating insights from disability theories and the philosophy of technology. The analysis focused on 2 key aspects:
GenAI as a social mirror reflecting societal values and biases, and GenAI as a cognitive partner for individuals with cognitive
disabilities.

Results: This paper proposes a theoretical framework for understanding the impact of GenAI on perceptions of cognitive
disability. It introduces the concepts of GenAI as a “social mirror” that reflects and potentially amplifies societal biases and as a
“cognitive copilot” providing personalized assistance in daily tasks, social interactions, and environmental navigation. This paper
also presents a novel protocol for developing AI systems tailored to the needs of individuals with cognitive disabilities, emphasizing
user involvement, ethical considerations, and the need to address both the opportunities and challenges posed by GenAI.

Conclusions: Although GenAI has great potential for promoting the inclusion and empowerment of individuals with cognitive
disabilities, realizing this potential requires a change in societal attitudes and development practices. This paper calls for
interdisciplinary collaboration and close partnership with the disability community in the development and implementation of
GenAI technologies. Realizing the potential of GenAI for promoting the inclusion and empowerment of individuals with cognitive
disabilities requires a multifaceted approach. This involves a shift in societal attitudes, inclusive AI development practices that
prioritize the needs and perspectives of the disability community, and ongoing interdisciplinary collaboration. This paper emphasizes
the importance of proceeding with caution, recognizing the ethical complexities and potential risks alongside the transformative
possibilities of GenAI technology.

(JMIR Neurotech 2025;4:e64182)   doi:10.2196/64182
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Introduction

In the era of generative artificial intelligence (GenAI), traditional
notions of personhood and normality are being challenged [1-4].
Technological advances are blurring the boundaries between
human and machine capabilities, offering an opportunity to
expand the limits of social inclusion and promote change in
attitudes toward people with disabilities [1]. As artificial
intelligence (AI) systems demonstrate increasingly sophisticated
cognitive abilities, they prompt us to reconsider what qualities
define personhood and human intelligence. This paper examines
the potential of GenAI to disrupt limiting conceptions of
morality and humanity, focusing on the implications of GenAI
for the social status of people with cognitive disabilities. This
paper also proposes a practical toolkit for GenAI development
and engineering professionals—product managers, data
scientists, and developers—to help incorporate these insights
into their work.

Cognitive disability refers to a wide range of impairments
affecting cognitive functions such as learning, problem-solving,
judgment, communication, and social interaction [5]. Examples
of cognitive disabilities include intellectual disability,
attention-deficit/hyperactivity disorder, autism spectrum
disorders, specific learning disabilities (such as dyslexia), and
brain injuries (such as traumatic brain injury or stroke) [5-7].
It is important to emphasize the variety of individuals with
cognitive disabilities, each one possessing a unique combination
of strengths, impairments, and potential, which means that
cognitive disabilities require personalized approaches to
intervention. While recognizing the diverse nature of cognitive
disabilities and the need for tailored solutions, this paper focuses
on the general potential of GenAI to improve the lives of people
across the spectrum of cognitive disabilities.

Engaging with the integration of GenAI and individuals with
cognitive disabilities is a new direction in the use of technology
in the field of disability. The potential for AI to support and
empower this population lies in its ability to perform cognitive
tasks such as reasoning, planning, decision-making, and
communication—areas that are challenging for people with
cognitive disabilities [8-10]. The ability of AI to remove barriers
and open new paths for inclusive and equitable participation
makes it especially relevant for this population [11]. An in-depth
analysis of this ability requires examining the philosophical and
ethical implications of AI for conceptions of humanity and
morality, questions that directly determine how society views
and accommodates individuals with cognitive disabilities. These
are fundamental inquiries into the nature of intelligence,
personhood, consciousness, and human agency, which largely
determine the degree of participation and inclusion for this
group.

Personhood and AI: An Opportunity for
Paradigm Shift

The concept of personhood, which emerged as a central topic
in bioethical debates surrounding topics such as abortion, stem
cell research, and euthanasia, has evolved into a complex and

multifaceted construct that now spans multiple disciplines [12].
Inherently normative in nature, personhood involves value
judgments and ethical considerations regarding how we ought
to treat and perceive others rather than merely describing
observable facts. Personhood is not rooted exclusively in our
biology and experiences but in our essence and identity. This
identity, however, is not formed in isolation; it is dynamically
shaped in an intricate interaction between self-perception and
the perception of others and interaction with them. Rosfort [13]
argued that this conceptualization of personhood reveals its
profoundly relational and social nature, demonstrating how
identity and perception of self-worth are inextricably woven
into interactions and the broader human context.

The concept of “personhood” has long served as a central
criterion in bioethical discussions, determining which entities
deserve moral consideration and rights [3]. As a result, this
notion has also functioned as a mechanism of exclusion, denying
basic rights and opportunities to those deemed cognitively
“abnormal” [14].

For example, historically, people with cognitive disabilities
were excluded from the public sphere and denied the right to
make decisions for themselves [15,16]. Even today, despite
significant progress in discourse and work based on the “social
model” (an approach that views disability as created by societal
barriers rather than by individual impairments alone) [17] and
the “minority group model” (which recognizes people with
disabilities as a marginalized minority group) [18], exclusion
still exists in various aspects of life. People with cognitive
disabilities still face barriers to accessing higher education and
vocational training because of preconceived notions about their
abilities [19]. Despite relevant skills, they have difficulties
securing meaningful employment and career advancement
opportunities because of social stigma and prejudice [20].
Participation in political or civic decision-making processes,
such as voting or community involvement, is limited by
discriminatory perceptions of the competence of individuals
with cognitive disabilities [21]. They are also excluded from
leisure, social, and cultural activities because of a lack of access
or restrictive attitudes toward their participation [22].

These exclusion examples illustrate how, as a result of
conceptualizing what constitutes a person of merit, individuals
with cognitive disabilities are often excluded in the deepest and
broadest ways from society. This mechanism is difficult to
identify because it operates through our language and the most
basic organized mechanisms of any society: law, health care
system, education system, and more [23].

Breaking entrenched concepts and perceptions of personhood
is challenging because they are deeply embedded in societal
structures and norms, but emerging technologies are beginning
to challenge these long held beliefs. GenAI offers an opportunity
to challenge the definition of personhood perceptions by
demonstrating skills previously considered unique to humans
[1,4]. Although these capabilities are not yet perfect in AI, their
very existence challenges the idea that such traits belong
exclusively to the “normal” cognitive function of humans and
that social participation is conditional on the presence of these
abilities.
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The revolutionary potential of GenAI invites us to reexamine
the criteria for membership in the moral community and expand
them beyond limiting standards. Instead of relying on a narrow
model of “correct” cognitive abilities as a prerequisite for rights
and participation in society [14], we may adopt, with the
assistance of GenAI, a more inclusive view that recognizes
human diversity and the inherent value of all individuals,
regardless of their abilities [24]. By showcasing the potential
of machines to exhibit complex cognitive traits, GenAI
challenges the notion that certain abilities are essential for
personhood and moral status. It initiates a discourse on the need
to redefine our understanding of what it means to be human and
to have moral worth, moving away from a focus on cognitive
benchmarks and toward a more encompassing vision of human
dignity and rights [1,4].

Although AI presents opportunities to challenge our
understanding of personhood, there are legitimate concerns
about its potential to exacerbate exclusion and narrow definitions
of “normal” human cognition. The inherent biases in AI systems,
stemming from their training data and algorithmic design
[25-28], risk reinforcing and amplifying existing societal
prejudices [29]. As AI increasingly influences decision-making
processes in areas such as employment, health care, and criminal
justice, there is a danger that it could lead to more stringent and
narrow criteria for what constitutes “normal” human functioning.
This could inadvertently heighten barriers for individuals with
cognitive differences, further marginalizing them from full
societal participation [30]. Moreover, as AI systems become
more sophisticated in mimicking certain human cognitive
abilities, there is a risk that societal expectations of human
performance might be unrealistically elevated, potentially
creating an even more exclusionary standard of “normal” [31].
Thus, while AI challenges our notions of personhood, it
simultaneously risks entrenching and exacerbating existing
forms of exclusion, highlighting the critical need for ethical AI
development and deployment considering diverse human
experiences and capabilities. In the following sections, we will
explore 2 key areas where GenAI has the potential to drive
significant change: GenAI as a social mirror and GenAI as a
cognitive partner. These 2 domains highlight the multifaceted
impact that GenAI can have on reshaping perceptions, removing
barriers, and promoting participation of individuals with
cognitive disabilities on the one hand, and exacerbating existing
biases and exclusions in society on the other.

Generative AI as a Social Mirror:
Opportunity and Challenge

Overview
Vallor’s [32] conceptualization of AI as a societal mirror
provides a compelling framework for understanding the role of
AI in reflecting and potentially amplifying societal biases,
particularly concerning cognitive disabilities. This mirror
metaphor can be understood as follows: just as a physical mirror
reflects the image of what stands before it, AI systems reflect
the data, values, and biases present in the society that created
them. However, unlike a simple reflection, AI systems can

amplify and distort these reflections, much as a funhouse mirror
might exaggerate certain features.

This mirror effect illuminates how AI systems, trained on biased
data, risk perpetuating existing prejudices against individuals
with cognitive differences. AI essentially learns from and then
projects back the biases inherent in its training data, potentially
reinforcing and spreading these biases further. Paradoxically,
this same reflective quality presents a unique opportunity to
identify and address longstanding societal biases, rendering
implicit prejudices explicit and subject to scrutiny. By closely
examining what the AI “reflects back” to us, we can gain
insights into biases that might otherwise remain hidden or
unacknowledged in society.

Vallor [32] posits that AI systems in general, and GenAI systems
in particular, are not merely neutral technological tools but
mirrors reflecting the values, norms, and biases prevalent in
human society. Given that these systems are constructed upon
data and content created by humans, they inherently risk
replicating and perpetuating prejudices and discrimination
against marginalized groups, including people with cognitive
disabilities [27,33].

A study by Gadiraju et al [34] demonstrated this mirroring effect
in action. They conducted 19 focus groups with 56 participants
with various disabilities who interacted with a dialog model
based on a large language model. The researchers found that
the model frequently perpetuated harmful stereotypes and
narratives about disability. For example, the model often fixated
on physical disabilities, particularly wheelchairs, while
neglecting other types of disabilities. It also tended to portray
people with disabilities as passive, sad, and lonely, reinforcing
the misconception that disability is inherently negative.
Additionally, the model sometimes produced what participants
referred to as “inspiration porn,” objectifying people with
disabilities as sources of inspiration for nondisabled people.

For example, if the information used to train AI systems contains
stereotypical or derogatory expressions toward people with
cognitive disabilities, there is a significant risk that these systems
might “learn” to adopt discriminatory attitudes. The potential
consequences are severe: AI systems could rank individuals
with cognitive disabilities as having lower potential in
employment or educational contexts, limit their access to certain
services, or make biased decisions about them in critical areas
such as insurance or credit [35].

When we look into the societal mirror reflected by AI, several
possible human responses can be identified. One metaphorical
response is “breaking the mirror,” representing human resistance
to AI use and the insights it presents [36]. While this approach
attempts to avoid the uncomfortable truths AI exposes, it risks
missing out on the potential benefits and insights AI can offer.
Another metaphorical strategy is “cleaning the mirror,” where
humans attempt to eliminate biases through AI alignment
processes [37]. This approach aims to create AI systems aligned
with human values and intentions, striving for a bias-free
environment. However, it risks producing an artificially sterile
system that fails to reflect the complexities of human cognition
and interaction, potentially making AI less relevant and less
capable of addressing real-world complexities.
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The third and most promising approach involves using reflection
as a call to action in the real world. This method requires humans
to acknowledge the biases reflected by AI and use this awareness
as a catalyst for societal change. It demands active engagement
and concrete actions from us as humans to address these issues,
both in our AI systems and in society at large [38]. This
approach recognizes that if such action is taken, over time, the
reflection in the AI mirror itself can change, not as a result of
erasing biases in the machine as in the second option, but as a
consequence of real societal change that is then differently
reflected in the AI mirror.

To implement this approach specifically within the realm of AI
development and deployment, we must adopt advanced
techniques and ensure inclusive human involvement. As
contemporary AI systems increasingly incorporate vast datasets
populated from the internet, traditional methods of addressing
biases through direct data manipulation, such as the “datasheets”
approach proposed by Gebru et al [39], while still valuable in
certain contexts, have become more challenging to implement
comprehensively. This shift has led to the adoption of
complementary techniques that can handle the scale and
complexity of modern AI systems such as self-supervised
learning [40] and reward modeling [41]. Crucially, these
techniques still require human decision-making at key junctures.

To truly address biases and create more equitable AI systems,
particularly regarding cognitive disabilities, we must ensure
that people with cognitive disabilities are actively involved in
these decision-making processes. This collaborative approach
aligns with our third strategy, emphasizing real-world action
and societal change. By critically examining the biases revealed
in AI outputs and involving diverse perspectives in the
development process, we can work toward creating more
inclusive AI systems. This approach not only helps in
developing fairer algorithms and more representative models
but also contributes to broader societal change [1,4]. In this
way, the AI mirror becomes not just a reflection of our current
culture, but a catalyst for the more inclusive society we aspire
to create [16,42].

In conclusion, as illustrated in Figure 1, GenAI has the potential
to promote social justice and shift perceptions regarding
cognitive disabilities. To harness this potential, collaborative
work and ongoing effort are required to embed values of
accessibility, inclusion, and respect for diversity at the core of
technological development. These steps can transform the
“reflection in the mirror” into a positive and inclusive image
for people with cognitive disabilities, potentially leading to
broader societal changes in perception and inclusion.

Figure 1. GenAI as a social mirror: collaborative development for societal change. AI: artificial intelligence; GenAI: generative artificial intelligence.

While this mirror metaphor provides valuable insights, it is
important to recognize its limitations. Vallor’s conceptualization,
though powerful, doesn’t fully capture the multifaceted potential
of AI, particularly for people with disabilities. It overlooks its
capability to actively solve previously intractable problems and
enhance accessibility. To provide a more comprehensive
understanding, we must expand our view beyond the perception
of AI as a mere reflective tool. In the following section, we
propose considering AI not only as a mirror but also as a
cognitive partner for people with disabilities, emphasizing its
potential to actively support and empower individuals with
cognitive differences in navigating the world.

Generative AI as a Cognitive Partner for People With
Disabilities
Beyond Vallor’s mirror metaphor for AI and its contingent
inference on social change for people with cognitive disabilities,
a significant potential of GenAI lies in its ability to serve as a
“cognitive partner,” empowering participation of these people
in life domains that were previously blocked or limited for them
[43-45]. This partnership can be metaphorically described as a
“cognitive copilot” (an AI assistant for complex cognitive tasks),
assisting and empowering the individual with tasks requiring
complex cognitive functions. For example, GenAI can help a

person with cognitive disabilities manage daily tasks such as
scheduling, budgeting, or navigating urban spaces by providing
personalized reminders, recommendations, and guidance [46,47].
Additionally, it can serve as an advisor in complex social
situations, such as interpreting body language [48], suggesting
appropriate responses to expressions of anger or mockery from
others, or assisting in decision-making [1,49]. In this way,
GenAI may act as a kind of “social copilot,” providing real-time
support and feedback, allowing persons with cognitive disability
to expand their circle of social interactions, inclusion, and
activities.

One of the outstanding strengths of GenAI is its ability to
function as a translator and mediator between languages,
concepts, and realities. For people with cognitive disabilities,
translation and mediation pose a central challenge in daily life,
both in understanding the environment and in expressing
themselves in a way others can understand [50]. With its natural
learning and processing capabilities, GenAI can bridge these
gaps and make information and communication more accessible.

The application of GenAI as a cognitive copilot can focus on 3
main areas (Figure 2):
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1. Translating and making the inner world of people with
cognitive disability accessible to themselves: GenAI can
help people with cognitive disabilities better understand
themselves, their thoughts, emotions, and needs. This is
achieved by providing explanations and conceptualizations
in clear and accessible language, identifying and interpreting
emotional states, and suggesting strategies for coping with
challenges [50]. GenAI can serve as an “internal translator”
that through a process of assistive conceptual scaffolding
and cognitive structuring [51] assists individuals in accurate
self-understanding and self-expression.

2. Bidirectional translation and mediation in interpersonal
communication: By analyzing interpersonal and social
information, GenAI can mediate interactions with other
people, making it possible to negotiate the complexities
inherent in human communication more successfully. The
unique contribution of GenAI in this area lies in its ability
to bridge the communication gap in both directions, helping
the person with cognitive disability understand the social
environment, the intentions of others, and the implicit
messages in discourse, and making the person’s wants,

needs, and emotions more accessible to the social
environment [1]. For example, on one hand, GenAI can
offer interpretations of social cues and recommend
appropriate responses, and on the other assist individuals
in articulating their thoughts more clearly and presenting
their unique perspectives. The technology can serve as a
“two-way social translator,” enabling people with disability
and their environment to better understand each other and
promote respectful and equitable communication.

3. Making the physical environment and public spaces
accessible: GenAI can act as an “environmental translator,”
converting complex information about the world into a clear
and disability-friendly format. This can include, for
example, simplifying official texts, graphically converting
numeric data, or creating interactive guides for navigating
public spaces [52]. Thus, GenAI models that are open to
the public can “see” and “understand” photos and videos
and describe their content [1], so that people with cognitive
disabilities may gain greater access and independence in
managing their lives.

Figure 2. Three main areas of GenAI application as a cognitive partner. GenAI: generative artificial intelligence.

The goal is not to “normalize” individuals with cognitive
disabilities or to erase their disability. The cognitive partner
metaphor, similar to Vallor’s mirror metaphor, can show how
the use of AI might exacerbate exclusionary attitudes and further
marginalize individuals with disabilities. Therefore, using AI
for social change in our attitude toward people with cognitive
disabilities means that the aim of this technology should be to
enable access to environments and spaces that were previously
closed or socially inaccessible to them, while also facilitating
the accessibility of these environments to the individuals
themselves. The approach should be person-centered, respecting
diversity, and tailored to the unique aspirations and needs of
everyone, rather than imposing a uniform standard of “proper”
functioning.

Serious consideration must be given to the ethical implications
of such a close integration between humans and machines,
particularly in the areas of autonomy and responsibility.
Questions of privacy, data security, and people’s ownership of
decisions made by AI systems need to be thoroughly examined
[52,53]. Robust oversight and regulatory mechanisms must be
in place to ensure the responsible and ethical use of AI,
safeguarding the rights and well-being of users. This is

especially critical when working with vulnerable populations
such as people with cognitive disabilities, where protecting
individual autonomy is important [27,33].

In conclusion, although AI-based “cognitive copilot”
applications for people with cognitive disabilities have the
potential to remove barriers, increase participation, and promote
equal opportunities across various domains of life, it is essential
to proceed with caution. This technology must function as a
“translator” to contribute to a more inclusive and equitable
society, and we must remain vigilant to its risks. Ensuring that
AI development is person-centered, ethically sound, and
involves active participation from the disability community is
crucial for harnessing its benefits without worsening existing
biases and systemic barriers.

Implication for AI Developers and Technologists
GenAI has immense potential to promote inclusion and equality
for people with cognitive disabilities but to realize this potential
requires a perceptual shift on the part of developers, engineers,
researchers, and product managers. Instead of focusing narrowly
on “fixing” certain impairments, they must adopt a more holistic
approach that views technology as a lever for social integration
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and broad improvement in quality of life [54-56]. This involves
a transition from regarding GenAI as a mere technical solution
to perceiving it as a tool for effecting social change for the
population with cognitive disabilities.

In practice, close and ongoing collaboration with people with
cognitive disabilities throughout all stages of development is
important [57]. Development teams must learn from the unique
experiences and needs of individuals with cognitive disability
and meaningfully integrate them into the design and construction
of GenAI systems and prompts.

Recent research has demonstrated the feasibility and importance
of this approach. For example, Newbutt et al [58] conducted a
systematic review of studies involving autistic individuals in
the design of extended reality technologies. They found that
out of 20 studies published between 2002‐2022, several
successfully engaged autistic individuals as active co-designers
and cocreators, allowing them to shape the final products
according to their needs and preferences. This highlights the
growing trend and importance of including the target users in
the design process.

This requires a joint definition of goals, adapting user interfaces
and user experience to their modes of thinking and
communication, and clearly formulating principles of cognitive
accessibility from the earliest planning stages [59]. The
aspiration is for the empowerment and inclusion of people with
cognitive disabilities to be embedded in the core of the
technology and in the layer of its use.

Bircanin et al [60] presented a practical approach to including
adults with severe intellectual disabilities in co-design through
active support. They demonstrated how principles such as “every
moment has potential,” “graded assistance,” “little and often,”
and “maximizing choice and control” can be applied in design
contexts to ensure meaningful participation of individuals with
severe cognitive disabilities. This approach provides concrete
strategies for AI developers to engage with this population
during the development process.

For example, it is important to examine how the prompt-based
user interface can be made accessible and adapted to the
cognitive and communication characteristics of people with
different types of cognitive disabilities. Consideration should
be given to whether the development of dedicated products is
the right direction or whether personal adaptation at the level
of the individual user is preferable [61]. Answering such
questions requires ongoing discourse and feedback from the
community itself.

Dirks [57] explored the ethical challenges in inclusive software
development projects with people with cognitive disabilities.
The study emphasized the importance of maximizing choice
and control for participants, using a graded assistance approach,
and ensuring every moment has potential for meaningful
engagement. These principles can guide AI developers in
creating more inclusive design processes.

To assist developers and researchers in implementing the
principles presented in this paper, we propose a working
protocol specifically tailored to the development challenges of
GenAI technologies aimed at people with cognitive disabilities.
The protocol (Table 1) is based on the model developed by
Amershi et al [62], which was formulated following
comprehensive research, including a review of academic and
industry literature, interviews with experts, and an examination
of a wide range of AI-based products. The original model
defines 18 general guidelines for designing human-AI
interactions across different time frames and stages of
interaction. In practice, these guidelines serve as a framework
for developing human-centered AI systems, focusing on aspects
such as transparency, fairness, reliability, safety, privacy,
security, and accountability. Developers and designers use these
guidelines to enhance human-AI interaction by implementing
practices such as explaining AI decisions to users, designing
interfaces that enable user control and feedback, and
incorporating mechanisms to identify and mitigate biases [63].
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Table . Protocol for designing artifical intelligence (AI) interactions for people with cognitive disabilities.a

Implementation examplesGuidelines for AI interaction with
people with cognitive disabilities

Stage and dimension

Initial

I1. Create a personal profile includ-
ing preferences, abilities, and chal-
lenges.

I1. Identify and adapt to the user’s
unique cognitive and emotional
needs.

Personal

I2. Consider the human environment
(eg, caregivers or family members)
as part of system definition.

I2. Show awareness of the social
and cultural context of system use.

Interpersonal

During interaction

D1. Identify difficulties and adapt
the level of assistance and feedback
in real time.

D1. Provide custom-tailored, gradu-
al, and structured responses to per-
sonal needs during use.

Personal

D2. Mediate social interactions by
simplifying and explaining social
cues.

D2. Promote positive and reciprocal
communication with the human en-
vironment.

Interpersonal

D3. Provide detailed instructions
and cues on proper conduct in differ-
ent places.

D3. Assist in orientation, navigation,
and independent functioning in
complex spaces.

Environmental

When the system errs

E1. Provide repeated opportunities
to try again, together with verbal
encouragement.

E1. Handle errors respectfully and
in an empowering way, with empha-
sis on learning and progress.

Personal

E2. Provide a possibility for a care-
giver to assist in problem-solving or
making necessary adjustments.

E2. Involve support persons in the
process of learning and correction.

Interpersonal

E3. Make human backup available
by default in case of significant
problems.

E3. Avoid placing responsibility on
the user in complex or unexpected
situations.

Environmental

Over time

T1. Track progress and adapt tasks
and goals accordingly.

T1. Continually adapt to the pace of
development, learning, and changes
in personal needs.

Personal

T2. Update user profiles and access
settings based on feedback from the
environment.

T2. Show sensitivity to changes in
relationships and roles within the
support circle.

Interpersonal

T3. Automatically detect location
changes and provide relevant recom-
mendations.

T3. Show flexibility and adaptability
to changing environments and tran-
sitions between contexts.

Environmental

T4. Provide mechanisms for receiv-
ing feedback and involving users in
decisions about updates and im-
provements.

T4. Actively involve users and
stakeholders in the ongoing develop-
ment of the system.

Collaboration

aThe model for this protocol by Amershi et al [62] is based on extensive research and analysis of a range of artificial intelligence products and defines
18 general guidelines across different stages of interaction. We adapted and extended this model to address specifically the needs and challenges of
designing artificial intelligence technologies for people with cognitive disabilities. The protocol incorporates 4 key dimensions: personal, interpersonal,
environmental, and collaborative, and provides concrete examples of how these considerations can be integrated throughout the life cycle of the artificial
intelligence system. By implementing this protocol, developers can create artificial intelligence tools that empower and enhance the lives of individuals
with cognitive disabilities.

Building on the analysis presented in this paper, we expand the
model of Amershi et al [62] and adapt it to the 4 central
dimensions in which AI systems can assist people with cognitive
disabilities: the personal, the interpersonal, the environmental,
and the collaborative. For each of these dimensions, we propose
guidelines and offer practical examples of how the relevant

considerations can be embedded at different stages of the system
life cycle, from defining the initial requirements, through
ongoing interaction, to continuous adaptation and improvement.
The proposed protocol serves as a foundation that requires
further development, testing, and investigation, but it can serve
as a starting point for discourse and the advancement of best
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practices in designing AI systems for individuals with cognitive
disabilities.

Conclusion

The emergence of GenAI technologies represents a pivotal
moment in reconceptualizing disability and personhood. We
suggest that the advent of GenAI challenges assumptions about
what qualifies an individual as a “person” and questions the
notion that cognitive abilities are the sole determinant of one’s
rights and societal participation.

In this paper, we explored the transformative potential of GenAI
in reshaping perceptions, dismantling barriers, and empowering
individuals with cognitive disabilities. By serving as a social
mirror [32], AI systems can expose and challenge deeply
ingrained biases and prejudices, compelling us to confront the
ways we have historically marginalized and excluded the
population with cognitive disabilities. Simultaneously, by
functioning as a cognitive partner, GenAI may provide
unprecedented opportunities for individuals with cognitive
disabilities to participate in society.

Realizing this vision requires more than technological
innovation, however. It demands a gradual shift in societal
attitudes and a sincere effort to involve people with cognitive
disabilities in the AI development process, granting them
autonomy and recognizing and valuing their abilities. This is
where the role of technology professionals and GenAI
developers becomes crucial.

The importance of designing AI thoughtfully lies in the
understanding that whether we consider AI as a mirror or as a
cognitive partner, both metaphors indicate that AI will
increasingly mediate how we perceive the world, ourselves, and
others, confirming once again McLuhan’s [64] statement that
“the medium is the message.” This means that the significant
effect of AI lies not merely in the content we explore through
it but in how its very use changes us. Therefore, the design and
development of AI tools will profoundly influence the future

of human society, how we perceive individuals with disabilities,
as well as the rights and social positions they will attain.
Therefore, how AI is being shaped now will determine its role
in reinforcing existing biases or promoting a more inclusive
and equitable society.

The proposed protocol, based on the work by Amershi et al
[62], offers a practical framework for implementing these
principles as part of GenAI development for people with
cognitive disabilities. This paper marks only the beginning of
the discussion about GenAI and developmental disabilities,
therefore we must remain vigilant regarding the ethical and
social implications of GenAI and continue to engage in open,
multidisciplinary dialogue about how to harness its potential
for the greater good.

The path ahead is complex and challenging, but it is also filled
with immense possibilities. As we look toward the future, the
evolution of AI from reactive, prompt-based systems to
proactive, autopilot models promises to further expand these
possibilities, particularly for individuals with cognitive
disabilities. These advanced systems, capable of learning user
needs and initiating interactions without explicit prompts, could
provide more seamless and intuitive support, potentially
revolutionizing the way we approach cognitive assistance.

Technological progress also involves an ongoing need for ethical
and inclusive development. We must prioritize user autonomy
and privacy while maximizing the benefits of technological
assistance. This balance is important not only for protecting
individual rights but also for ensuring that AI serves the needs
of those it aims to support.

By embracing the potential of GenAI while remaining vigilant
regarding its ethical implications, researchers, developers, and
policy makers can create technologies that not only uplift those
who have been historically marginalized but enrich the human
experience for us all. In doing so, we may take a step toward a
future where technology serves as a platform for inclusivity and
empowerment.
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Abstract

Background: Speech features are increasingly linked to neurodegenerative and mental health conditions, offering the potential
for early detection and differentiation between disorders. As interest in speech analysis grows, distinguishing between conditions
becomes critical for reliable diagnosis and assessment.

Objective: This pilot study explores speech biosignatures in two distinct neurodegenerative conditions: (1) mild traumatic brain
injuries (eg, concussions) and (2) Parkinson disease (PD) as the neurodegenerative condition.

Methods: The study included speech samples from 235 participants (97 concussed and 94 age-matched healthy controls, 29
PD and 15 healthy controls) for the PaTaKa test and 239 participants (91 concussed and 104 healthy controls, 29 PD and 15
healthy controls) for the Sustained Vowel (/ah/) test. Age-matched healthy controls were used. Young age-matched controls were
used for concussion and respective age-matched controls for neurodegenerative participants (15 healthy samples for both tests).
Data augmentation with noise was applied to balance small datasets for neurodegenerative and healthy controls. Machine learning
models (support vector machine, decision tree, random forest, and Extreme Gradient Boosting) were employed using 37 temporal
and spectral speech features. A 5-fold stratified cross-validation was used to evaluate classification performance.

Results: For the PaTaKa test, classifiers performed well, achieving F1-scores above 0.9 for concussed versus healthy and
concussed versus neurodegenerative classifications across all models. Initial tests using the original dataset for neurodegenerative
versus healthy classification yielded very poor results, with F1-scores below 0.2 and accuracy under 30% (eg, below 12 out of
44 correctly classified samples) across all models. This underscored the need for data augmentation, which significantly improved
performance to 60%‐70% (eg, 26‐31 out of 44 samples) accuracy. In contrast, the Sustained Vowel test showed mixed results;
F1-scores remained high (more than 0.85 across all models) for concussed versus neurodegenerative classifications but were
significantly lower for concussed versus healthy (0.59‐0.62) and neurodegenerative versus healthy (0.33‐0.77), depending on
the model.

Conclusions: This study highlights the potential of speech features as biomarkers for neurodegenerative conditions. The PaTaKa
test exhibited strong discriminative ability, especially for concussed versus neurodegenerative and concussed versus healthy
tasks, whereas challenges remain for neurodegenerative versus healthy classification. These findings emphasize the need for
further exploration of speech-based tools for differential diagnosis and early identification in neurodegenerative health.

(JMIR Neurotech 2025;4:e64624)   doi:10.2196/64624

KEYWORDS

speech biosignatures; speech feature analysis; amyotrophic lateral sclerosis; ALS; neurodegenerative disease; Parkinson's disease;
detection; speech; neurological; traumatic brain injury; concussion; mobile device; digital health; machine learning; mobile health;
diagnosis; mobile phone
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Introduction

Overview
The fields of health care and medical diagnostics have witnessed
a significant shift toward noninvasive and accessible methods
for early detection, assessment, and monitoring of medical
conditions. This shift has been driven by technological
advancements and growing research interest in digital health
solutions [1]. Among these, speech analysis has emerged as a
promising avenue, with studies identifying speech as a potential
biosignature for a variety of neurodegenerative conditions [2,3].
The ability to reliably distinguish between conditions or detect
coexisting disorders is critical for accurate diagnosis, tracking
disease progression, and evaluating treatment effectiveness [4].

This pilot study investigates speech-based biosignatures of 2
distinct neurodegenerative conditions, that are,
neurodegenerative diseases and mild traumatic brain injuries
(mTBIs), specifically concussions. Speech patterns often reflect
neurodegenerative health, with specific speech features showing
promise for distinguishing between these conditions. The dataset
includes individuals with concussions, patients with Parkinson
disease (PD), and age-matched healthy controls for both groups
(15 samples for each test). These groups were selected to ensure
demographic compatibility while addressing the unique speech
patterns associated with each condition.

Neurodegenerative diseases, such as PD, are characterized by
the progressive loss of neurons in the brain and spinal cord,
leading to impairments in motor and cognitive functions [5,6].
PD involves the degeneration of dopaminergic neurons, resulting
in clinical symptoms such as tremors, rigidity, bradykinesia,
and postural instability [7]. These symptoms worsen over time
and lack curative treatments, necessitating reliable diagnostic
tools for early intervention [8]. On the other hand, concussions,
a form of mTBI, result from sudden trauma to the brain, causing
temporary cognitive impairments, disruptions in brain function,
and neurochemical changes. Repeated concussions are
associated with a heightened risk of neurodegenerative disorders,
such as dementia, later in life [9]. Despite their prevalence,
approximately 90% of concussions go unreported, leading to
inadequate medical attention and potentially catastrophic
consequences [10].

Traditional diagnostic methods for neurodegenerative diseases
and concussions often rely on observable motor symptoms, such
as tremors, gait disturbances, or muscle rigidity, as well as
subjective assessments of cognitive impairments [11]. However,
emerging research has identified speech as a valuable biomarker
for neurodegenerative health. Dysarthria and dysphonia,
characterized by changes in articulation and motor speech
production, are prevalent in both concussions and
neurodegenerative conditions like PD [12-14]. Speech features,
such as mel frequency cepstral coefficients (MFCCs), jitter,
shimmer, harmonics-to-noise ratio (HNR), and other temporal
and spectral attributes, have been shown to correlate with
underlying neurodegenerative conditions.

In this study, we analyzed speech data from 2 well-established
medical speech tasks, the PaTaKa task and the Sustained Vowel

task. These tasks are widely used in clinical settings for
assessing speech impairments. The objective of this study is to
explore the potential of speech features in differentiating
between concussions and neurodegenerative conditions, as well
as their respective healthy controls, and to assess the feasibility
of using these features as biomarkers for diagnosis. By
addressing this objective, we aim to contribute to the
development of speech-based diagnostic tools for early and
accurate identification of neurodegenerative health conditions.

This study evaluated 37 speech-based features (25 temporal and
12 spectral), applying machine learning models such as support
vector machine (SVM), decision tree (DT), random forest (RF),
and Extreme Gradient Boosting (XGBoost) to classify between
the groups.

The remainder of this paper describes our methodology, feature
extraction and analysis, machine learning approaches, and results
for the binary classification tasks across the 2 speech tests.

Related Work
Diagnosing brain injuries and neurodegenerative diseases can
be challenging; for instance, concussions may present subtle
features that are difficult to detect, including using third person
witness accounts of the injury, clinical examinations, and
laboratory testing, where diagnostic accuracy is not always
perfect [15]. Recent work has explored the diagnosis of
concussions in athletes using mobile technologies [16] and
speech analysis [17,18], while digital assessments, coupled with
speech analysis, are also increasingly being used for individuals
with neurodegenerative diseases [19]. In a study by Tsanas [19],
various speech tasks have been used to distinguish between
healthy people and individuals with PD, with relatively high
accuracy. Other previous research has investigated the overall
symptom severity of individuals with a neurodegenerative
condition [11,20], the effectiveness of voice rehabilitation [21],
and how to distinguish PD from other conditions such as
essential tremor or atypical parkinsonism [22].

The choice of speech task is critical to obtaining speech samples
that can be used for subsequent feature extraction and analysis.
One commonly used speech task is to ask an individual to
produce sustained phonation of vowels. For instance, the study
by Mallela et al [23] presents an automatic voice assessment
approach for separating healthy individuals from patients with
amyotrophic lateral sclerosis (ALS). Although our study focuses
exclusively on PD as the representative neurodegenerative
condition, references to ALS studies are included to highlight
the broader research landscape on neurodegenerative speech
biosignatures and their diagnostic significance. Linear
discriminant analysis is used to classify phonation, with the
most successful model achieving more than 90% accuracy.
Similarly, a study by Rueda and Krishnan [24] obtained
sustained vowel data from 57 PD patients and 57 healthy
individuals, and the study used 5 hierarchical and 1
partition-based clustering techniques to compare and cross-check
PD patients at different phases. In some cases, researchers have
relied on existing voice recordings, for example, obtained
through the Parkinson’s Voice Initiative project (the largest
speech-PD dataset so far) to analyze voice impairment due to
PD [25].
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Daudet et al [18] developed a mobile app to diagnose
concussions, using data from 47 high-schools and colleges in
the Midwest. The study used several speech tasks such as
repetition of a sequential motion rate, alternating motion rate,
multisyllabic words (words with 4 syllables containing front,
middle, and back vowels, and bilabial, alveolar, velar, and glide
consonants). The work by Vashkevich et al [26] presented
features for detecting pathological changes in acoustic speech
signals for ALS diagnosis. It used recordings from 48 people
(26 with ALS) and investigated vowel harmony. The features
obtained an 88% correct classification performance using linear
discriminant analysis. Various speech-based indicators, such
as shimmer, jitter, HNR, and other temporal and spectral
indicators, have also been explored as dysphonia measures in
individuals with neurodegenerative diseases [27]. Finally, in a
study by Benba et al [22], the authors investigated the most
effective acoustic elements for accurately identifying symptoms
of PD, combining shimmer, jitter, pitch, harmonicity, pulses,
and voicing by using K-Nearest Neighbor classifiers with
different types of kernels (ie, radial basis functions, linear,
polynomial, and multilayer perceptron).

Machine learning–based solutions have become the standard
for most health care decision-making processes, for example,
most previous works focus on differentiating diseased
individuals from healthy controls. For example, the work by
Tsanas and Arora [28] evaluated 2289 individuals (2023 healthy
controls and 246 PD patients) and analyzed 15,227 voice tasks
(9994 for healthy controls and 5233 for PD patients). Similarly,
the work Bongioanni [29] compared speech-based automatic
classification of patients with ALS and healthy people using
sustained phoneme generation, diadochokinetic task, and
spontaneous speech. They classified voice samples from 25
patients with ALS and 25 healthy participants using SVMs and
deep neural networks. More recently, more focus has been given
to multiclass scenarios, for example, the study by Benba et al
[22] used a Convolutional Neural Network Long Short-term
Memory to categorize ALS, PD, and healthy controls. The study
analyzed speech data from 60 people, focusing on sentence
reading, sound repetition, and sustained vowels.

Though there are studies that had investigate speech features
pertaining to neurodegenerative disorders or acquired
neurodegenerative disorders like mTBI, there are not many
studies exploring speech feature variations between those
populations which might co-occur and impact speech production
differently.

The aim of this study is to investigate whether distinct
speech-based biomarkers, derived from commonly used tasks
like the PaTaKa and Sustained Vowel tests, can effectively

differentiate between concussed individuals, neurodegenerative
conditions (focused on PD), and healthy controls.

Methods

Data Collection
This study focused on 2 widely used speech tasks, the sequential
motion rate task (PaTaKa test) and the Sustained Vowel test.
The PaTaKa test evaluates speech-motor function by asking
participants to take a deep breath and repeatedly articulate
“Pa-Ta-Ka” as steadily as possible in 1 breath, providing insights
into the rate and precision of sequential articulatory actions.

In the Sustained Vowel test, participants were instructed to
sustain the vowel sound “ah” for as long as possible, offering
valuable information about voice quality and potential vocal
tremor. Both tasks were assigned to four participant groups,
that are (1) individuals with concussions, (2) individuals with
neurodegenerative conditions (specifically PD), (3) healthy
controls age-matched to the concussed group, and (4) healthy
controls age-matched to the neurodegenerative group.

Individuals diagnosed with a concussion were evaluated by
physicians or athletic trainers using standardized neurocognitive
assessment tools, such as ImPACT (Immediate Post-Concussion
Assessment and Cognitive Testing) by ImPACT Applications,
Inc, SCAT (Sport Concussion Assessment Tool), an open-access
tool , and SAC (Standardized Assessment of Concussion) by
researchers at the University of North Carolina’s Sports
Medicine Research Laboratory, within 48 hours of the suspected
injury. Individuals with neurodegenerative conditions (ie, PD)
were diagnosed by licensed neurologists or family physicians.
All participants with PD were in the early stages of disease
progression (Hoehn and Yahr stage 1‐2) and were assessed
using tools such as the MDS-UPDRS (Movement Disorder
Society - Unified Parkinson’s Disease Rating Scale) and Hoehn
and Yahr Scale.

Healthy controls were divided into two groups: (1) young
healthy individuals age-matched to the concussed group and
(2) older healthy individuals age-matched to the
neurodegenerative group. This separation ensures more accurate
comparisons between the groups, minimizing the confounding
effects of age-related speech differences.

Participants completed the speech tasks using a mobile app
(smartphone or tablet) that provided both visual and auditory
instructions. The app also recorded the audio samples digitally
for subsequent analysis. Audio data were collected from a total
of 235 and 239 participants for the PaTaKa and Sustained Vowel
tests, respectively, as shown in Table 1.
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Table . Description of collected samples.

Age (years), mean
(SD)

SexSamples, nTest name and population

Female, nMale, n

PaTaKa

17 (3)118697Concussed

17 (3)138194Healthy control
(young)

63.67 (4.95)121729Neurodegenerative

(PDa)

63.67 (4.95)10515Healthy control (older)

Sustained Vowel

17 (3)98291Concussed

17 (3)1490104Healthy control
(young)

63.67 (4.95)121729Neurodegenerative
(PD)

63.67 (4.95)10515Healthy control (older)

aPD: Parkinson disease.

The PaTaKa test dataset includes speech samples from 97
concussed participants, 29 participants with neurodegenerative
conditions (ie, PD), 97 age-matched young healthy controls,
and 15 age-matched older healthy controls. Similarly, the
Sustained Vowel dataset consists of speech samples from 91
concussed participants, 29 participants with neurodegenerative

conditions (ie, PD), 91 age-matched young healthy controls,
and 15 age-matched older healthy controls.

In the remainder of this section, we describe the 4 key
components of the proposed analysis methodology, shown in
Figure 1, that are data preprocessing, feature extraction, model
training, and evaluation.

Figure 1. Overall visualization of the 4 methodological steps: data preprocessing, feature extraction, model training, evaluation. DT: decision tree;
mfcc: mel frequency cepstral coefficient; RF: random forest; SV: Sustained Vowel; SVM: support vector machine; XGBoost: Extreme Gradient Boosting.

Data Preprocessing
The voiced portions of speech signals typically carry the most
critical information for analysis. Therefore, to enhance the
quality and efficiency of feature extraction, it is essential to
eliminate unnecessary components, such as silence intervals
and extraneous noise, during the preprocessing phase. In this
study, silence intervals were removed at 2 points in each speech
recording using the free software developed by Muse group
named “Audacity”. Specifically, silence was cut from the
beginning of the recording to the onset of vocalization and from
the offset of vocalization to the end of the recording.

In addition, recordings that did not meet the study’s
requirements, such as those where participants failed to produce

the expected utterances (eg, “PaTaKa” in 1 continuous breath
or sustained vowel production without interruptions), were
excluded from further analysis. This step ensured a high-quality
dataset for feature extraction and classification, thereby
improving the reliability of the results.

Data Augmentation
To address the challenges of imbalanced datasets and improve
classification performance, data augmentation was applied to
specific data subsets, particularly those with limited samples,
such as the neurodegenerative (ie, PD) and age-matched healthy
datasets. The augmentation process involved adding Gaussian
noise to the raw audio signals. The noise factor was set to 0.005
to ensure that the original speech characteristics were preserved

JMIR Neurotech 2025 | vol. 4 | e64624 | p.16https://neuro.jmir.org/2025/1/e64624
(page number not for citation purposes)

Rubaiat et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


while introducing subtle variations to increase sample diversity.
For each audio file, a noise vector was generated using a
Gaussian distribution, scaled by the specified noise factor, and
added to the original signal. The augmented audio signals were
then normalized to ensure they remained within the acceptable
amplitude range for further processing.

This step increased the dataset size from 29 PD and 15 healthy
samples to 58 PD and 30 healthy samples, resulting in a notable
improvement in classification accuracy from under 30%
(original data) to 60%‐70% (augmented data).

Feature Extraction
Feature extraction is the process of transforming raw audio data
into numerical features while retaining the critical information
embedded within the original signal. Among various methods
for converting speech into numerical data, temporal and spectral
features are widely used in speech-processing research
[22,26,27,30]. In these studies, both types of features were
extracted using Python’s Librosa library [31].

Temporal features describe the changes in an audio signal over
time, such as amplitude and pitch variation. This study extracted
25 temporal features, including 4 fundamental frequency
measures (eg, mean and SD of F0), 5 jitter measures, 6 shimmer
measures, and the HNR. These features provide insights into
voice quality and stability, commonly associated with motor
speech dysfunctions. The full list and descriptions of these
temporal features are provided in Multimedia Appendix 1.

Spectral features analyze the frequency components of the
speech signal and are commonly used in applications such as
speech recognition and speaker identification. This study
extracted 12 spectral features, including MFCC, spectral
centroid, chroma features, and spectral flatness. These features
capture frequency-domain characteristics that are sensitive to
articulation and vocal tract configurations. Detailed descriptions
of these spectral features are presented in Multimedia Appendix
1.

All 37 extracted features (25 temporal and 12 spectral) were
included in the training and evaluation of machine learning
models. By retaining the full feature set, we ensured that
potentially valuable information was preserved, particularly
given the small sample size. Data augmentation techniques,
such as adding noise to the audio samples, were used to improve
the robustness of the models and enhance performance,
especially for the classification between neurodegenerative and
healthy controls, where the original dataset resulted in poor
classification performance.

Model Training
In recent years, the trend in digital health care has been to use
machine learning models to classify input data (speech samples)
into 2 or more classes based on extracted features. In this work,
we employed several popular machine learning techniques, such
as SVM, DT, RF, and XGBoost [18]. These models were chosen
due to their interpretability, robustness, and ability to handle
small datasets effectively, which is essential for clinical
applications.

SVM, a supervised learning algorithm proposed by Boser et al
[32], is grounded in statistical learning theory and is particularly
effective for high-dimensional data [33]. It uses hyperplanes
and margins to separate data into classes, with its performance
being highly dependent on data scaling and the choice of kernel
functions. DTs, on the other hand, divide feature space into
regions by recursively splitting data and assigning classes to
leaf nodes [34]. Despite their simplicity, DTs are prone to
overfitting, especially on small datasets.

RFs mitigate this issue by employing an ensemble of DTs
trained on bootstrapped datasets, with each tree built using a
random subset of features [35]. The final class prediction is
based on a majority vote across all trees, which reduces variance
and enhances model robustness. Finally, XGBoost, a gradient
boosting implementation, constructs DTs sequentially,
optimizing performance by correcting errors from previous
iterations [36]. It is known for its computational efficiency and
scalability, making it a popular choice for structured datasets.
For a given sample, the final prediction can be calculated by
summing up the scores of overall leaves, which is illustrated in
Multimedia Appendix 2.

Given the limited size of our dataset, we prioritized traditional
machine-learning models over deep learning methods. While
deep learning algorithms have demonstrated exceptional
performance on large datasets, their effectiveness diminishes
with smaller datasets due to overfitting and computational
requirements. Traditional machine learning models, such as
SVM and RF, offer superior interpretability, which is critical
for clinical decision-making [28]. For instance, the study by
Pishgar et al [37] found that on a small voice disorder dataset,
SVM outperformed a deep neural network in terms of sensitivity
and specificity.

In this study, all 37 extracted features (25 temporal and 12
spectral) were used without any feature selection or filtering.
Data augmentation was applied to address the limited sample
size, particularly for the neurodegenerative versus healthy
dataset, where the augmented dataset improved model
performance.

To train and evaluate the machine learning models, we applied
a 75‐25 stratified split of the dataset into training and test sets,
ensuring that class distributions were preserved. Stratified 5-fold
cross-validation was used to evaluate model performance more
reliably, and Grid Search was used to fine-tune hyperparameters
for all algorithms.

Evaluation
In this study, we assessed the performance of our classification
models using multiple evaluation metrics, with a particular focus
on the F1-score due to its robustness in handling unbalanced
datasets. The F1-score is particularly well-suited for situations
where there is an imbalance in the class distribution, as it
provides a harmonic mean of precision and recall, balancing
the trade-off between these 2 metrics. The F1-score is defined
as follows in Multimedia Appendix 2.

Both precision and recall are crucial in medical applications,
where the consequences of false positives or false negatives can
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be severe. The F1-score offers a balanced view of a model’s
performance when neither precision nor recall can be prioritized
over the other. A higher F1-score (ranging from 0 to 1) indicates
a better-performing model.

In addition to the F1-score, we evaluated our models using
precision, recall, and accuracy to provide a comprehensive view
of model performance. These metrics helped compare the
performance of models across different speech tasks (PaTaKa
and Sustained Vowel) and combinations (eg, concussed vs
healthy, concussed vs neurodegenerative, neurodegenerative vs
healthy). The results section discusses these findings in detail,
highlighting the implications of our model’s performance for
clinical applications.

Ethical Considerations
This research was conducted in compliance with ethical
standards and approved by the Institutional Review Board at
the University of Notre Dame. The approval numbers for this
study are 18-01-4338 and 18-01-4340 for PD and concussion,

respectively. All participants provided informed consent
(Multimedia Appendices 3 and 4), and their confidentiality was
ensured throughout the study.

Results

Overview
The performance of the models was evaluated using precision,
recall, F1-score, and accuracy across 3 participant combinations
(ie, concussed vs healthy, concussed vs neurodegenerative, and
neurodegenerative vs healthy) for 2 widely used speech tasks,
PaTaKa and Sustained Vowel. The results provide insights into
the discriminative ability of each test and highlight the
comparative effectiveness of different classifiers in
distinguishing between participant groups. While the PaTaKa
task generally demonstrated robust performance across all
combinations, the Sustained Vowel test showed varying levels
of accuracy, particularly for certain groups and classifiers. The
performance for each combination and test, along with
discussions on their implications are illustrated in Figure 2.

Figure 2. Performance metrics by test type, model, and combination. SVM: support vector machine; XGBoost: Extreme Gradient Boosting.
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Concussed Versus Healthy

PaTaKa Test
The models performed exceptionally well, achieving
near-perfect precision, recall, F1-score, and accuracy across all
classifiers. DT and RF slightly outperformed SVM and
XGBoost, consistently achieving 0.95. There are no sources in
the current document across all metrics. These results highlight
the PaTaKa test’s robustness in distinguishing between
concussed and healthy participants.

Sustained Vowel Test
Performance dropped significantly compared with the PaTaKa
test. SVM and XGBoost achieved slightly higher metrics, with
F1-scores around 0.59‐0.62. DT and RF had the lowest
performance, with metrics around 0.56. The reduced
performance might indicate that sustained vowels are less
effective for distinguishing concussed participants from healthy
individuals.

Concussed Versus Neurodegenerative

PaTaKa Test
All models performed perfectly, achieving precision, recall,
F1-score, and accuracy of 1.0. This demonstrates the
effectiveness of the PaTaKa test for differentiating concussed
participants from those with neurodegenerative conditions.
Consistency across all classifiers reinforces the reliability of
this task for this combination.

Sustained Vowel Test
Similar to the PaTaKa test, most models achieved perfect scores
across all metrics. However, DT and XGBoost showed slightly
reduced performance, with F1-scores of 0.87 and accuracy of
0.92. Despite slight variability, the Sustained Vowel test remains
a strong indicator for distinguishing these groups.

Neurodegenerative Versus Healthy

PaTaKa Test
Results varied significantly across classifiers. RF and XGBoost
outperformed others, achieving F1-scores of 0.63 and 0.72,
respectively. DT and SVM performed poorly, with F1-scores
around 0.52‐0.55. These results indicate that the PaTaKa test
has moderate effectiveness for this group but requires careful
classifier selection.

Sustained Vowel Test
Similar trends were observed. XGBoost achieved the highest
F1-score (0.40) and accuracy (0.67), while other models showed
significantly lower performance. This underscores the challenge
of distinguishing neurodegenerative participants from healthy
controls using sustained vowel tasks.

Feature Set Analysis
Understanding the importance of individual features in
classification tasks is crucial for interpreting the predictive
power of machine learning models. In this study, we examined
feature importance across all tests and combinations to identify
the most influential speech features contributing to the
classification of concussed, neurodegenerative, and healthy
individuals. Feature importance was calculated for each model
(SVM, DT, RF, and XGBoost) using a combination of metrics,
such as Gini importance, SHAP values, or permutation
importance, depending on the model.

To identify globally significant features, we analyzed the
frequency of features ranked among the top 5 across all 24 tests.
A summary of the top 10 most frequent features is presented in
Table 2, while Table 3 provides combination-specific feature
importance values. The most frequently identified features were
temporal and spectral characteristics, which are known to
capture both short-term and long-term speech patterns.

Table . Top 10 most frequent features across all tests.

Mean importanceFrequencyFeatureRank

0.2915duration1

0.3313zero_crossing_rate2

0.3012spectral_flatness3

0.2511mfcca4

0.427spectral_bandwidth5

0.076spectral_centroid6

0.075spectral_contrast7

0.325chroma_stft8

0.064HNRb9

0.044f4_median10

amfcc: mel frequency cepstral coefficient.
bHNR: harmonics-to-noise ratio.
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Table . Combination specific feature importance value.

ValueFeatureCombination and test

Concussed versus healthy

1.9DurationPaTaKa

0.47Zero-crossing ratePaTaKa

0.12Spectral flatnessSustained Vowel

Concussed versus neurodegenerative

1.3Spectral bandwidthPaTaKa

2.9MFCCaSustained Vowel

Neurodegenerative versus healthy

0.43HNRbPaTaKa

0.76Spectral flatnessSustained Vowel

aMFCC: mel frequency cepstral coefficient.
bHNR: harmonics-to-noise ratio.

Among the top 10 features, duration, zero-crossing rate, and
spectral_flatness were the most influential, appearing
consistently across multiple tests and combinations. These
features reflect critical aspects of speech production, including
articulation rate, periodicity, and frequency smoothness. For
instance:

• Duration: This feature provides insights into motor control
and speech articulation by measuring the length of
utterances.

• Zero-crossing rate: Indicative of voice signal periodicity,
this feature is particularly significant in distinguishing
voiced and unvoiced speech segments.

• Spectral_flatness: This feature quantifies the uniformity of
the speech spectrum, distinguishing between harmonic and
noise-like components.

Combination-specific patterns further highlight the variability
in feature importance depending on the test (PaTaKa or

Sustained Vowel) and the target classification task (concussed
vs healthy, concussed vs neurodegenerative, and
neurodegenerative vs healthy). For example, (1) in the concussed
versus healthy classification, features like mfcc and spectral
bandwidth were highly impactful, particularly in the PaTaKa
test, (2) in the Concussed concussed versus neurodegenerative
classification, spectral_centroid and chroma_stft played a
significant role in distinguishing between the 2 groups, and (3)
for the neurodegenerative versus healthy classification, features
such as f4_median and HNR were key discriminators,
particularly in the Sustained Vowel test.

The distribution of feature importance values across
combinations and tests is visualized in Figure 3, while the
detailed numerical values for each combination and test are
available in Table 3. These findings emphasize the variability
of feature contributions across different tasks and highlight the
importance of task-specific feature analysis for robust
classification.
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Figure 3. Top 10 most frequent features across all tests. mfcc: mel frequency cepstral coefficients.

Discussion

Principal Findings
The findings of this study provide valuable insights into the use
of speech-based features for differentiating between
neurodegenerative conditions, particularly mTBI (concussions)
and neurodegenerative diseases (eg, PD). By leveraging 2
commonly used speech tasks, the PaTaKa test and the Sustained
Vowel test, and a variety of machine learning models, we
achieved classification accuracies ranging from 60% to 90%,
with RF and XGBoost models consistently outperforming others.
In addition, we identified key speech features, such as duration,
zero-crossing rate, and spectral flatness, as critical biomarkers
for distinguishing between these conditions. These results
underscore the potential of speech features as noninvasive
biomarkers for neurodegenerative health assessment and
highlight the complementary roles of the PaTaKa and Sustained
Vowel tests in revealing task-specific and globally significant
features.

Key Observations
First, task-specific performance. The PaTaKa test consistently
outperformed the Sustained Vowel test across all combinations.
This may be attributed to the sequential articulatory movements
required in the PaTaKa test, which can better capture subtle
motor and speech deficits. For example, in the concussed versus
healthy classification, F1-scores for PaTaKa exceeded 0.9 across
all models, whereas the Sustained Vowel test achieved F1-scores
below 0.6 for the same classification. These findings highlight
the importance of task selection in speech analysis and suggest

that diadochokinetic tasks may provide richer diagnostic
information.

Second, model-specific trends. Among the machine learning
models, RF and XGBoost consistently performed well,
demonstrating their ability to handle complex, nonlinear
relationships in speech data. This aligns with previous research
highlighting the robustness of ensemble learning methods in
biomedical and speech signal processing tasks [38].

Third, the high interpretability of DTs also provides an
advantage for clinical applications, particularly in scenarios
where transparency is critical for adoption in health care settings.

Fourth, despite its slightly lower performance in some scenarios,
DT models remain valuable due to their simplicity and ease of
implementation.

Fifth, interestingly, SVMs displayed strong performance in
balanced datasets, particularly in the concussed versus
neurodegenerative classification, where precision and recall
consistently reached 1.0 for the PaTaKa test. This finding is
consistent with previous studies showing that SVMs are
effective for high-dimensional data, especially when datasets
are carefully preprocessed and balanced [39]. The performance
of SVM in this classification task further underscores its utility
in distinguishing nuanced differences between distinct
neurodegenerative conditions using speech features.

Finally, feature importance. The analysis of feature importance
revealed that a small subset of features consistently played a
dominant role across tests and combinations. Temporal features
such as duration and zero-crossing rate were particularly
influential, likely reflecting disruptions in motor control and
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speech rhythm caused by both concussions and
neurodegenerative conditions. Spectral features, including
spectral_flatness, mfcc, and spectral_bandwidth, were also
critical, highlighting their utility in capturing frequency-domain
variations associated with speech pathologies. These results
align with previous research, which has emphasized the role of
both temporal and spectral features in detecting
neurodegenerative impairments.

Comparison With Previous Studies
Our findings corroborate and extend existing literature on
speech-based biomarkers for neurodegenerative conditions.
Previous research has demonstrated the utility of features such
as MFCC and jitter for detecting PD [4], as well as features like
zero-crossing rate and duration for identifying concussions [19].
However, this study uniquely emphasizes the differentiation
between neurodegenerative diseases like PD and mild traumatic
brain injury (eg, concussions), a task that remains relatively
underexplored in existing literature.

Furthermore, the inclusion of both PaTaKa and Sustained Vowel
tests enables a more comprehensive analysis of task-specific
feature relevance. While previous studies have evaluated the
diagnostic utility of individual speech tasks (eg, sustained
phonation for ALS in studies by Allison et al [13] and Tsanas
et al [27]), this work highlights how combining multiple tasks
can reveal unique and complementary insights into speech
biosignatures associated with diverse neurodegenerative
conditions.

In addition to confirming the significance of widely used
features such as spectral flatness and zero-crossing rate, our
study identifies new combinations of features, including spectral
contrast and chroma-based features, as being critical for
distinguishing between these groups. These results align with
recent advancements in the field, where ensemble learning
models, such as RF and XGBoost, are increasingly used to
capture the intricate, nonlinear relationships within speech data
[23].

By addressing age-related variability and introducing data
augmentation to mitigate the challenges of limited datasets, this
study not only validates previously established findings but also
sets the stage for future research aimed at improving the
diagnostic accuracy of speech-based assessments across distinct
but potentially overlapping neurodegenerative conditions.

Implications for Clinical Practice
The results of this study highlight several practical implications
for clinical applications.

First, noninvasive diagnostics. The reliance on speech features,
which can be collected using readily available devices like
smartphones, opens up possibilities for remote and noninvasive
diagnostics. This is particularly valuable in resource-constrained
settings where access to advanced imaging or neurophysiological
tests may be limited.

Second, early detection. The ability to detect subtle speech
impairments associated with neurodegenerative conditions could
enable earlier diagnosis, allowing for timely interventions.

Finally, task selection. The superior performance of the PaTaKa
test suggests that it should be prioritized in future speech-based
diagnostic protocols, particularly for distinguishing between
concussions and neurodegenerative conditions.

Limitations
Despite the promising results, there are several limitations to
this study.

First, small dataset—the dataset size, particularly for
neurodegenerative diseases, was relatively small. This may limit
the generalizability of the findings to larger, more diverse
populations.

Second, demographic differences—the age gap between the
concussed (younger) and neurodegenerative (older) populations
poses a potential confounding factor. While age-matched healthy
controls were included, the results could be influenced by
inherent age-related differences in speech production.

Third, feature engineering and contextual factors—while the
study identified important features, the reliance on manual
feature extraction may overlook nuanced patterns. Advanced
techniques, such as deep learning–based feature discovery, could
reveal hidden characteristics in speech data. Future research
should also account for comorbidities and age-related factors,
as these can influence speech biosignatures and potentially
confound results. Age-normalized datasets and statistical
adjustments can further enhance the robustness of classification
models.

Future Directions
This study demonstrates the potential of speech-based features
to differentiate between concussed, neurodegenerative, and
healthy individuals. While promising, the findings also highlight
several areas for improvement and expansion, which we aim to
address in future work.

First, dataset expansion and diversity. The current dataset
includes limited samples from each group, particularly for
neurodegenerative diseases. Future studies will expand the
dataset to include larger and more diverse populations, ensuring
broader generalizability of the results. In addition, we aim to
achieve a more balanced age distribution across all participant
groups, enabling more robust analyses and minimizing potential
biases.

Second, age-related effects. While we mitigated some
confounding effects of age by including 2 distinct healthy
control groups (age-matched for concussed and
neurodegenerative participants), future studies will incorporate
more advanced strategies to address age-related variations in
speech features. These include (1) explicitly including age as a
covariate in statistical models to control its effects and quantify
its influence on the results, (2) conducting age-matched
subgroup analyses to validate that classification performance
is not driven by age-related biases but by the underlying
neurodegenerative conditions, and (3) expanding the dataset to
improve the representation of younger and older age groups
across all conditions.
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Third, feature engineering and discovery. While this study
focused on predefined temporal and spectral features, advanced
deep learning models such as autoencoders or transformer-based
models could uncover latent features that may better distinguish
between neurodegenerative conditions. In addition, further
exploration of task-specific feature relevance could reveal
complementary insights into speech patterns for different health
conditions.

Fourth, longitudinal data analysis. Future work should explore
longitudinal data to track changes in speech biosignatures over
time. This would help identify temporal patterns associated with
disease progression and recovery, providing valuable insights
for monitoring treatment efficacy and early diagnosis.

Fifth, integration with clinical practice. To enhance the clinical
utility of this research, future efforts should focus on integrating
speech-based diagnostic tools into real-world health care
settings. This includes (1) developing user-friendly mobile apps
or web applications for noninvasive speech analysis and (2)
collaborating with clinicians to validate the models and evaluate
their effectiveness in clinical decision making processes.

Finally, evaluation metrics and benchmarking. Expanding the
evaluation metrics to include area under the receiver operating

characteristic curve and precision-recall curves would provide
a more comprehensive understanding of model performance.
In addition, benchmarking against existing speech-based models
or alternative diagnostic tools could further contextualize the
findings and demonstrate the added value of the proposed
methods.

By addressing these areas, future research can build upon the
findings of this study to further advance the field of speech
analysis in neurodegenerative health, improve diagnostic
accuracy, and pave the way for noninvasive, scalable diagnostic
tools.

Conclusion
This study demonstrates the potential of speech features,
particularly those derived from the PaTaKa test, as effective
biomarkers for distinguishing between concussed,
neurodegenerative, and healthy individuals. By identifying
task-specific and globally important features, the findings lay
the groundwork for developing noninvasive, speech-based
diagnostic tools that can be readily implemented in clinical
practice. Further research addressing the study’s limitations
could pave the way for broader applications of speech analysis
in neurodegenerative health.

 

Conflicts of Interest
None declared.

Multimedia Appendix 1
Feature description.
[DOCX File, 17 KB - neuro_v4i1e64624_app1.docx ]

Multimedia Appendix 2
Equations.
[DOCX File, 15 KB - neuro_v4i1e64624_app2.docx ]

Multimedia Appendix 3
Consent form for participants with neurodegenerative conditions.
[PDF File, 76 KB - neuro_v4i1e64624_app3.pdf ]

Multimedia Appendix 4
Consent form for participants with concussions.
[PDF File, 76 KB - neuro_v4i1e64624_app4.pdf ]

References
1. Templeton JM, Poellabauer C, Schneider S. Enhancement of neurocognitive assessments using smartphone capabilities:

systematic review. JMIR Mhealth Uhealth 2020 Jun 24;8(6):e15517. [doi: 10.2196/15517] [Medline: 32442150]
2. Ramanarayanan V, Lammert AC, Rowe HP, Quatieri TF, Green JR. Speech as a biomarker: opportunities, interpretability,

and challenges. Perspect ASHA SIGs 2022 Feb 11;7(1):276-283. [doi: 10.1044/2021_PERSP-21-00174]
3. Robin J, Harrison JE, Kaufman LD, Rudzicz F, Simpson W, Yancheva M. Evaluation of speech-based digital biomarkers:

review and recommendations. Digit Biomark 2020;4(3):99-108. [doi: 10.1159/000510820] [Medline: 33251474]
4. Little MA, McSharry PE, Hunter EJ, Spielman J, Ramig LO. Suitability of dysphonia measurements for telemonitoring of

Parkinson’s disease. IEEE Trans Biomed Eng 2009 Apr;56(4):1015-1022. [doi: 10.1109/TBME.2008.2005954] [Medline:
21399744]

5. Gan L, Cookson MR, Petrucelli L, La Spada AR. Converging pathways in neurodegeneration, from genetics to mechanisms.
Nat Neurosci 2018 Oct;21(10):1300-1309. [doi: 10.1038/s41593-018-0237-7] [Medline: 30258237]

JMIR Neurotech 2025 | vol. 4 | e64624 | p.23https://neuro.jmir.org/2025/1/e64624
(page number not for citation purposes)

Rubaiat et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=neuro_v4i1e64624_app1.docx&filename=f664b8e1-e97b-11ef-ae22-85e2586d11c9.docx
https://jmir.org/api/download?alt_name=neuro_v4i1e64624_app1.docx&filename=f664b8e1-e97b-11ef-ae22-85e2586d11c9.docx
https://jmir.org/api/download?alt_name=neuro_v4i1e64624_app2.docx&filename=f67819d1-e97b-11ef-ae22-85e2586d11c9.docx
https://jmir.org/api/download?alt_name=neuro_v4i1e64624_app2.docx&filename=f67819d1-e97b-11ef-ae22-85e2586d11c9.docx
https://jmir.org/api/download?alt_name=neuro_v4i1e64624_app3.pdf&filename=f68d4f81-e97b-11ef-ae22-85e2586d11c9.pdf
https://jmir.org/api/download?alt_name=neuro_v4i1e64624_app3.pdf&filename=f68d4f81-e97b-11ef-ae22-85e2586d11c9.pdf
https://jmir.org/api/download?alt_name=neuro_v4i1e64624_app4.pdf&filename=f6a01431-e97b-11ef-ae22-85e2586d11c9.pdf
https://jmir.org/api/download?alt_name=neuro_v4i1e64624_app4.pdf&filename=f6a01431-e97b-11ef-ae22-85e2586d11c9.pdf
http://dx.doi.org/10.2196/15517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32442150&dopt=Abstract
http://dx.doi.org/10.1044/2021_PERSP-21-00174
http://dx.doi.org/10.1159/000510820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33251474&dopt=Abstract
http://dx.doi.org/10.1109/TBME.2008.2005954
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21399744&dopt=Abstract
http://dx.doi.org/10.1038/s41593-018-0237-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30258237&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


6. Kiaei M. New hopes and challenges for treatment of neurodegenerative disorders: great opportunities for young
neuroscientists. Basic Clin Neurosci 2013;4(1):3-4. [Medline: 25337322]

7. Doherty C. ALS vs Parkinson’s: what are the differences? Verywell Health. 2024. URL: https://www.verywellhealth.com/
als-vs-parkinsons-6826333 [accessed 2025-02-06]

8. Youdim MB, Riederer P. Understanding Parkinson’s disease. Sci Am 1997 Jan;276(1):52-59. [doi:
10.1038/scientificamerican0197-52] [Medline: 8972618]

9. Shively S, Scher AI, Perl DP, Diaz-Arrastia R. Dementia resulting from traumatic brain injury: what is the pathology? Arch
Neurol 2012 Oct;69(10):1245-1251. [doi: 10.1001/archneurol.2011.3747] [Medline: 22776913]

10. Delaney JS, Abuzeyad F, Correa JA, Foxford R. Recognition and characteristics of concussions in the emergency department
population. J Emerg Med 2005 Aug;29(2):189-197. [doi: 10.1016/j.jemermed.2005.01.020] [Medline: 16029831]

11. O’Sullivan SB, Schmitz TJ, Fulk G. Physical Rehabilitation: FA Davis; 2019.
12. Penttilä N, Korpijaakko-Huuhka AM, Kent RD. Disfluency clusters in speakers with and without neurogenic stuttering

following traumatic brain injury. J Fluency Disord 2019 Mar;59:33-51. [doi: 10.1016/j.jfludis.2019.01.001] [Medline:
30641458]

13. Allison KM, Yunusova Y, Campbell TF, Wang J, Berry JD, Green JR. The diagnostic utility of patient-report and
speech-language pathologists’ ratings for detecting the early onset of bulbar symptoms due to ALS. Amyotroph Lateral
Scler Frontotemporal Degener 2017 Aug;18(5-6):358-366. [doi: 10.1080/21678421.2017.1303515] [Medline: 28355886]

14. Aich S, Kim HC, younga K, Hui KL, Al-Absi AA, Sain M. A supervised machine learning approach using different feature
selection techniques on voice datasets for prediction of Parkinson’s disease. Presented at: 2019 21st International Conference
on Advanced Communication Technology (ICACT); Feb 17-20, 2019; PyeongChang, South Korea. [doi:
10.23919/ICACT.2019.8701961]

15. Duffy JR. Motor Speech Disorders: Clues to Neurologic Diagnosis: Humana Press; 2000:35-53. [doi: 10.1007/978-1-59259]
16. Smith R, Chepisheva M, Cronin T, Seemungal BM. Chapter 16 - diagnostic approaches techniques in concussion/mild

traumatic brain injury: where are we. In: Hoffer ME, Balaban CD, editors. Neurosensory Disorders in Mild Traumatic
Brain Injury: Academic Press; 2019:247-277. [doi: 10.1016/B978-0-12-812344-7.00016-9]

17. Patel S, Grabowski C, Dayalu V, Cunningham M, Testa AJ. Fluency changes due to sports-related concussion. medRxiv.
Preprint posted online on Sep 23, 2021. [doi: 10.1101/2021.09.19.21263791]

18. Daudet L, Yadav N, Perez M, Poellabauer C, Schneider S, Huebner A. Portable mTBI assessment using temporal and
frequency analysis of speech. IEEE J Biomed Health Inform 2017 Mar;21(2):496-506. [doi: 10.1109/JBHI.2016.2633509]
[Medline: 27913365]

19. Tsanas A. New insights into Parkinson’s disease through statistical analysis of standard clinical scales quantifying symptom
severity. Annu Int Conf IEEE Eng Med Biol Soc 2019 Jul;2019:3412-3415. [doi: 10.1109/EMBC.2019.8856559] [Medline:
31946612]

20. Julien JP. ALS: astrocytes move in as deadly neighbors. Nat Neurosci 2007 May;10(5):535-537. [doi: 10.1038/nn0507-535]
[Medline: 17453052]

21. Magrinelli F, Picelli A, Tocco P, et al. Pathophysiology of motor dysfunction in Parkinson’s disease as the rationale for
drug treatment and rehabilitation. Parkinsons Dis 2016;2016:9832839. [doi: 10.1155/2016/9832839] [Medline: 27366343]

22. Benba A, Jilbab A, Hammouch A. Voice analysis for detecting patients with Parkinson’s disease using the hybridization
of the best acoustic features. Int J Electr Eng Inform 2016 Mar 30;8(1):108-116. [doi: 10.15676/ijeei.2016.8.1.8]

23. Mallela J, Illa A, Suhas BN, et al. Voice based classification of patients with amyotrophic lateral sclerosis, Parkinson’s
disease and healthy controls with CNN-LSTM using transfer learning. Presented at: ICASSP 2020 - 2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP); May 4-8, 2020; Barcelona, Spain. [doi:
10.1109/ICASSP40776.2020.9053682]

24. Rueda A, Krishnan S. Clustering Parkinson’s and age-related voice impairment signal features for unsupervised learning.
Adv Data Sci Adapt Data Anal 2018 Apr;10(2):1840007. [doi: 10.1142/S2424922X18400077]

25. Tsanas A, Arora S. Biomedical speech signal insights from a large scale cohort across seven countries: the Parkinson’s
voice initiative study. 2019 Presented at: 11th International Workshop, Models and Analysis of Vocal Emissions for
Biomedical Applications (MAVEBA); Dec 17-19, 2019; Firenze, Italy.

26. Vashkevich M, Azarov E, Petrovsky A, Rushkevich Y. Features extraction for the automatic detection of ALS disease from
acoustic speech signals. Presented at: 2018 Signal Processing: Algorithms, Architectures, Arrangements, and Applications
(SPA); Sep 19-21, 2018; Poznan, Poland. [doi: 10.23919/SPA.2018.8563414]

27. Tsanas A, Little MA, McSharry PE, Spielman J, Ramig LO. Novel speech signal processing algorithms for high-accuracy
classification of Parkinson’s disease. IEEE Trans Biomed Eng 2012 May;59(5):1264-1271. [doi:
10.1109/TBME.2012.2183367] [Medline: 22249592]

28. Tsanas A, Arora S. Assessing Parkinson’s Disease Speech Signal Generalization of Clustering Results across Three
Countries: Findings in the Parkinson’s Voice Initiative Study: SCITEPRESS - Science and Technology Publications;
2021:124-131. [doi: 10.5220/0010383001240131]

29. Bongioanni P. Paralysis in ALS patients: an overview on assessment and treatment of motor impairment. Int J Med Biol
Front 2012;18(2/3):147.

JMIR Neurotech 2025 | vol. 4 | e64624 | p.24https://neuro.jmir.org/2025/1/e64624
(page number not for citation purposes)

Rubaiat et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25337322&dopt=Abstract
https://www.verywellhealth.com/als-vs-parkinsons-6826333
https://www.verywellhealth.com/als-vs-parkinsons-6826333
http://dx.doi.org/10.1038/scientificamerican0197-52
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8972618&dopt=Abstract
http://dx.doi.org/10.1001/archneurol.2011.3747
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22776913&dopt=Abstract
http://dx.doi.org/10.1016/j.jemermed.2005.01.020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16029831&dopt=Abstract
http://dx.doi.org/10.1016/j.jfludis.2019.01.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30641458&dopt=Abstract
http://dx.doi.org/10.1080/21678421.2017.1303515
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28355886&dopt=Abstract
http://dx.doi.org/10.23919/ICACT.2019.8701961
http://dx.doi.org/10.1007/978-1-59259
http://dx.doi.org/10.1016/B978-0-12-812344-7.00016-9
http://dx.doi.org/10.1101/2021.09.19.21263791
http://dx.doi.org/10.1109/JBHI.2016.2633509
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27913365&dopt=Abstract
http://dx.doi.org/10.1109/EMBC.2019.8856559
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31946612&dopt=Abstract
http://dx.doi.org/10.1038/nn0507-535
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17453052&dopt=Abstract
http://dx.doi.org/10.1155/2016/9832839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27366343&dopt=Abstract
http://dx.doi.org/10.15676/ijeei.2016.8.1.8
http://dx.doi.org/10.1109/ICASSP40776.2020.9053682
http://dx.doi.org/10.1142/S2424922X18400077
http://dx.doi.org/10.23919/SPA.2018.8563414
http://dx.doi.org/10.1109/TBME.2012.2183367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22249592&dopt=Abstract
http://dx.doi.org/10.5220/0010383001240131
http://www.w3.org/Style/XSL
http://www.renderx.com/


30. Wall C, Powell D, Young F, et al. A deep learning-based approach to diagnose mild traumatic brain injury using audio
classification. PLoS One 2022;17(9):e0274395. [doi: 10.1371/journal.pone.0274395] [Medline: 36170287]

31. McFee B, Raffel C, Liang D, et al. librosa: audio and music signal analysis in Python. Presented at: Python in Science
Conference; Jul 6-12, 2015; Austin, Texas. [doi: 10.25080/Majora-7b98e3ed-003]

32. Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. Presented at: COLT92; Jul 27-29,
1992; Pittsburgh, PA, United States. [doi: 10.1145/130385.130401]

33. Vapnik V. The Nature of Statistical Learning Theory: Springer Science Business Media; 2013.
34. Rokach L, Maimon O. Data Mining with Decision Trees: Theory and Applications, 2nd edition 2014, Vol. 81.
35. Breiman L. Random forests. Mach Learn 2001;45(1):5-32. [doi: 10.1023/A:1010933404324]
36. Abdurrahman G, Sintawati M. Implementation of XGBoost for classification of Parkinson’s disease. J Phys: Conf Ser 2020

May 1;1538(1):012024. [doi: 10.1088/1742-6596/1538/1/012024]
37. Pishgar M, Karim F, Majumdar S, Darabi H. Pathological voice classification using mel-cepstrum vectors and support

vector machine. arXiv. Preprint posted online on Dec 19, 2018. [doi: 10.48550/arXiv.1812.07729]
38. Difference between Random Forest and XGBoost. Geeks for Geeks. 2024. URL: https://www.geeksforgeeks.org/

difference-between-random-forest-vs-xgboost/ [accessed 2025-02-06]
39. Jain M, Narayan S, Balaji P, P BK. Speech emotion recognition using support vector machine. arXiv. Preprint posted online

on Feb 3, 2020. [doi: 10.48550/arXiv.2002.07590]

Abbreviations
ALS: amyotrophic lateral sclerosis
DT: decision tree
HNR: harmonics-to-noise ratio
ImPACT: Immediate Post-Concussion Assessment and Cognitive Testing
MDS-UPDRS: Movement Disorder Society - Unified Parkinson's Disease Rating Scale
MFCC: mel frequency cepstral coefficient
mTBI: mild traumatic brain injury
PD: Parkinson disease
RF: random forest
SAC: Standardized Assessment of Concussion
SCAT: Sport Concussion Assessment Tool
SVM: support vector machine
XGBoost: Extreme Gradient Boosting

Edited by P Kubben; submitted 22.07.24; peer-reviewed by H Rajaguru, M Gasmi, R Norel, S Mao; revised version received 26.11.24;
accepted 08.01.25; published 12.02.25.

Please cite as:
Rubaiat R, Templeton JM, Schneider SL, De Silva U, Madanian S, Poellabauer C
Exploring Speech Biosignatures for Traumatic Brain Injury and Neurodegeneration: Pilot Machine Learning Study
JMIR Neurotech 2025;4:e64624
URL: https://neuro.jmir.org/2025/1/e64624 
doi:10.2196/64624

© Rahmina Rubaiat, John Michael Templeton, Sandra L Schneider, Upeka De Silva, Samaneh Madanian, Christian Poellabauer.
Originally published in JMIR Neurotechnology (https://neuro.jmir.org), 12.2.2025. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Neurotechnology,
is properly cited. The complete bibliographic information, a link to the original publication on https://neuro.jmir.org, as well as
this copyright and license information must be included.

JMIR Neurotech 2025 | vol. 4 | e64624 | p.25https://neuro.jmir.org/2025/1/e64624
(page number not for citation purposes)

Rubaiat et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

http://dx.doi.org/10.1371/journal.pone.0274395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36170287&dopt=Abstract
http://dx.doi.org/10.25080/Majora-7b98e3ed-003
http://dx.doi.org/10.1145/130385.130401
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1088/1742-6596/1538/1/012024
http://dx.doi.org/10.48550/arXiv.1812.07729
https://www.geeksforgeeks.org/difference-between-random-forest-vs-xgboost/
https://www.geeksforgeeks.org/difference-between-random-forest-vs-xgboost/
http://dx.doi.org/10.48550/arXiv.2002.07590
https://neuro.jmir.org/2025/1/e64624
http://dx.doi.org/10.2196/64624
http://www.w3.org/Style/XSL
http://www.renderx.com/


Exploring Remote Monitoring of Poststroke Mood With Digital
Sensors by Assessment of Depression Phenotypes and
Accelerometer Data in UK Biobank: Cross-Sectional Analysis

Stephanie J Zawada1, PhD, MS; Ali Ganjizadeh2, MD; Gian Marco Conte2, MD, PhD; Bart M Demaerschalk1,3, MD,

MSc; Bradley J Erickson2,4, MD, PhD
1Mayo Clinic College of Medicine and Science, 5777 E. Mayo Boulevard, Phoenix, AZ, United States
2AI Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN, United States
3Department of Neurology, Division of Cerebrovascular Diseases, Mayo Clinic, Phoenix, AZ, United States
4Mayo Clinic College of Medicine and Science, Rochester, MN, United States

Corresponding Author:
Stephanie J Zawada, PhD, MS
Mayo Clinic College of Medicine and Science, 5777 E. Mayo Boulevard, Phoenix, AZ, United States

Abstract

Background: Interest in using digital sensors to monitor patients with prior stroke for depression, a risk factor for poor outcomes,
has grown rapidly; however, little is known about behavioral phenotypes related to future mood symptoms and if patients with
and without previously diagnosed depression experience similar phenotypes.

Objective: This study aimed to assess the feasibility of using digital sensors to monitor mood in patients with prior stroke with
a prestroke depression diagnosis (DD) and controls. We examined relationships between physical activity behaviors and self-reported
depression frequency.

Methods: In the UK Biobank wearable accelerometer cohort, we retrospectively identified patients who had previously suffered
a stroke (N=1603) and conducted cross-sectional analyses with those who completed a subsequent depression survey follow-up.
Sensitivity analyses assessed a general population cohort excluding previous stroke participants and 2 incident cohorts: incident
stroke (IS) and incident cerebrovascular disease (IC).

Results: In controls, the odds of being in a higher depressed mood frequency category decreased by 23% for each minute spent
in moderate‐to‐vigorous physical activity (odds ratio 0.77, 95% CI 0.69‐0.87; P<.001). This association persisted in both
general cohorts and in the IC control cohort.

Conclusions: Although moderate‐to‐vigorous physical activity was linked with less frequent depressed mood in patients
with prior stroke without DD, this finding did not persist in DDs. Thus, accelerometer-mood monitoring may provide clinically
useful insights about future mood in patients with prior stroke without DDs. Considering the finding in the IC cohort and the lack
of findings in the IS cohorts, accelerometer-mood monitoring may also be appropriately applied to observing broader cerebrovascular
disease pathogenesis.

(JMIR Neurotech 2025;4:e56679)   doi:10.2196/56679

KEYWORDS

depression; cerebrovascular disease; remote monitoring; stroke; accelerometers; mobile phone

Introduction

Overview
Depression is an established risk factor for poor outcomes after
a stroke and transient ischemic attack (TIA), including
subsequent stroke and other cerebrovascular diseases (CeVDs)
[1,2]. Although poststroke depression (PSD) affects roughly
one-third of patients with stroke, screening for depression in
patients after a stroke is not routine, with less than 10% of
patients with stroke screened [3]. Furthermore, it remains
unclear when follow-up PSD screening should occur, as current

research suggests that not all patients will experience PSD
symptoms immediately after a stroke and, for those who do, the
majority will experience recurrent depression episodes in the
years after a stroke [4]. A reason for this gap in screening is the
shortage of neurologists, particularly those with diagnostic
training in identifying PSD [5]. Accelerated by the widespread
adoption of personal mobile devices, from computers to
smartwatches, it is critical to investigate the potential of such
devices to collect meaningful data outside of clinical settings,
aiding clinicians in identifying depressed mood in patients with
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stroke—and, potentially, those most at risk for subsequent stroke
and CeVDs [6].

Background
The prevalence of PSD remains unknown, partly due to its
heterogeneous nature, spanning unique somatic, behavioral,
cognitive, motivational, and emotional components [7]. The
severity of its manifestation ranges from mild symptoms to
clinical-grade depression, the former of which relies on
self-reported scoring methods inherently subject to bias,
especially in patients with cognitive impairment for whom
self-reported surveys may not be reliable [8]. Although
clinician-administered assessments, like the
Montgomery–Åsberg Depression Rating Survey (MADRS),
offer gold-standard assessments of symptoms, nurse and
physician shortages complicate the routine administration of
such instruments [9].

In some survivors, depression may emerge alongside the
incipient pathogenesis of cerebrovascular dysfunction, while
for others, depression may be a reaction to being conscious of
cognitive impairment or the putative manifestation of silent
cerebral infarcts [10,11]. As such, individual depression
phenotypes may vary greatly across survivors with identical
survey summary scores. Although investigations into the
associations between stroke location within the brain and
self-reported depression survey scores have yielded inconclusive
results, a recent cross-sectional study of patients with prior
stroke (n=200) found that symptoms assessed by MADRS
correlate with specific macrostructural characteristics [12].
Considering that clinician-administered assessments, like
MADRS, are more accurate than self-reported survey scores in
patients with prior stroke, the need for a modified approach to
monitoring patients with stroke for depression emerges.

In recent years, objective data from portable and wearable
sensors have demonstrated the feasibility of augmenting
self-reported mood surveys outside of clinics, a promising
approach for monitoring patients with symptomatic and
asymptomatic deteriorating brain health outside of standardized,
clinical environments [13-20]. In addition, accelerometer
measures of behavior have established a difference in PA
engagement stratified by depression severity, highlighting the
need for a thoughtful approach to PSD screening and monitoring
that ensures patients with emerging or mild depression
symptoms, unlike those with previous documented depressive
episodes, are not neglected [21].

While triaging patients with PSD for preventative intervention
could yield clinically meaningful functional recovery outcomes,
the potential of such an approach for preventing future CeVD
diagnoses remains to be seen. Numerous studies have found
that depressive symptoms are associated with an increased risk
of subsequent CeVD, from acute CeVDs, like stroke and TIA,
to more chronic conditions, like cerebral arterial stenosis and
vascular dementia [11,22-24]. Furthermore, recent research
suggests daily functioning and cognitive changes may be
observable up to 10 years before some types of CeVD [25].
Thus, particular attention should be paid to behavioral patterns
in patients with PSD to elucidate phenotypes with predictive
potential for functional outcomes and neurologic disorders.

Previous Work
Blending self-reported assessments of phenomena, like mood,
recorded through web browsers and smartphone apps, with
passive sensor data, like that from wearable accelerometers, is
gaining popularity in real-world settings [26,27]. Numerous
pilot studies have demonstrated the potential for wearable and
minimally invasive sensors to detect neurologic conditions;
however, these tools have neither been validated in population
cohorts nor combined with survey sampling of mood [28].

Early-stage evidence suggests that monitoring lifestyle behavior
and mood in PSD is feasible [29-31]. The results of a small
longitudinal study (n=40) suggest that self-reported
moderate-to-vigorous physical activity (MVPA) before stroke
is associated with improved mobility and self-care as well as
decreased discomfort after stroke [32]. While the study did not
sample mood outside of clinical environments, Reinholdsson
et al [33] used self-report surveys to expand on the above
findings, demonstrating that patients who engage in higher
levels of prestroke physical activity (PA) experienced less severe
PSD compared with patients who were physically inactive .

In addition, current literature on accelerometers in PSD suggests
that distinct behavioral patterns may identify patients with
depression within the first year after a stroke. In a 2022
prospective observational study of recently discharged patients
with minor ischemic stroke (n=76), participants wore
accelerometers in-hospital for 1 week. Analyses revealed that
only increased sedentary behavior (SB) and reduced light
physical activity (LPA) were linked with more intense
depression, assessed through a written Geriatric Depression
Scale survey, 3 months after hospitalization in this older adult
cohort [34]. In a small pilot study (n=40) of stroke survivors,
MVPA was linked with positive mood [35]. Although extensive
research has confirmed links between sleep disorders and both
depression and incident CeVD (IC), no research has observed
both depressive symptoms and objectively measured sleep after
stroke [36,37]. Furthermore, no previous accelerometer research
into PSD beyond the first year of stroke recovery has been
published.

Goal of This Study
The goal of this study is twofold: first, to investigate potential
associations between objectively measured behavior and future
depression frequency in patients with prior stroke assessed by
a remote approach and second, to explore whether that
association varies between patients with prior stroke with a
prestroke depression diagnosis (DDs) and those without
(controls).

We conducted a cross-sectional analysis with the UK Biobank
(UKBB), the most extensive lifestyle and mood cohort to date,
assessing the relationships between accelerometer-measured
sleep, SB, LPA, and MVPA and a subsequent depression
descriptor (depressed mood frequency). Given that depression
before stroke may yield behavioral phenotypes distinct from
those emergent in participants without a prestroke depression
diagnosis, we created 2 cohorts of patients with prior stroke:
those with a clinical depression diagnosis before stroke and
those without. As this analysis focuses on participants who may
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develop or have undiagnosed PSD, participants whose PSD
diagnosis was recorded were excluded. Adjusting for age, sex,
ethnicity, multiple relevant comorbidities, and time elapsed
between accelerometer monitoring and depression survey
submission, we hypothesized that increased LPA and MVPA
time would be associated with a reduction in the odds of being
in a more frequent depressed mood category while increased
SB time would be associated with a rise in the odds of being in
a more frequent depressed mood category. Considering the
established relationship between sleep and depressed mood, we
created a binary variable (yes or no) for guideline-recommended
sleep (7‐9 h/d). We hypothesized that guideline-recommended
sleep would be associated with a reduction in the odds of being
in a more frequent depressed mood category.

Methods

Recruitment
The UKBB enrolled middle-aged (40‐69 y) participants
(N=502,364) at 22 assessment centers across the United
Kingdom at a baseline assessment (2006‐2010), which
included in-person interviews, touchscreen surveys, and physical
examinations to extract lifestyle and environmental data used
in this study. Although all baseline participants (n=502,151)
were invited, only 72,652 enrolled in the 1-week accelerometer
study (2013‐2015) and completed the depression frequency
survey (2016‐2017). Hospital and other diagnostic registries
were linked to enrolled participants.

Participant Cohorts
Among participants who completed both remote monitoring
components, those with dementia (n=23) were excluded. Quality
control filtering demonstrated by Madjedi et al [38] was applied
(n=70,785), which excluded those with outlier acceleration
(>100 mg), more than 1% of readings exceeding ±8 g (clips),
accelerometer wear time less than 3 days, and missing data for
at least one 60-minute interval throughout 24-hour periods.
Only participants with a previous stroke, including ischemic
stroke, hemorrhagic stroke, and TIA (G45), were included
(n=1660). Retinal artery occlusion (H34) was included as a
stroke, as it is now considered a type of acute ischemic stroke
[39]. Participants who were diagnosed with depression after
stroke but before the accelerometer study (n=57) were excluded.

Among those meeting the inclusion criteria (n=1603),
participants were divided into two cohorts: (1) those with a
prestroke depression diagnosis at accelerometer study
commencement (n=155) and (2) controls, that is, those without
a prestroke depression diagnosis (n=1448) (Figure 1). No
participants were diagnosed with depression between the
accelerometer study and the follow-up depression survey.

Participants with a history of depression (International
Classification of Diseases, Tenth Revision [ICD-10] codes
F32-39) comprised the depression diagnosis (DDs) cohort.
Definitions (ICD-10 codes) used for inclusion and exclusion
criteria as well as diagnostic classification are available in
Multimedia Appendix 1.

Figure 1. Classification algorithm for participant cohorts.

Data Collection
Accelerometer study participants were instructed to wear the
Axivity AX3 commercial accelerometer wristwatch continuously
on their dominant arm for 1 week. The depressed mood
frequency question was administered through a link accessible

on smartphone, tablet or PC browsers as part of the standardized
Patient Health Questionnaire-2 (PHQ-2) survey: “Over the past
two weeks, how often have you felt down, depressed, or
hopeless?” Responses were ordinal scores indicating the
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frequency of depressed mood, with 1=“Not at all”; 2=“Several
days”; 3=“More than half of days”; and 4=“Nearly every day.”

Permanent covariables were obtained at baseline visit, including
sex and ethnicity. For each participant, age at the time of
accelerometer study was calculated. Time-to-assessment was
individually calculated by subtracting the accelerometer start
date from the date of submitting the depressed mood survey.
Comorbidity diagnoses before the accelerometer study were
obtained from linked patient and hospital databases.

Statistical Analysis
To compare continuous and categorical covariables, the
Mann-Whitney U test and χ² test, respectively, were used. A
cross-sectional analysis using ordinal logistic regression to
investigate the association between objective behavior predictors
and the ordinal outcome variable, depressed mood frequency
over the past 2 weeks, was conducted on data obtained at the
accelerometer study and remote follow-up survey.

For both DD and control cohorts, separate models were fitted
to evaluate whether the role of objective behavior predictors in
depressed mood frequency differed between cohorts.

Analyses were performed in R (R Foundation for Statistical
Computing), using polr from the library MASS. The effect sizes
of objective behavior predictors, adjusted for confounders, on
depressed mood frequency were plotted as odds ratios with 95%
CIs. The Likelihood Ratio Test was used to obtain all P values
and associated CIs. P<.05 was statistically significant.

Sensitivity Analysis
Three sensitivity analyses (also using ordinal logistic regression
models), each considering DDs and controls, were performed
using UKBB data. First, a general population dataset wasf
generated. This included all participants eligible for inclusion

in the accelerometer study and follow-up depression frequency
survey who did not have a previous stroke diagnosis.

Next, participants with an initial IC diagnosis (after the
depression frequency survey) were filtered into a separate
dataset. Ordinal logistic regression models were fitted to assess
the relationships between objective behavior predictors and
depressed mood frequency. Finally, participants in the IC cohort
who had an IS diagnosis were filtered into a separate dataset,
and ordinal logistic regression models were fitted to assess the
target relationship. The investigation of IC as a composite end
point reflects updated understanding of stroke as sharing
etiology with other neurologic rather than circulatory system
disorders, as defined in the most recent International
Classification of Diseases, Eleventh Revision (ICD-11) [37].

For each filtered cohort, sample characteristics were obtained
for review.

Ethical Considerations
National Health Service Research Ethics Committee
(11/NW/0382) granted ethical approval for the UKBB
population cohort study. Informed consent was obtained from
all UK Biobank participants under National Health Service
National Research Ethics Service (Ref 11/NW/0382). All UKBB
data are deidentified.

Results

Study Characteristics
For participants in the 2-stage remote monitoring study (Table
1), the DDs had a higher proportion of women compared with
controls (58.7% vs 40.7%). On average, DDs were younger (64
vs 66 y), slept slightly longer (9.2 vs 9.0 h/d), spent slightly less
time in MVPA (29.3 vs 37.3 min/d) and SB (580.1 vs 583.6
min/d), and spent slightly more time in LPA (281.4 vs 278.2
min/d).
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Table . Baseline characteristics of patients with previous stroke.

P valueControlsPrestroke depression

1448155Number of participants, n

<.00166 (6.5)64 (7)Age, mean (SD)

Gender, n (%)

<.001859 (59.3)64 (41.3)Men

Race, n (%)

.681418 (97.9)153 (98.7)White

<.0019.0 (1.8)9.2 (1.8)Sleep, mean (SD)

.27736 (50.8)71 (45.8)Sleep (7‐9 h/d), n (%)

<.001583.6 (112.8)580.1 (114.4)SBa, mean (SD)

<.001278.2 (102.4)281.4 (106.9)LPAb, mean (SD)

<.00137.3 (33.0)29.3 (31.2)MVPAc, mean (SD)

<.0011.8 (0.6)1.8 (0.7)Time-to-assessment, mean (SD)

.09130 (9.0)21 (13.5)Diabetes, n (%)

.14615 (42.5)76 (49)Hyperlipidemia, n (%)

11448 (100)155 (100)Hypertension, n (%)

.70348 (24.0)40 (25.8)Multiple strokes, n (%)

<.0019.8 (8.8)7.8 (6.4)Time since most recent stroke, mean (SD)

aSB: sedentary behavior.
bLPA: light physical activity.
cMVPA: moderate-to-vigorous physical activity.

All participants had a hypertension diagnosis. The average time
between accelerometer study start and depressed mood survey
submission (time-to-assessment) was 1.8 years for both cohorts.

The average time from the initial stroke to the accelerometer
study commencement was less for DDs than controls (7.8 vs
9.8 y).

Among DDs, 9 participants slept less than 7 hours while 75
slept more than 9 hours. In the control group, 79 participants
slept less than 7 hours while 633 slept more than 9 hours.

Cross-Sectional Analysis
No significant association persisted in both the DD and control
cohorts (Table 2). In controls, for each minute spent in MVPA
per day, the odds of being in a higher depressed mood frequency
category decreased by 23% (P<.001).

Table . Ordinal logistic regression assessing objective behavior predictors and depressed mood frequency.

ControlsPrestroke depressionPrevious stroke participants

P valueOR (95% CI)P valueORa (95% CI)

.410.88 (0.66‐1.19).060.49 (0.23‐1.03)Sleep (7‐9 hr/d)

.631.00 (1.00‐1.00).101.00 (1.00‐1.01)SBb (min/d)

.351.00 (1.00‐1.00).201.00 (0.99‐1.00)LPAc (min/d)

<.0010.77 (0.69‐0.87).330.86 (0.64‐1.17)MVPAd (min/d)

aOR: odds ratio.
bSB: sedentary behavior.
cLPA: light physical activity.
dMVPA: moderate-to-vigorous physical activity.

Models were adjusted for age, sex, ethnicity, time-to-assessment,
hyperlipidemia diagnosis, and diabetes diagnosis. Odds ratios
(ORs) with 95% CIs for frequency of depressed mood are

reported (Figure 2). ORs above 1 correspond to an increase in
the accelerometer-measured behavior associated with increased
depressed mood frequency.
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Figure 2. Forest plot of odds ratios for depressed mood frequency by accelerometer-measured behavior comparing participants with prestroke depression
diagnosis (DDs) and control cohorts. LPA: light physical activity; MVPA: moderate-to-vigorous physical activity. *** denotes statistical significance.

Sensitivity Analysis

Study Characteristics
In each filtered cohort (Multimedia Appendix 2), DDs were
younger than controls (general cohort: 60 vs 62 y; IS: 64 vs 66
y; IC: 65 vs 67 y) and had a greater proportion of females
(69.4% vs 56.8%; 60.0% vs 45.6%; 61.8% vs 45.1%). In the
general population cohort, DDs had a greater proportion of
White participants (97.7% vs 97%). On average, DDs also spent
less time across cohorts in MVPA (35.0 vs 42.9 min/d; 31.0 vs
39.5 min/d; 32.0 vs 38.4 min/d), less time in LPA (295.0 vs
300.3 min/d; 286.7 vs 291.0 min/d; 287.5 vs 287.7 min/d), and
more time asleep (9.1 vs 8.9 h/d; 9.1 vs 9.0 h/d; 9.04 vs 8.98
h/d).

While DDs in the general cohort spent slightly less time, on
average, in SB than controls (564.3 vs 564.4 min/d), DDs in
the IS and IC cohorts spent more time sedentary on average
(577.1 vs 569.9 min/d; 578.2 vs 575.3 min/d).

In the general cohort, DDs had a higher proportion of diabetes
(4.4% vs 2.9%) and hyperlipidemia (17.9% vs 14.9%) diagnoses
and a lower proportion of participants with optimal sleep
duration per day (49.5% vs 55.4%).

For the IS cohort, the average time from the completion of the
depression survey to first stroke diagnosis was slightly more
for DDs (1.9, SD 0.7 y) than controls (1.8, SD 0.6 y). In the IC
cohort, the average time from the completion of the depression
survey to first CeVD diagnosis was similarly more for DDs
(1.9, SD 0.7 y) than controls (1.8, SD 0.7 y).

Cross-Sectional Analysis
In the general model (Multimedia Appendix 3), for each minute
spent in MVPA, the odds of being in a higher depressed mood
frequency category decreased by 18.4% (P<.001) and 13.5%

(P<.001) for DDs (n=6096) and controls (n=62,589),
respectively.

Also in the general model, specific only to controls, getting
guideline-recommended sleep hours (7‐9 h) each day was
associated with a decreased odds of being in a higher depressed
mood frequency category (5.3%; P=.02).

No significant associations were identified for those in the
IS-only cohort (Multimedia Appendix 4).

For the final sensitivity analysis (Multimedia Appendix 5),
assessing only those participants with an IC diagnosis, including
stroke, the odds of being in a higher depressed mood frequency
category decreased by 12.2% for each minute increase in MVPA
(P=.03), only in controls (n=1526).

Discussion

Principal Findings
This investigation partially supports the hypothesis that objective
behavior predictors would be associated with future depressed
mood frequency. Although we found no significant associations
between depressed mood frequency and SB, LPA or sleep for
patients with prior stroke, regardless of prestroke depression
diagnosis, we did find that the odds of being in a higher
depressed mood frequency category decreased for each minute
spent in MVPA; however, this association was only observed
in participants without a prestroke depression diagnosis. This
finding supports the exploratory aim of this manuscript,
suggesting that participants with prestroke depression may
experience different behavioral patterns compared to those
without a prestroke depression diagnosis. Such a finding can
potentially help clinicians tailor programs monitoring patients
at risk of PSD.

The sensitivity analysis in the general cohort corroborates
established findings that MVPA confers a protective effect on
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mood, regardless of previous depression diagnosis. The lack of
findings for the sensitivity analysis including only IS cases may
be driven by the small sample sizes; however, the lack of
findings also brings into question the potential for
accelerometers to capture clinically actionable aberrations in
patients before a stroke. Given that the protective effect of
MVPA on depressed mood frequency was observed in the
control cohort of patients with IC, accelerometer monitoring
may be more appropriately directed to assess a broader range
of neurologic changes, not just those linked with strokes.

Overall, the results suggest that accelerometer-based monitoring
of behavior linked to depressed mood frequency may help
clinicians identify patients who would benefit from
resource-intensive screening, like the MADRS assessment. The
sensitivity analyses support a separate approach for monitoring
patients with a previous depression diagnosis, or more severe
depression, compared to those with no documented depression
or mild undiagnosed depression. When applied to predictive
monitoring, a remote accelerometer-mood survey approach may
be useful in cohorts of patients without a previous depression
diagnosis, considering that patients with IC without clinical
depression may experience observable behavior and mood
changes before a CeVD diagnosis while their clinically
depressed counterparts may not.

Limitations
A chief limitation of this study is that self-report data, like the
depressed mood frequency survey, are subject to inaccuracies.
Self-reported bias in survey responses may lead to
misclassification of depressive symptom frequency and could
influence different time-dependent results in our cohorts.
Furthermore, the frequency of depression measures was not
obtained by a clinician-graded protocol but, rather, by a survey
questionnaire. Also, as the accelerometer study was only
administered for one week and, on average, over a year before
the follow-up mood survey, the impact of time between the
objective measures and follow-up could have introduced
substantial changes. The lack of associations observed for DDs
may be due to the small sample size of participants with a
previous depression diagnosis across cohorts. Moreover, the
accelerometer study was only 1-week long and, therefore, may
not generalize well to accurately represent busier or less busy
weeks for patients. Accelerometer data collected on weekends
versus weekdays may be distinct; however, this was not
considered in this study.

The dichotomous investigation of clinically depressed and
control patients are study strengths. In addition, UKBB
participants were primarily White, limiting the generalizability
of our findings outside of European populations. This UKBB
study also primarily included participants aged 60 years and
older and, as such, may not generalize well to young or
middle-age adult populations. The majority of DDs were female
across cohorts, a frequent finding in studies; however, male
patients are less likely to seek out mental health resources, and
the cohort stratification may be impacted by this.

Also, in the main analysis of previous stroke patients,
participants diagnosed with clinical-grade depression after first
stroke were excluded from this analysis. Considering the long

gap in time from initial stroke to accelerometer study
commencement, participants with a more immediate PSD
diagnosis may either exhibit more intense symptoms or
experience an underlying pathogenesis distinct from participants
whose PSD symptoms are mild or emerge in the years after
stroke.

Combining stroke types together as a single end point, as was
done in the main analysis as well as the IS sensitivity analysis,
may not consider unique characteristics of each stroke type and,
as such, generated no significant results. Sleep was also assessed
as a daily composite value, without consideration for time spent
in a nap or broken sleep throughout the day. Together, these 2
limitations may have introduced confounding effects when
considering sleep and depressed mood frequency, as previous
research has shown short and long sleep to be associated with
increased risk of intracerebral hemorrhage and ischemic stroke,
respectively [40]. Furthermore, considering that all participants
in our cohorts were hypertensive, MVPA’s protective effect on
depressive mood frequency may occur through improved
cardiovascular health, rather than by conferring direct cerebral
effects.

Comparison With Previous Work
No previous study assessed objective behavior measures and
self-reported depressed mood frequency in patients with prior
stroke years after their initial diagnosis. A key problem inherent
in accelerometer research is that adherence to study designs is
less-than-satisfactory for most studies [41]. This study also
excluded participants with a more immediate PSD diagnosis,
considering only those with prestroke depression diagnoses or
those with no or mild depression after stroke. A self-report
survey study of recent patients with prior stroke found that
patients with high levels of PA before a stroke experienced less
severe PSD [33]. Although our study could not confirm this
analysis due to the design of the UKBB study, we extended
those results by confirming that MVPA confers a protective
effect on mood before a CeVD diagnosis in patients without a
previous depression diagnosis, but not before a stroke-only
diagnosis.

One plausible explanation for the lack of association between
MVPA and depressed mood frequency in DDs may be that
stroke survivors with a previous depression diagnosis have
persistently deficient levels of brain-derived neurotropic factor
(BDNF), a trophic factor released after exercise that is linked
with improved mood benefits. It is well established that stroke
patients in general have lower levels of BDNF, a marker of poor
functional recovery [42]. The lack of a link between improved
mood and MVPA in DDs may be driven by a less intense
“exercise high” due to reduced or impaired BDNF function. In
addition, other contributing factors, such as time spent in MVPA
or neuroinflammation, may play a role in modulating BDNF
expression in DDs. Of note, the lack of a significant association
between MVPA and depressed mood frequency in participants
with a previous depression diagnosis may be attributed to less
time spent in MVPA compared with controls across all cohorts
(patients with prior stroke, general population, IS, and IC). Time
spent in MVPA may need to exceed a time threshold in
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participants with previous depression diagnoses to improve
mood.

The significant findings for IC cases, compared with the lack
of findings for IS-only cases, are consistent with the updated
ICD-11 classification of CeVDs as a type of brain disease with
shared etiology, rather than circulatory system disorders [37].
The protective effect of guideline-recommendation sleep (7‐9
h/d) only observable in controls in the general cohort
corroborates established work; however, the lack of associations
across other cohorts may be explained by high levels of
individual variability in sleep patterns, that is, nighttime
disturbances, insomnia, and so on, previously identified in
patients with depression as well as those at high risk of stroke
[43,44].

A small pilot study of patients with minor ischemic stroke that
found SB was positively associated with depression intensity
and LPA was inversely associated with depression intensity
[34]. Considering that this accelerometer study was conducted
within the first 3 months after hospital discharge, our results
extend these findings to look at mood in the years after a stroke.
For instance, SB and LPA may be significant to monitor in the
months after a stroke, while MVPA may be appropriate to
monitor in the years after a stroke. Alternatively, MVPA may
be less useful to monitor in minor ischemic stroke cases.

Using a larger dataset, our study builds on the feasibility
demonstration of a small real-world study with patients with
prior stroke, years after diagnosis, collecting one week of
accelerometer data and ecological momentary assessments [45].
The results of our general cohort analysis considering
participants without a previous depression diagnosis align with
those from Sarris et al [46], who found that self-reported optimal
sleep and PA were linked with decreased frequency of depressed
mood in UKBB participants.

Conclusions
Our results highlight the importance of encouraging MVPA in
patients with prior stroke without a depression diagnosis.
Patients with prior strokes may be able to minimize short- and
long-term disability and improve outcomes by proactively
managing depressive symptoms. Applying MVPA to improve
mood provides the added benefits of exercise-induced
inflammation reduction and enhanced vascular elasticity while
simultaneously reducing the risk of developing comorbidities
and arterial stenosis or occlusion [47].

Considering that the only significant associations in the main
analysis and incident sensitivity analyses were those that
involved MVPA, it calls into question whether using
accelerometer and depressed mood frequency survey data
together can help clinicians identify patients who would benefit
from remote monitoring, that is, this approach may generate
more noise than signal over time. This study only considered a
brief (1-week) accelerometer study, and over a year, on average,
eclipsed between the in situ accelerometer study and the remote
mood follow-up survey. Since neither the main analysis
(previous stroke cohort) nor the incident sensitivity analyses
resulted in significant associations for participants with a
previous depression diagnosis, this underscores the need for
additional research to determine whether this type of monitoring
strategy can generate clinically actionable insights in participants
with a previous depression diagnosis. Behavioral monitoring
with accelerometer data and self-report surveys may not be
helpful in patients with severe, or clinical-grade, depression.
Future research should consider large sample sizes, longitudinal
study designs, and analyze results stratified by time-to-diagnosis.
Relevant to remote monitoring researchers, our findings
highlight behavioral differences for those developing exploratory
programs and clinically meaningful digital endpoints.

Overall, the cross-sectional analyses offer a robust perspective
into the appropriateness of depression monitoring by digital
sensors, using accelerometer wristwatches and smartphone,
tablet, or PC-linked sensors. These insights offer clinical teams
a strategy for translating digital health data, in this case,
objective and subjective behavior measures, into scientifically
valid frameworks for investigation. Future monitoring of patients
at risk of different CeVD types, including those with a previous
stroke diagnosis, should expand on our strategy and use both
active and passive data to investigate relationships between
objective digital sensor data and subsequent mood reports in
patients diagnosed with and screened for depression. Based on
our exploratory analysis, the potential for longitudinal data from
objective sensors to predict mood appears feasible. In addition,
PSD researchers should aim to characterize behavior measures
linked with depressed mood across defined and clinically
meaningful time periods, such as in the 3-month routine
monitoring period after a stroke or TIA, considering that
observable behaviors may evolve as CeVD or other neurologic
disorder pathogenesis progresses.

 

Acknowledgments
This research has been conducted using the UK Biobank Resource under Application Number 91159. This research was funded
by Mayo Clinic. SJZ was supported by a predoctoral fellowship in value assessment from the PhRMA Foundation and a National
Center for Advancing Translational Sciences TL1 training grant (5TL1TR002380-05).

Disclaimer
The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

JMIR Neurotech 2025 | vol. 4 | e56679 | p.33https://neuro.jmir.org/2025/1/e56679
(page number not for citation purposes)

Zawada et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Data Availability
All data are publicly available, upon research approval access, from UK Biobank [48]. The datasets generated during and analyzed
during this study are available from the corresponding author on reasonable request. Analysis code is available [49].

Authors' Contributions
SJZ completed the study design and manuscript drafting. BJE, BMD, and AG provided clinical expertise and contributed to
manuscript editing. GMC provided expertise for obtaining data access and designing the study. AG conducted statistical review.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Definitions for classifying patients.
[DOCX File, 17 KB - neuro_v4i1e56679_app1.docx ]

Multimedia Appendix 2
Sample characteristics across sensitivity cohorts.
[DOCX File, 18 KB - neuro_v4i1e56679_app2.docx ]

Multimedia Appendix 3
Ordinal logistic regression assessing objective behavior predictors and depressed mood frequency in the general cohort.
[DOCX File, 15 KB - neuro_v4i1e56679_app3.docx ]

Multimedia Appendix 4
Ordinal logistic regression assessing objective behavior predictors and depressed mood frequency in incident stroke cohorts.
[DOCX File, 15 KB - neuro_v4i1e56679_app4.docx ]

Multimedia Appendix 5
Ordinal logistic regression assessing objective behavior predictors and depressed mood frequency in incident cerebrovascular
disease cohorts.
[DOCX File, 15 KB - neuro_v4i1e56679_app5.docx ]

References
1. Broomfield NM, Quinn TJ, Abdul-Rahim AH, Walters MR, Evans JJ. Depression and anxiety symptoms post-stroke/TIA:

prevalence and associations in cross-sectional data from a regional stroke registry. BMC Neurol 2014 Oct 1;14:198. [doi:
10.1186/s12883-014-0198-8] [Medline: 25269762]

2. Medeiros GC, Roy D, Kontos N, Beach SR. Post-stroke depression: a 2020 updated review. Gen Hosp Psychiatry
2020;66:70-80. [doi: 10.1016/j.genhosppsych.2020.06.011] [Medline: 32717644]

3. Selvaraj S, Arora T, Casameni Montiel T, et al. Early screening for post-stroke depression, and the effect on functional
outcomes, quality of life and mortality: a protocol for a systematic review and meta-analysis. BMJ Open 2021 Aug
17;11(8):e050451. [doi: 10.1136/bmjopen-2021-050451] [Medline: 34404715]

4. Liu L, Marshall IJ, Pei R, et al. Natural history of depression up to 18 years after stroke: a population-based South London
Stroke Register study. Lancet Reg Health Eur 2024 May;40:100882. [doi: 10.1016/j.lanepe.2024.100882] [Medline:
38745986]

5. Dall TM, Storm MV, Chakrabarti R, et al. Supply and demand analysis of the current and future US neurology workforce.
Neurology (ECronicon) 2013 Jul 30;81(5):470-478. [doi: 10.1212/WNL.0b013e318294b1cf] [Medline: 23596071]

6. Brambilla M, Cerasetti M, Pepe F, et al. Comparison of Oxford Cognitive Screen and Montreal Cognitive Assessment
feasibility in the stroke unit setting. a pilot study. Cereb Circ Cogn Behav 2021;2:100021. [doi: 10.1016/j.cccb.2021.100021]
[Medline: 36324706]

7. Capaldi II VF. Emerging strategies in the treatment of poststroke depression and psychiatric distress in patients. PRBM
2010;3:109. [doi: 10.2147/PRBM.S10035]

8. Nakling AE, Aarsland D, Næss H, et al. Cognitive deficits in chronic stroke patients: neuropsychological assessment,
depression, and self-reports. Dement Geriatr Cogn Disord Extra 2017 Sep 14;7(2):283-296. [doi: 10.1159/000478851]

9. Ahmed NN, Reagu S, Alkhoori S, Cherchali A, Purushottamahanti P, Siddiqui U. Improving mental health outcomes in
patients with major depressive disorder in the Gulf States: a review of the role of electronic enablers in monitoring residual
symptoms. J Multidiscip Healthc 2024;17:3341-3354. [doi: 10.2147/JMDH.S475078] [Medline: 39010931]

JMIR Neurotech 2025 | vol. 4 | e56679 | p.34https://neuro.jmir.org/2025/1/e56679
(page number not for citation purposes)

Zawada et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=neuro_v4i1e56679_app1.docx&filename=99b343b1-cf8f-11ef-95c7-21767c500140.docx
https://jmir.org/api/download?alt_name=neuro_v4i1e56679_app1.docx&filename=99b343b1-cf8f-11ef-95c7-21767c500140.docx
https://jmir.org/api/download?alt_name=neuro_v4i1e56679_app2.docx&filename=99c54511-cf8f-11ef-95c7-21767c500140.docx
https://jmir.org/api/download?alt_name=neuro_v4i1e56679_app2.docx&filename=99c54511-cf8f-11ef-95c7-21767c500140.docx
https://jmir.org/api/download?alt_name=neuro_v4i1e56679_app3.docx&filename=99d830d1-cf8f-11ef-95c7-21767c500140.docx
https://jmir.org/api/download?alt_name=neuro_v4i1e56679_app3.docx&filename=99d830d1-cf8f-11ef-95c7-21767c500140.docx
https://jmir.org/api/download?alt_name=neuro_v4i1e56679_app4.docx&filename=99ea5941-cf8f-11ef-95c7-21767c500140.docx
https://jmir.org/api/download?alt_name=neuro_v4i1e56679_app4.docx&filename=99ea5941-cf8f-11ef-95c7-21767c500140.docx
https://jmir.org/api/download?alt_name=neuro_v4i1e56679_app5.docx&filename=99fdba31-cf8f-11ef-95c7-21767c500140.docx
https://jmir.org/api/download?alt_name=neuro_v4i1e56679_app5.docx&filename=99fdba31-cf8f-11ef-95c7-21767c500140.docx
http://dx.doi.org/10.1186/s12883-014-0198-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25269762&dopt=Abstract
http://dx.doi.org/10.1016/j.genhosppsych.2020.06.011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32717644&dopt=Abstract
http://dx.doi.org/10.1136/bmjopen-2021-050451
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34404715&dopt=Abstract
http://dx.doi.org/10.1016/j.lanepe.2024.100882
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38745986&dopt=Abstract
http://dx.doi.org/10.1212/WNL.0b013e318294b1cf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23596071&dopt=Abstract
http://dx.doi.org/10.1016/j.cccb.2021.100021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36324706&dopt=Abstract
http://dx.doi.org/10.2147/PRBM.S10035
http://dx.doi.org/10.1159/000478851
http://dx.doi.org/10.2147/JMDH.S475078
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39010931&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


10. Lyketsos CG, Kozauer N, Rabins PV. Psychiatric manifestations of neurologic disease: where are we headed? Dialogues
Clin Neurosci 2007;9(2):111-124. [doi: 10.31887/DCNS.2007.9.2/clyketsos] [Medline: 17726911]

11. van Sloten TT, Sigurdsson S, van Buchem MA, et al. Cerebral small vessel disease and association with higher incidence
of depressive symptoms in a general elderly population: the AGES-Reykjavik study. Am J Psychiatry 2015
Jun;172(6):570-578. [doi: 10.1176/appi.ajp.2014.14050578] [Medline: 25734354]

12. Krick S, Koob JL, Latarnik S, et al. Neuroanatomy of post-stroke depression: the association between symptom clusters
and lesion location. Brain Commun 2023;5(5):fcad275. [doi: 10.1093/braincomms/fcad275] [Medline: 37908237]

13. Moses JC, Adibi S, Shariful Islam SM, Wickramasinghe N, Nguyen L. Application of smartphone technologies in disease
monitoring: a systematic review. Healthcare (Basel) 2021 Jul 14;9(7):889. [doi: 10.3390/healthcare9070889] [Medline:
34356267]

14. Wouters F, Gruwez H, Vranken J, et al. The potential and limitations of mobile health and insertable cardiac monitors in
the detection of atrial fibrillation in cryptogenic stroke patients: preliminary results from the REMOTE trial. Front Cardiovasc
Med 2022;9:848914. [doi: 10.3389/fcvm.2022.848914] [Medline: 35498000]

15. Phienphanich P, Tankongchamruskul N, Akarathanawat W, et al. Automatic stroke screening on mobile application: features
of gyroscope and accelerometer for arm factor in FAST. Presented at: 2019 41st Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC); Jul 23-27, 2019; Berlin, Germany p. 4225-4228. [doi:
10.1109/EMBC.2019.8857550]

16. Capela NA, Lemaire ED, Baddour N, Rudolf M, Goljar N, Burger H. Evaluation of a smartphone human activity recognition
application with able-bodied and stroke participants. J Neuroeng Rehabil 2016 Jan 20;13:5. [doi: 10.1186/s12984-016-0114-0]
[Medline: 26792670]

17. Beerten SG, Proesmans T, Vaes B. A heart rate monitoring app (FibriCheck) for atrial fibrillation in general practice: pilot
usability study. JMIR Form Res 2021 Apr 7;5(4):e24461. [doi: 10.2196/24461] [Medline: 33825692]

18. Forster SD, Gauggel S, Loevenich R, et al. A microanalysis of mood and self-reported functionality in stroke patients using
ecological momentary assessment. Front Neurol 2022;13:854777. [doi: 10.3389/fneur.2022.854777] [Medline: 35665036]

19. Forster SD, Gauggel S, Petershofer A, Völzke V, Mainz V. Ecological momentary assessment in patients with an acquired
brain injury: a pilot study on compliance and fluctuations. Front Neurol 2020;11:115. [doi: 10.3389/fneur.2020.00115]
[Medline: 32194494]

20. Lenaert B, van Kampen N, van Heugten C, Ponds R. Real-time measurement of post-stroke fatigue in daily life and its
relationship with the retrospective Fatigue Severity Scale. Neuropsychol Rehabil 2022 Jul;32(6):992-1006. [doi:
10.1080/09602011.2020.1854791] [Medline: 33297839]

21. Helgadóttir B, Forsell Y, Ekblom Ö. Physical activity patterns of people affected by depressive and anxiety disorders as
measured by accelerometers: a cross-sectional study. PLoS One 2015;10(1):e0115894. [doi: 10.1371/journal.pone.0115894]
[Medline: 25585123]

22. Murphy RP, Reddin C, Rosengren A, et al. Depressive symptoms and risk of acute stroke: INTERSTROKE case-control
study. Neurol (ECronicon) 2023 Apr 25;100(17):e1787-e1798. [doi: 10.1212/WNL.0000000000207093] [Medline: 36889922]

23. Everson-Rose SA, Roetker NS, Lutsey PL, et al. Chronic stress, depressive symptoms, anger, hostility, and risk of stroke
and transient ischemic attack in the multi-ethnic study of atherosclerosis. Stroke 2014 Aug;45(8):2318-2323. [doi:
10.1161/STROKEAHA.114.004815] [Medline: 25013018]

24. Avan A, Hachinski V. Stroke and dementia, leading causes of neurological disability and death, potential for prevention.
Alzheimers Dement 2021 Jun;17(6):1072-1076. [doi: 10.1002/alz.12340] [Medline: 34057294]

25. Heshmatollah A, Dommershuijsen LJ, Fani L, Koudstaal PJ, Ikram MA, Ikram MK. Long-term trajectories of decline in
cognition and daily functioning before and after stroke. J Neurol Neurosurg Psychiatry 2021 Nov;92(11):1158-1163. [doi:
10.1136/jnnp-2021-326043] [Medline: 34230107]

26. Johnson SA, Karas M, Burke KM, et al. Wearable device and smartphone data quantify ALS progression and may provide
novel outcome measures. NPJ Digit Med 2023 Mar 6;6(1):34. [doi: 10.1038/s41746-023-00778-y] [Medline: 36879025]

27. Winer JR, Lok R, Weed L, et al. Impaired 24-h activity patterns are associated with an increased risk of Alzheimer’s disease,
Parkinson’s disease, and cognitive decline. Alz Res Therapy 2024;16(1):35. [doi: 10.1186/s13195-024-01411-0]

28. Zawada SJ, Aissa NH, Conte GM, et al. In situ physiologic and behavioral monitoring with digital sensors for cerebrovascular
disease: a scoping review. Mayo Clin Proc Dig Health 2023 Jun;1(2):139-160. [doi: 10.1016/j.mcpdig.2023.03.007]

29. Jean FAM, Swendsen JD, Sibon I, Fehér K, Husky M. Daily life behaviors and depression risk following stroke: a preliminary
study using ecological momentary assessment. J Geriatr Psychiatry Neurol 2013 Sep;26(3):138-143. [doi:
10.1177/0891988713484193] [Medline: 23584854]

30. Johnson EI, Sibon I, Renou P, Rouanet F, Allard M, Swendsen J. Feasibility and validity of computerized ambulatory
monitoring in stroke patients. Neurology (ECronicon) 2009 Nov 10;73(19):1579-1583. [doi:
10.1212/WNL.0b013e3181c0d466] [Medline: 19901250]

31. Sibon I, Lassalle-Lagadec S, Renou P, Swendsen J. Evolution of depression symptoms following stroke: a prospective
study using computerized ambulatory monitoring. Cerebrovasc Dis 2012;33(3):280-285. [doi: 10.1159/000334663] [Medline:
22285959]

JMIR Neurotech 2025 | vol. 4 | e56679 | p.35https://neuro.jmir.org/2025/1/e56679
(page number not for citation purposes)

Zawada et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

http://dx.doi.org/10.31887/DCNS.2007.9.2/clyketsos
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17726911&dopt=Abstract
http://dx.doi.org/10.1176/appi.ajp.2014.14050578
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25734354&dopt=Abstract
http://dx.doi.org/10.1093/braincomms/fcad275
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37908237&dopt=Abstract
http://dx.doi.org/10.3390/healthcare9070889
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34356267&dopt=Abstract
http://dx.doi.org/10.3389/fcvm.2022.848914
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35498000&dopt=Abstract
http://dx.doi.org/10.1109/EMBC.2019.8857550
http://dx.doi.org/10.1186/s12984-016-0114-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26792670&dopt=Abstract
http://dx.doi.org/10.2196/24461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33825692&dopt=Abstract
http://dx.doi.org/10.3389/fneur.2022.854777
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35665036&dopt=Abstract
http://dx.doi.org/10.3389/fneur.2020.00115
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32194494&dopt=Abstract
http://dx.doi.org/10.1080/09602011.2020.1854791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33297839&dopt=Abstract
http://dx.doi.org/10.1371/journal.pone.0115894
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25585123&dopt=Abstract
http://dx.doi.org/10.1212/WNL.0000000000207093
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36889922&dopt=Abstract
http://dx.doi.org/10.1161/STROKEAHA.114.004815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25013018&dopt=Abstract
http://dx.doi.org/10.1002/alz.12340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34057294&dopt=Abstract
http://dx.doi.org/10.1136/jnnp-2021-326043
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34230107&dopt=Abstract
http://dx.doi.org/10.1038/s41746-023-00778-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36879025&dopt=Abstract
http://dx.doi.org/10.1186/s13195-024-01411-0
http://dx.doi.org/10.1016/j.mcpdig.2023.03.007
http://dx.doi.org/10.1177/0891988713484193
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23584854&dopt=Abstract
http://dx.doi.org/10.1212/WNL.0b013e3181c0d466
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19901250&dopt=Abstract
http://dx.doi.org/10.1159/000334663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22285959&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


32. Tanaka H, Kitamura G, Tamura M, et al. Pre-stroke physical activity is associated with post-stroke physical activity and
sedentary behavior in the acute phase. Sci Rep 2023;13(1):21298. [doi: 10.1038/s41598-023-48232-z]

33. Reinholdsson M, Palstam A, Jood K, S Sunnerhagen K. Associations between pre-stroke physical activity levels and
health-related quality of life 3 months after stroke: a registry-based study (part of PAPSIGOT). Int J Stroke 2023
Dec;18(10):1178-1185. [doi: 10.1177/17474930231184367]

34. Ashizawa R, Honda H, Yoshizawa K, Kameyama Y, Yoshimoto Y. Association between physical activity levels and
depressive symptoms in patients with minor ischemic stroke. J Stroke Cerebrovasc Dis 2022 Sep;31(9):106641. [doi:
10.1016/j.jstrokecerebrovasdis.2022.106641] [Medline: 35834937]

35. Lau SCL, Tabor Connor L, Baum CM. Motivation, physical activity, and affect in community-dwelling stroke survivors:
an ambulatory assessment approach. Ann Behav Med 2023 Apr 12;57(4):334-343. [doi: 10.1093/abm/kaac065] [Medline:
36732938]

36. Alvaro PK, Roberts RM, Harris JK. A systematic review assessing bidirectionality between sleep disturbances, anxiety,
and depression. Sleep 2013 Jul 1;36(7):1059-1068. [doi: 10.5665/sleep.2810] [Medline: 23814343]

37. Ramasubbu R. Relationship between depression and cerebrovascular disease: conceptual issues. J Affect Disord
2000;57(1-3):1-11. [doi: 10.1016/s0165-0327(99)00101-9] [Medline: 10708811]

38. Madjedi KM, Stuart KV, Chua SYL, et al. The association of physical activity with glaucoma and related traits in the UK
Biobank. Ophthalmology 2023 Oct;130(10):1024-1036. [doi: 10.1016/j.ophtha.2023.06.009] [Medline: 37331483]

39. Mac Grory B, Schrag M, Biousse V, et al. Management of central retinal artery occlusion: a scientific statement from the
American Heart Association. Stroke 2021 Jun;52(6):e282-e294. [doi: 10.1161/STR.0000000000000366] [Medline: 33677974]

40. Lu H, Wu PF, Li RZ, Zhang W, Huang GX. Sleep duration and stroke: a Mendelian randomization study. Front Neurol
2020;11:976. [doi: 10.3389/fneur.2020.00976]

41. Barak S, Wu SS, Dai Y, Duncan PW, Behrman AL. Locomotor Experience Applied Post-Stroke (LEAPS) Investigative
Team. Adherence to accelerometry measurement of community ambulation poststroke. Phys Ther 2014;94(1):101-110.
[doi: 10.2522/ptj.20120473]

42. Chaturvedi P, Singh AK, Tiwari V, Thacker AK. Brain-derived neurotrophic factor levels in acute stroke and its clinical
implications. Brain Circ 2020;6(3):185-190. [doi: 10.4103/bc.bc_23_20] [Medline: 33210043]

43. Lim JA, Yun JY, Choi SH, Park S, Suk HW, Jang JH. Greater variability in daily sleep efficiency predicts depression and
anxiety in young adults: estimation of depression severity using the two-week sleep quality records of wearable devices.
Front Psychiatry 2022;13:1041747. [doi: 10.3389/fpsyt.2022.1041747] [Medline: 36419969]

44. Ma J, Ma N, Zhang L, Xu L, Liu X, Meng G. Association of total sleep duration variability with risk of new stroke in the
middle-aged and elderly Chinese population. BMC Neurol 2024 Jun 25;24(1):217. [doi: 10.1186/s12883-024-03727-8]
[Medline: 38918750]

45. Lau SCL, Connor LT, King AA, Baum CM. Multimodal ambulatory monitoring of daily activity and health-related symptoms
in community-dwelling survivors of stroke: feasibility, acceptability, and validity. Arch Phys Med Rehabil 2022
Oct;103(10):1992-2000. [doi: 10.1016/j.apmr.2022.06.002] [Medline: 35780826]

46. Sarris J, Thomson R, Hargraves F, et al. Multiple lifestyle factors and depressed mood: a cross-sectional and longitudinal
analysis of the UK Biobank (N = 84,860). BMC Med 2020 Nov 12;18(1):354. [doi: 10.1186/s12916-020-01813-5] [Medline:
33176802]

47. Prior PL, Suskin N. Exercise for stroke prevention. Stroke Vasc Neurol 2018 Jun;3(2):59-68. [doi: 10.1136/svn-2018-000155]
[Medline: 30191075]

48. UK Biobank. URL: https://www.ukbiobank.ac.uk/ [accessed 2024-12-18]
49. Szawada-mayo/jmir_56679. GitHub. URL: https://github.com/szawada-mayo/jmir_56679 [accessed 2024-12-13]

Abbreviations
BDNF: brain-derived neurotropic factor
CeVD: cerebrovascular disease
DD: depression diagnosis
IC: incident cerebrovascular disease
ICD-10: International Classification of Diseases, Tenth Revision
ICD-11: International Classification of Diseases, Eleventh Revision
IS: incident stroke
LPA: light physical activity
MADRS: Montgomery–Åsberg Depression Rating Survey
MVPA : moderate-to-vigorous physical activity
OR: odds ratio
PA: physical activity
PHQ-2: Patient Health Questionnaire-2
PSD: poststroke depression

JMIR Neurotech 2025 | vol. 4 | e56679 | p.36https://neuro.jmir.org/2025/1/e56679
(page number not for citation purposes)

Zawada et alJMIR NEUROTECHNOLOGY

XSL•FO
RenderX

http://dx.doi.org/10.1038/s41598-023-48232-z
http://dx.doi.org/10.1177/17474930231184367
http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2022.106641
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35834937&dopt=Abstract
http://dx.doi.org/10.1093/abm/kaac065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36732938&dopt=Abstract
http://dx.doi.org/10.5665/sleep.2810
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23814343&dopt=Abstract
http://dx.doi.org/10.1016/s0165-0327(99)00101-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10708811&dopt=Abstract
http://dx.doi.org/10.1016/j.ophtha.2023.06.009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37331483&dopt=Abstract
http://dx.doi.org/10.1161/STR.0000000000000366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33677974&dopt=Abstract
http://dx.doi.org/10.3389/fneur.2020.00976
http://dx.doi.org/10.2522/ptj.20120473
http://dx.doi.org/10.4103/bc.bc_23_20
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33210043&dopt=Abstract
http://dx.doi.org/10.3389/fpsyt.2022.1041747
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36419969&dopt=Abstract
http://dx.doi.org/10.1186/s12883-024-03727-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38918750&dopt=Abstract
http://dx.doi.org/10.1016/j.apmr.2022.06.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35780826&dopt=Abstract
http://dx.doi.org/10.1186/s12916-020-01813-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33176802&dopt=Abstract
http://dx.doi.org/10.1136/svn-2018-000155
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30191075&dopt=Abstract
https://www.ukbiobank.ac.uk/
https://github.com/szawada-mayo/jmir_56679
http://www.w3.org/Style/XSL
http://www.renderx.com/


SB: sedentary behavior
TIA: transient ischemic attack
UKBB: UK Biobank
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