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Abstract
Background: Speech features are increasingly linked to neurodegenerative and mental health conditions, offering the
potential for early detection and differentiation between disorders. As interest in speech analysis grows, distinguishing between
conditions becomes critical for reliable diagnosis and assessment.
Objective: This pilot study explores speech biosignatures in two distinct neurodegenerative conditions: (1) mild traumatic
brain injuries (eg, concussions) and (2) Parkinson disease (PD) as the neurodegenerative condition.
Methods: The study included speech samples from 235 participants (97 concussed and 94 age-matched healthy controls,
29 PD and 15 healthy controls) for the PaTaKa test and 239 participants (91 concussed and 104 healthy controls, 29 PD
and 15 healthy controls) for the Sustained Vowel (/ah/) test. Age-matched healthy controls were used. Young age-matched
controls were used for concussion and respective age-matched controls for neurodegenerative participants (15 healthy samples
for both tests). Data augmentation with noise was applied to balance small datasets for neurodegenerative and healthy
controls. Machine learning models (support vector machine, decision tree, random forest, and Extreme Gradient Boosting)
were employed using 37 temporal and spectral speech features. A 5-fold stratified cross-validation was used to evaluate
classification performance.
Results: For the PaTaKa test, classifiers performed well, achieving F1-scores above 0.9 for concussed versus healthy and
concussed versus neurodegenerative classifications across all models. Initial tests using the original dataset for neurodege-
nerative versus healthy classification yielded very poor results, with F1-scores below 0.2 and accuracy under 30% (eg,
below 12 out of 44 correctly classified samples) across all models. This underscored the need for data augmentation, which
significantly improved performance to 60%‐70% (eg, 26‐31 out of 44 samples) accuracy. In contrast, the Sustained Vowel test
showed mixed results; F1-scores remained high (more than 0.85 across all models) for concussed versus neurodegenerative
classifications but were significantly lower for concussed versus healthy (0.59‐0.62) and neurodegenerative versus healthy
(0.33‐0.77), depending on the model.
Conclusions: This study highlights the potential of speech features as biomarkers for neurodegenerative conditions. The
PaTaKa test exhibited strong discriminative ability, especially for concussed versus neurodegenerative and concussed versus
healthy tasks, whereas challenges remain for neurodegenerative versus healthy classification. These findings emphasize the
need for further exploration of speech-based tools for differential diagnosis and early identification in neurodegenerative
health.
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Introduction
Overview
The fields of health care and medical diagnostics have
witnessed a significant shift toward noninvasive and
accessible methods for early detection, assessment, and
monitoring of medical conditions. This shift has been driven
by technological advancements and growing research interest
in digital health solutions [1]. Among these, speech analysis
has emerged as a promising avenue, with studies identifying
speech as a potential biosignature for a variety of neurodege-
nerative conditions [2,3]. The ability to reliably distinguish
between conditions or detect coexisting disorders is critical
for accurate diagnosis, tracking disease progression, and
evaluating treatment effectiveness [4].

This pilot study investigates speech-based biosignatures
of 2 distinct neurodegenerative conditions, that are, neu-
rodegenerative diseases and mild traumatic brain injuries
(mTBIs), specifically concussions. Speech patterns often
reflect neurodegenerative health, with specific speech features
showing promise for distinguishing between these conditions.
The dataset includes individuals with concussions, patients
with Parkinson disease (PD), and age-matched healthy
controls for both groups (15 samples for each test). These
groups were selected to ensure demographic compatibility
while addressing the unique speech patterns associated with
each condition.

Neurodegenerative diseases, such as PD, are character-
ized by the progressive loss of neurons in the brain and
spinal cord, leading to impairments in motor and cognitive
functions [5,6]. PD involves the degeneration of dopaminer-
gic neurons, resulting in clinical symptoms such as trem-
ors, rigidity, bradykinesia, and postural instability [7]. These
symptoms worsen over time and lack curative treatments,
necessitating reliable diagnostic tools for early intervention
[8]. On the other hand, concussions, a form of mTBI,
result from sudden trauma to the brain, causing temporary
cognitive impairments, disruptions in brain function, and
neurochemical changes. Repeated concussions are associated
with a heightened risk of neurodegenerative disorders, such
as dementia, later in life [9]. Despite their prevalence,
approximately 90% of concussions go unreported, leading
to inadequate medical attention and potentially catastrophic
consequences [10].

Traditional diagnostic methods for neurodegenerative
diseases and concussions often rely on observable motor
symptoms, such as tremors, gait disturbances, or muscle
rigidity, as well as subjective assessments of cognitive
impairments [11]. However, emerging research has identi-
fied speech as a valuable biomarker for neurodegenerative
health. Dysarthria and dysphonia, characterized by changes

in articulation and motor speech production, are prevalent
in both concussions and neurodegenerative conditions like
PD [12-14]. Speech features, such as mel frequency ceps-
tral coefficients (MFCCs), jitter, shimmer, harmonics-to-noise
ratio (HNR), and other temporal and spectral attributes, have
been shown to correlate with underlying neurodegenerative
conditions.

In this study, we analyzed speech data from 2 well-
established medical speech tasks, the PaTaKa task and the
Sustained Vowel task. These tasks are widely used in clinical
settings for assessing speech impairments. The objective of
this study is to explore the potential of speech features in
differentiating between concussions and neurodegenerative
conditions, as well as their respective healthy controls, and to
assess the feasibility of using these features as biomarkers for
diagnosis. By addressing this objective, we aim to contrib-
ute to the development of speech-based diagnostic tools for
early and accurate identification of neurodegenerative health
conditions.

This study evaluated 37 speech-based features (25
temporal and 12 spectral), applying machine learning models
such as support vector machine (SVM), decision tree
(DT), random forest (RF), and Extreme Gradient Boosting
(XGBoost) to classify between the groups.

The remainder of this paper describes our methodology,
feature extraction and analysis, machine learning approaches,
and results for the binary classification tasks across the 2
speech tests.
Related Work
Diagnosing brain injuries and neurodegenerative diseases
can be challenging; for instance, concussions may present
subtle features that are difficult to detect, including using
third person witness accounts of the injury, clinical examina-
tions, and laboratory testing, where diagnostic accuracy is not
always perfect [15]. Recent work has explored the diagnosis
of concussions in athletes using mobile technologies [16] and
speech analysis [17,18], while digital assessments, coupled
with speech analysis, are also increasingly being used for
individuals with neurodegenerative diseases [19]. In a study
by Tsanas [19], various speech tasks have been used to
distinguish between healthy people and individuals with PD,
with relatively high accuracy. Other previous research has
investigated the overall symptom severity of individuals with
a neurodegenerative condition [11,20], the effectiveness of
voice rehabilitation [21], and how to distinguish PD from
other conditions such as essential tremor or atypical parkin-
sonism [22].

The choice of speech task is critical to obtaining speech
samples that can be used for subsequent feature extraction
and analysis. One commonly used speech task is to ask
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an individual to produce sustained phonation of vowels.
For instance, the study by Mallela et al [23] presents an
automatic voice assessment approach for separating healthy
individuals from patients with amyotrophic lateral sclerosis
(ALS). Although our study focuses exclusively on PD as
the representative neurodegenerative condition, references to
ALS studies are included to highlight the broader research
landscape on neurodegenerative speech biosignatures and
their diagnostic significance. Linear discriminant analysis is
used to classify phonation, with the most successful model
achieving more than 90% accuracy. Similarly, a study by
Rueda and Krishnan [24] obtained sustained vowel data from
57 PD patients and 57 healthy individuals, and the study used
5 hierarchical and 1 partition-based clustering techniques to
compare and cross-check PD patients at different phases.
In some cases, researchers have relied on existing voice
recordings, for example, obtained through the Parkinson’s
Voice Initiative project (the largest speech-PD dataset so far)
to analyze voice impairment due to PD [25].

Daudet et al [18] developed a mobile app to diagnose
concussions, using data from 47 high-schools and colleges
in the Midwest. The study used several speech tasks such
as repetition of a sequential motion rate, alternating motion
rate, multisyllabic words (words with 4 syllables contain-
ing front, middle, and back vowels, and bilabial, alveolar,
velar, and glide consonants). The work by Vashkevich et
al [26] presented features for detecting pathological changes
in acoustic speech signals for ALS diagnosis. It used
recordings from 48 people (26 with ALS) and investiga-
ted vowel harmony. The features obtained an 88% correct
classification performance using linear discriminant analysis.
Various speech-based indicators, such as shimmer, jitter,
HNR, and other temporal and spectral indicators, have also
been explored as dysphonia measures in individuals with
neurodegenerative diseases [27]. Finally, in a study by
Benba et al [22], the authors investigated the most effective
acoustic elements for accurately identifying symptoms of
PD, combining shimmer, jitter, pitch, harmonicity, pulses,
and voicing by using K-Nearest Neighbor classifiers with
different types of kernels (ie, radial basis functions, linear,
polynomial, and multilayer perceptron).

Machine learning–based solutions have become the
standard for most health care decision-making processes,
for example, most previous works focus on differentiating
diseased individuals from healthy controls. For example, the
work by Tsanas and Arora [28] evaluated 2289 individuals
(2023 healthy controls and 246 PD patients) and analyzed
15,227 voice tasks (9994 for healthy controls and 5233 for
PD patients). Similarly, the work Bongioanni [29] compared
speech-based automatic classification of patients with ALS
and healthy people using sustained phoneme generation,
diadochokinetic task, and spontaneous speech. They classified
voice samples from 25 patients with ALS and 25 healthy
participants using SVMs and deep neural networks. More
recently, more focus has been given to multiclass scenarios,
for example, the study by Benba et al [22] used a Convolu-
tional Neural Network Long Short-term Memory to catego-
rize ALS, PD, and healthy controls. The study analyzed

speech data from 60 people, focusing on sentence reading,
sound repetition, and sustained vowels.

Though there are studies that had investigate speech
features pertaining to neurodegenerative disorders or acquired
neurodegenerative disorders like mTBI, there are not many
studies exploring speech feature variations between those
populations which might co-occur and impact speech
production differently.

The aim of this study is to investigate whether distinct
speech-based biomarkers, derived from commonly used tasks
like the PaTaKa and Sustained Vowel tests, can effectively
differentiate between concussed individuals, neurodegenera-
tive conditions (focused on PD), and healthy controls.

Methods
Data Collection
This study focused on 2 widely used speech tasks, the
sequential motion rate task (PaTaKa test) and the Sustained
Vowel test. The PaTaKa test evaluates speech-motor function
by asking participants to take a deep breath and repeatedly
articulate “Pa-Ta-Ka” as steadily as possible in 1 breath,
providing insights into the rate and precision of sequential
articulatory actions.

In the Sustained Vowel test, participants were instructed to
sustain the vowel sound “ah” for as long as possible, offering
valuable information about voice quality and potential vocal
tremor. Both tasks were assigned to four participant groups,
that are (1) individuals with concussions, (2) individuals with
neurodegenerative conditions (specifically PD), (3) healthy
controls age-matched to the concussed group, and (4) healthy
controls age-matched to the neurodegenerative group.

Individuals diagnosed with a concussion were evaluated
by physicians or athletic trainers using standardized neu-
rocognitive assessment tools, such as ImPACT (Immedi-
ate Post-Concussion Assessment and Cognitive Testing)
by ImPACT Applications, Inc, SCAT (Sport Concussion
Assessment Tool), an open-access tool , and SAC (Stand-
ardized Assessment of Concussion) by researchers at the
University of North Carolina’s Sports Medicine Research
Laboratory, within 48 hours of the suspected injury.
Individuals with neurodegenerative conditions (ie, PD) were
diagnosed by licensed neurologists or family physicians. All
participants with PD were in the early stages of disease
progression (Hoehn and Yahr stage 1‐2) and were assessed
using tools such as the MDS-UPDRS (Movement Disorder
Society - Unified Parkinson’s Disease Rating Scale) and
Hoehn and Yahr Scale.

Healthy controls were divided into two groups: (1) young
healthy individuals age-matched to the concussed group and
(2) older healthy individuals age-matched to the neurode-
generative group. This separation ensures more accurate
comparisons between the groups, minimizing the confound-
ing effects of age-related speech differences.
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Participants completed the speech tasks using a mobile
app (smartphone or tablet) that provided both visual and
auditory instructions. The app also recorded the audio
samples digitally for subsequent analysis. Audio data were

collected from a total of 235 and 239 participants for the
PaTaKa and Sustained Vowel tests, respectively, as shown in
Table 1.

Table 1. Description of collected samples.

Test name and population Samples, n Sex
Age (years), mean
(SD)

Male, n Female, n
PaTaKa

Concussed 97 86 11 17 (3)
Healthy control (young) 94 81 13 17 (3)
Neurodegenerative (PDa) 29 17 12 63.67 (4.95)
Healthy control (older) 15 5 10 63.67 (4.95)

Sustained Vowel
Concussed 91 82 9 17 (3)
Healthy control (young) 104 90 14 17 (3)
Neurodegenerative (PD) 29 17 12 63.67 (4.95)
Healthy control (older) 15 5 10 63.67 (4.95)

aPD: Parkinson disease.

The PaTaKa test dataset includes speech samples from
97 concussed participants, 29 participants with neurode-
generative conditions (ie, PD), 97 age-matched young
healthy controls, and 15 age-matched older healthy controls.
Similarly, the Sustained Vowel dataset consists of speech
samples from 91 concussed participants, 29 participants with
neurodegenerative conditions (ie, PD), 91 age-matched young
healthy controls, and 15 age-matched older healthy controls.

In the remainder of this section, we describe the 4 key
components of the proposed analysis methodology, shown
in Figure 1, that are data preprocessing, feature extraction,
model training, and evaluation.

Figure 1. Overall visualization of the 4 methodological steps: data preprocessing, feature extraction, model training, evaluation. DT: decision tree;
mfcc: mel frequency cepstral coefficient; RF: random forest; SV: Sustained Vowel; SVM: support vector machine; XGBoost: Extreme Gradient
Boosting.

Data Preprocessing
The voiced portions of speech signals typically carry the most
critical information for analysis. Therefore, to enhance the
quality and efficiency of feature extraction, it is essential to
eliminate unnecessary components, such as silence intervals
and extraneous noise, during the preprocessing phase. In this
study, silence intervals were removed at 2 points in each
speech recording using the free software developed by Muse
group named “Audacity”. Specifically, silence was cut from
the beginning of the recording to the onset of vocalization and
from the offset of vocalization to the end of the recording.

In addition, recordings that did not meet the study’s
requirements, such as those where participants failed to
produce the expected utterances (eg, “PaTaKa” in 1 contin-
uous breath or sustained vowel production without interrup-
tions), were excluded from further analysis. This step ensured
a high-quality dataset for feature extraction and classification,
thereby improving the reliability of the results.
Data Augmentation
To address the challenges of imbalanced datasets and improve
classification performance, data augmentation was applied to
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specific data subsets, particularly those with limited samples,
such as the neurodegenerative (ie, PD) and age-matched
healthy datasets. The augmentation process involved adding
Gaussian noise to the raw audio signals. The noise factor
was set to 0.005 to ensure that the original speech character-
istics were preserved while introducing subtle variations to
increase sample diversity. For each audio file, a noise vector
was generated using a Gaussian distribution, scaled by the
specified noise factor, and added to the original signal. The
augmented audio signals were then normalized to ensure they
remained within the acceptable amplitude range for further
processing.

This step increased the dataset size from 29 PD and 15
healthy samples to 58 PD and 30 healthy samples, resulting in
a notable improvement in classification accuracy from under
30% (original data) to 60%‐70% (augmented data).
Feature Extraction
Feature extraction is the process of transforming raw audio
data into numerical features while retaining the critical
information embedded within the original signal. Among
various methods for converting speech into numerical data,
temporal and spectral features are widely used in speech-pro-
cessing research [22,26,27,30]. In these studies, both types of
features were extracted using Python’s Librosa library [31].

Temporal features describe the changes in an audio signal
over time, such as amplitude and pitch variation. This
study extracted 25 temporal features, including 4 fundamen-
tal frequency measures (eg, mean and SD of F0), 5 jitter
measures, 6 shimmer measures, and the HNR. These features
provide insights into voice quality and stability, commonly
associated with motor speech dysfunctions. The full list
and descriptions of these temporal features are provided in
Multimedia Appendix 1.

Spectral features analyze the frequency components of
the speech signal and are commonly used in applications
such as speech recognition and speaker identification. This
study extracted 12 spectral features, including MFCC,
spectral centroid, chroma features, and spectral flatness.
These features capture frequency-domain characteristics that
are sensitive to articulation and vocal tract configurations.
Detailed descriptions of these spectral features are presented
in Multimedia Appendix 1.

All 37 extracted features (25 temporal and 12 spectral)
were included in the training and evaluation of machine
learning models. By retaining the full feature set, we
ensured that potentially valuable information was preserved,
particularly given the small sample size. Data augmenta-
tion techniques, such as adding noise to the audio sam-
ples, were used to improve the robustness of the models
and enhance performance, especially for the classification
between neurodegenerative and healthy controls, where the
original dataset resulted in poor classification performance.
Model Training
In recent years, the trend in digital health care has been to
use machine learning models to classify input data (speech

samples) into 2 or more classes based on extracted features.
In this work, we employed several popular machine learning
techniques, such as SVM, DT, RF, and XGBoost [18]. These
models were chosen due to their interpretability, robustness,
and ability to handle small datasets effectively, which is
essential for clinical applications.

SVM, a supervised learning algorithm proposed by Boser
et al [32], is grounded in statistical learning theory and is
particularly effective for high-dimensional data [33]. It uses
hyperplanes and margins to separate data into classes, with
its performance being highly dependent on data scaling and
the choice of kernel functions. DTs, on the other hand, divide
feature space into regions by recursively splitting data and
assigning classes to leaf nodes [34]. Despite their simplicity,
DTs are prone to overfitting, especially on small datasets.

RFs mitigate this issue by employing an ensemble of DTs
trained on bootstrapped datasets, with each tree built using
a random subset of features [35]. The final class prediction
is based on a majority vote across all trees, which reduces
variance and enhances model robustness. Finally, XGBoost,
a gradient boosting implementation, constructs DTs sequen-
tially, optimizing performance by correcting errors from
previous iterations [36]. It is known for its computational
efficiency and scalability, making it a popular choice for
structured datasets. For a given sample, the final prediction
can be calculated by summing up the scores of overall leaves,
which is illustrated in Multimedia Appendix 2.

Given the limited size of our dataset, we prioritized
traditional machine-learning models over deep learning
methods. While deep learning algorithms have demonstra-
ted exceptional performance on large datasets, their effective-
ness diminishes with smaller datasets due to overfitting and
computational requirements. Traditional machine learning
models, such as SVM and RF, offer superior interpretabil-
ity, which is critical for clinical decision-making [28]. For
instance, the study by Pishgar et al [37] found that on a small
voice disorder dataset, SVM outperformed a deep neural
network in terms of sensitivity and specificity.

In this study, all 37 extracted features (25 temporal and 12
spectral) were used without any feature selection or filter-
ing. Data augmentation was applied to address the limited
sample size, particularly for the neurodegenerative versus
healthy dataset, where the augmented dataset improved model
performance.

To train and evaluate the machine learning models, we
applied a 75‐25 stratified split of the dataset into training
and test sets, ensuring that class distributions were preserved.
Stratified 5-fold cross-validation was used to evaluate model
performance more reliably, and Grid Search was used to
fine-tune hyperparameters for all algorithms.
Evaluation
In this study, we assessed the performance of our classi-
fication models using multiple evaluation metrics, with a
particular focus on the F1-score due to its robustness in
handling unbalanced datasets. The F1-score is particularly
well-suited for situations where there is an imbalance in the
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class distribution, as it provides a harmonic mean of precision
and recall, balancing the trade-off between these 2 metrics.
The F1-score is defined as follows in Multimedia Appendix 2.

Both precision and recall are crucial in medical applica-
tions, where the consequences of false positives or false
negatives can be severe. The F1-score offers a balanced view
of a model’s performance when neither precision nor recall
can be prioritized over the other. A higher F1-score (ranging
from 0 to 1) indicates a better-performing model.

In addition to the F1-score, we evaluated our models
using precision, recall, and accuracy to provide a compre-
hensive view of model performance. These metrics helped
compare the performance of models across different speech
tasks (PaTaKa and Sustained Vowel) and combinations
(eg, concussed vs healthy, concussed vs neurodegenerative,
neurodegenerative vs healthy). The results section discusses
these findings in detail, highlighting the implications of our
model’s performance for clinical applications.
Ethical Considerations
This research was conducted in compliance with ethical
standards and approved by the Institutional Review Board at
the University of Notre Dame. The approval numbers for this

study are 18-01-4338 and 18-01-4340 for PD and concus-
sion, respectively. All participants provided informed consent
(Multimedia Appendices 3 and 4), and their confidentiality
was ensured throughout the study.

Results
Overview
The performance of the models was evaluated using
precision, recall, F1-score, and accuracy across 3 partici-
pant combinations (ie, concussed vs healthy, concussed vs
neurodegenerative, and neurodegenerative vs healthy) for 2
widely used speech tasks, PaTaKa and Sustained Vowel.
The results provide insights into the discriminative ability
of each test and highlight the comparative effectiveness
of different classifiers in distinguishing between participant
groups. While the PaTaKa task generally demonstrated
robust performance across all combinations, the Sustained
Vowel test showed varying levels of accuracy, particularly
for certain groups and classifiers. The performance for
each combination and test, along with discussions on their
implications are illustrated in Figure 2.
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Figure 2. Performance metrics by test type, model, and combination. SVM: support vector machine; XGBoost: Extreme Gradient Boosting.

Concussed Versus Healthy

PaTaKa Test
The models performed exceptionally well, achieving
near-perfect precision, recall, F1-score, and accuracy across
all classifiers. DT and RF slightly outperformed SVM and
XGBoost, consistently achieving 0.95. There are no sources
in the current document across all metrics. These results
highlight the PaTaKa test’s robustness in distinguishing
between concussed and healthy participants.

Sustained Vowel Test
Performance dropped significantly compared with the
PaTaKa test. SVM and XGBoost achieved slightly higher
metrics, with F1-scores around 0.59‐0.62. DT and RF had
the lowest performance, with metrics around 0.56. The
reduced performance might indicate that sustained vowels are

less effective for distinguishing concussed participants from
healthy individuals.
Concussed Versus Neurodegenerative

PaTaKa Test
All models performed perfectly, achieving precision, recall,
F1-score, and accuracy of 1.0. This demonstrates the
effectiveness of the PaTaKa test for differentiating concussed
participants from those with neurodegenerative conditions.
Consistency across all classifiers reinforces the reliability of
this task for this combination.

Sustained Vowel Test
Similar to the PaTaKa test, most models achieved perfect
scores across all metrics. However, DT and XGBoost showed
slightly reduced performance, with F1-scores of 0.87 and
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accuracy of 0.92. Despite slight variability, the Sustained
Vowel test remains a strong indicator for distinguishing these
groups.
Neurodegenerative Versus Healthy

PaTaKa Test
Results varied significantly across classifiers. RF and
XGBoost outperformed others, achieving F1-scores of 0.63
and 0.72, respectively. DT and SVM performed poorly, with
F1-scores around 0.52‐0.55. These results indicate that the
PaTaKa test has moderate effectiveness for this group but
requires careful classifier selection.

Sustained Vowel Test
Similar trends were observed. XGBoost achieved the highest
F1-score (0.40) and accuracy (0.67), while other models
showed significantly lower performance. This underscores
the challenge of distinguishing neurodegenerative participants
from healthy controls using sustained vowel tasks.

Feature Set Analysis
Understanding the importance of individual features in
classification tasks is crucial for interpreting the predic-
tive power of machine learning models. In this study, we
examined feature importance across all tests and combina-
tions to identify the most influential speech features contribu-
ting to the classification of concussed, neurodegenerative, and
healthy individuals. Feature importance was calculated for
each model (SVM, DT, RF, and XGBoost) using a combina-
tion of metrics, such as Gini importance, SHAP values, or
permutation importance, depending on the model.

To identify globally significant features, we analyzed the
frequency of features ranked among the top 5 across all
24 tests. A summary of the top 10 most frequent features
is presented in Table 2, while Table 3 provides combina-
tion-specific feature importance values. The most frequently
identified features were temporal and spectral characteristics,
which are known to capture both short-term and long-term
speech patterns.

Table 2. Top 10 most frequent features across all tests.
Rank Feature Frequency Mean importance
1 duration 15 0.29
2 zero_crossing_rate 13 0.33
3 spectral_flatness 12 0.30
4 mfcca 11 0.25
5 spectral_bandwidth 7 0.42
6 spectral_centroid 6 0.07
7 spectral_contrast 5 0.07
8 chroma_stft 5 0.32
9 HNRb 4 0.06
10 f4_median 4 0.04

amfcc: mel frequency cepstral coefficient.
bHNR: harmonics-to-noise ratio.

Table 3. Combination specific feature importance value.
Combination and test Feature Value
Concussed versus healthy

PaTaKa Duration 1.9
PaTaKa Zero-crossing rate 0.47
Sustained Vowel Spectral flatness 0.12

Concussed versus neurodegenerative
PaTaKa Spectral bandwidth 1.3
Sustained Vowel MFCCa 2.9

Neurodegenerative versus healthy
PaTaKa HNRb 0.43
Sustained Vowel Spectral flatness 0.76

aMFCC: mel frequency cepstral coefficient.
bHNR: harmonics-to-noise ratio.

Among the top 10 features, duration, zero-crossing rate,
and spectral_flatness were the most influential, appear-
ing consistently across multiple tests and combinations.
These features reflect critical aspects of speech production,

including articulation rate, periodicity, and frequency
smoothness. For instance:
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• Duration: This feature provides insights into motor
control and speech articulation by measuring the length
of utterances.

• Zero-crossing rate: Indicative of voice signal perio-
dicity, this feature is particularly significant in
distinguishing voiced and unvoiced speech segments.

• Spectral_flatness: This feature quantifies the uniform-
ity of the speech spectrum, distinguishing between
harmonic and noise-like components.

Combination-specific patterns further highlight the variabil-
ity in feature importance depending on the test (PaTaKa or
Sustained Vowel) and the target classification task (concussed
vs healthy, concussed vs neurodegenerative, and neurode-
generative vs healthy). For example, (1) in the concussed
versus healthy classification, features like mfcc and spectral

bandwidth were highly impactful, particularly in the PaTaKa
test, (2) in the Concussed concussed versus neurodegenera-
tive classification, spectral_centroid and chroma_stft played a
significant role in distinguishing between the 2 groups, and
(3) for the neurodegenerative versus healthy classification,
features such as f4_median and HNR were key discrimina-
tors, particularly in the Sustained Vowel test.

The distribution of feature importance values across
combinations and tests is visualized in Figure 3, while the
detailed numerical values for each combination and test are
available in Table 3. These findings emphasize the variability
of feature contributions across different tasks and highlight
the importance of task-specific feature analysis for robust
classification.

Figure 3. Top 10 most frequent features across all tests. mfcc: mel frequency cepstral coefficients.

Discussion
Principal Findings
The findings of this study provide valuable insights into
the use of speech-based features for differentiating between
neurodegenerative conditions, particularly mTBI (concus-
sions) and neurodegenerative diseases (eg, PD). By leverag-
ing 2 commonly used speech tasks, the PaTaKa test and
the Sustained Vowel test, and a variety of machine learning
models, we achieved classification accuracies ranging from
60% to 90%, with RF and XGBoost models consistently
outperforming others. In addition, we identified key speech

features, such as duration, zero-crossing rate, and spectral
flatness, as critical biomarkers for distinguishing between
these conditions. These results underscore the potential of
speech features as noninvasive biomarkers for neurodegener-
ative health assessment and highlight the complementary
roles of the PaTaKa and Sustained Vowel tests in revealing
task-specific and globally significant features.
Key Observations
First, task-specific performance. The PaTaKa test consistently
outperformed the Sustained Vowel test across all combina-
tions. This may be attributed to the sequential articulatory
movements required in the PaTaKa test, which can better
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capture subtle motor and speech deficits. For example, in the
concussed versus healthy classification, F1-scores for PaTaKa
exceeded 0.9 across all models, whereas the Sustained Vowel
test achieved F1-scores below 0.6 for the same classification.
These findings highlight the importance of task selection in
speech analysis and suggest that diadochokinetic tasks may
provide richer diagnostic information.

Second, model-specific trends. Among the machine
learning models, RF and XGBoost consistently performed
well, demonstrating their ability to handle complex, nonlin-
ear relationships in speech data. This aligns with previous
research highlighting the robustness of ensemble learning
methods in biomedical and speech signal processing tasks
[38].

Third, the high interpretability of DTs also provides an
advantage for clinical applications, particularly in scenarios
where transparency is critical for adoption in health care
settings.

Fourth, despite its slightly lower performance in some
scenarios, DT models remain valuable due to their simplicity
and ease of implementation.

Fifth, interestingly, SVMs displayed strong performance
in balanced datasets, particularly in the concussed versus
neurodegenerative classification, where precision and recall
consistently reached 1.0 for the PaTaKa test. This finding
is consistent with previous studies showing that SVMs are
effective for high-dimensional data, especially when datasets
are carefully preprocessed and balanced [39]. The perform-
ance of SVM in this classification task further underscores its
utility in distinguishing nuanced differences between distinct
neurodegenerative conditions using speech features.

Finally, feature importance. The analysis of feature
importance revealed that a small subset of features con-
sistently played a dominant role across tests and combina-
tions. Temporal features such as duration and zero-crossing
rate were particularly influential, likely reflecting disrup-
tions in motor control and speech rhythm caused by
both concussions and neurodegenerative conditions. Spectral
features, including spectral_flatness, mfcc, and spectral_band-
width, were also critical, highlighting their utility in cap-
turing frequency-domain variations associated with speech
pathologies. These results align with previous research, which
has emphasized the role of both temporal and spectral
features in detecting neurodegenerative impairments.
Comparison With Previous Studies
Our findings corroborate and extend existing literature on
speech-based biomarkers for neurodegenerative conditions.
Previous research has demonstrated the utility of features
such as MFCC and jitter for detecting PD [4], as well as
features like zero-crossing rate and duration for identifying
concussions [19]. However, this study uniquely emphasizes
the differentiation between neurodegenerative diseases like
PD and mild traumatic brain injury (eg, concussions), a task
that remains relatively underexplored in existing literature.

Furthermore, the inclusion of both PaTaKa and Sustained
Vowel tests enables a more comprehensive analysis of
task-specific feature relevance. While previous studies have
evaluated the diagnostic utility of individual speech tasks (eg,
sustained phonation for ALS in studies by Allison et al [13]
and Tsanas et al [27]), this work highlights how combining
multiple tasks can reveal unique and complementary insights
into speech biosignatures associated with diverse neurodege-
nerative conditions.

In addition to confirming the significance of widely used
features such as spectral flatness and zero-crossing rate,
our study identifies new combinations of features, includ-
ing spectral contrast and chroma-based features, as being
critical for distinguishing between these groups. These results
align with recent advancements in the field, where ensemble
learning models, such as RF and XGBoost, are increasingly
used to capture the intricate, nonlinear relationships within
speech data [23].

By addressing age-related variability and introducing data
augmentation to mitigate the challenges of limited datasets,
this study not only validates previously established findings
but also sets the stage for future research aimed at improv-
ing the diagnostic accuracy of speech-based assessments
across distinct but potentially overlapping neurodegenerative
conditions.
Implications for Clinical Practice
The results of this study highlight several practical implica-
tions for clinical applications.

First, noninvasive diagnostics. The reliance on speech
features, which can be collected using readily available
devices like smartphones, opens up possibilities for remote
and noninvasive diagnostics. This is particularly valuable
in resource-constrained settings where access to advanced
imaging or neurophysiological tests may be limited.

Second, early detection. The ability to detect subtle speech
impairments associated with neurodegenerative conditions
could enable earlier diagnosis, allowing for timely interven-
tions.

Finally, task selection. The superior performance of
the PaTaKa test suggests that it should be prioritized in
future speech-based diagnostic protocols, particularly for
distinguishing between concussions and neurodegenerative
conditions.
Limitations
Despite the promising results, there are several limitations to
this study.

First, small dataset—the dataset size, particularly for
neurodegenerative diseases, was relatively small. This may
limit the generalizability of the findings to larger, more
diverse populations.

Second, demographic differences—the age gap between
the concussed (younger) and neurodegenerative (older)
populations poses a potential confounding factor. While
age-matched healthy controls were included, the results could

JMIR NEUROTECHNOLOGY Rubaiat et al

https://neuro.jmir.org/2025/1/e64624 JMIR Neurotech 2025 | vol. 4 | e64624 | p. 10
(page number not for citation purposes)

https://neuro.jmir.org/2025/1/e64624


be influenced by inherent age-related differences in speech
production.

Third, feature engineering and contextual factors—while
the study identified important features, the reliance on manual
feature extraction may overlook nuanced patterns. Advanced
techniques, such as deep learning–based feature discovery,
could reveal hidden characteristics in speech data. Future
research should also account for comorbidities and age-rela-
ted factors, as these can influence speech biosignatures and
potentially confound results. Age-normalized datasets and
statistical adjustments can further enhance the robustness of
classification models.
Future Directions
This study demonstrates the potential of speech-based
features to differentiate between concussed, neurodegenera-
tive, and healthy individuals. While promising, the findings
also highlight several areas for improvement and expansion,
which we aim to address in future work.

First, dataset expansion and diversity. The current dataset
includes limited samples from each group, particularly for
neurodegenerative diseases. Future studies will expand the
dataset to include larger and more diverse populations,
ensuring broader generalizability of the results. In addition,
we aim to achieve a more balanced age distribution across
all participant groups, enabling more robust analyses and
minimizing potential biases.

Second, age-related effects. While we mitigated some
confounding effects of age by including 2 distinct healthy
control groups (age-matched for concussed and neurodege-
nerative participants), future studies will incorporate more
advanced strategies to address age-related variations in
speech features. These include (1) explicitly including age
as a covariate in statistical models to control its effects
and quantify its influence on the results, (2) conducting
age-matched subgroup analyses to validate that classification
performance is not driven by age-related biases but by the
underlying neurodegenerative conditions, and (3) expanding
the dataset to improve the representation of younger and older
age groups across all conditions.

Third, feature engineering and discovery. While this
study focused on predefined temporal and spectral features,
advanced deep learning models such as autoencoders or
transformer-based models could uncover latent features that

may better distinguish between neurodegenerative condi-
tions. In addition, further exploration of task-specific feature
relevance could reveal complementary insights into speech
patterns for different health conditions.

Fourth, longitudinal data analysis. Future work should
explore longitudinal data to track changes in speech biosigna-
tures over time. This would help identify temporal patterns
associated with disease progression and recovery, providing
valuable insights for monitoring treatment efficacy and early
diagnosis.

Fifth, integration with clinical practice. To enhance the
clinical utility of this research, future efforts should focus
on integrating speech-based diagnostic tools into real-world
health care settings. This includes (1) developing user-
friendly mobile apps or web applications for noninvasive
speech analysis and (2) collaborating with clinicians to
validate the models and evaluate their effectiveness in clinical
decision making processes.

Finally, evaluation metrics and benchmarking. Expanding
the evaluation metrics to include area under the receiver
operating characteristic curve and precision-recall curves
would provide a more comprehensive understanding of model
performance. In addition, benchmarking against existing
speech-based models or alternative diagnostic tools could
further contextualize the findings and demonstrate the added
value of the proposed methods.

By addressing these areas, future research can build
upon the findings of this study to further advance the field
of speech analysis in neurodegenerative health, improve
diagnostic accuracy, and pave the way for noninvasive,
scalable diagnostic tools.
Conclusion
This study demonstrates the potential of speech features,
particularly those derived from the PaTaKa test, as effective
biomarkers for distinguishing between concussed, neurodege-
nerative, and healthy individuals. By identifying task-specific
and globally important features, the findings lay the ground-
work for developing noninvasive, speech-based diagnostic
tools that can be readily implemented in clinical practice.
Further research addressing the study’s limitations could
pave the way for broader applications of speech analysis in
neurodegenerative health.
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