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Abstract

Background: The need to observe brain activity in more natural environments, that is, outside of laboratory settings, is critical
for understanding cognition. Wearable low-cost neuroimaging modalities (electroencephalography [EEG] and functional
near-infrared spectroscopy [fNIRS]) are portable, noninvasive, and robust to motion artifacts but lack similarly portable tools for
use in ecologically valid studies. Smartphones are ubiquitous, programmable, wireless, and thus strong candidates for “pocket
laboratories” companion platforms that travel with study subjects. Therefore, we developed the Wearable Cognitive Assessment
and Augmentation Toolkit (WearCAAT), a cross-platform neuroimaging task platform that integrates external sensors via the
lab streaming layer (LSL) and supports over 100 sensor types. We validated our implementation with healthy human participants
under multimodal neuroimaging conditions prior to analysis of data collection in ongoing clinical settings.

Objective: This study aimed to validate WearCAAT, as a platform for functional neuroimaging research, via analysis of human
participant data collected during our ongoing National Institutes of Health–funded study.

Methods: We analyzed data from healthy college-aged (ages 18‐30 y) adult participants, who completed a battery of shortened
neurocognitive tasks (each lasting 4 min) in WearCAAT, while outfitted with research-grade multimodal EEG and fNIRS sensors.
We indicated validity via the presence of task-related behavioral responses and their neuroimaging correlates. As a representative
example, we analyzed the visual oddball task due to its well-documented poststimulus features for EEG and fNIRS. We extracted
behavioral responses, mean response accuracies, and response times for infrequent (target) and frequent (standard) stimuli classes.
We examined, poststimulus, P300, positive amplitude deflection around 300 (ms) in EEG and increased average oxygenated
hemoglobin (HbO) levels in fNIRS.

Results: We enrolled a total of 57 (male individuals: n=27, 47%; female individuals: n=30, 53%; mean age 22, SD 3.4 y)
participants for data collection. We excluded the first 4 (7%) participants from our analysis due to technical errors. Our analysis
revealed increased mean response times for infrequent (target) stimuli (mean 718, SD 148 ms) compared to frequent (standard)
stimuli (mean 542, SD 122 ms) with the Wilcoxon test (Z=6.33; P<.001; r=0.87); higher P300 amplitudes over midline regions
(parietal and temporal) for EEG; and increased oxygenated hemoglobin over the prefrontal cortex for fNIRS. All participants
completed the full battery and reported no usability concerns or app crashes. Similarly, we observed no data loss or corruption
that would negatively impact analyses.

Conclusions: WearCAAT-provided outcomes from our study, which analyzed multimodal neuroimaging data collected during
a mobile app–based visual oddball task, matched expectations from the literature. While full validation is ongoing for other tasks,
we demonstrated initial validity of our app for neurocognitive imaging use. Our app and approach represent the first attempt at
dedicated neuroimaging mobile-pocket laboratory and contribute to greater studies in ecological validity.
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Introduction

Functional neuroimaging entails the use of noninvasive brain
monitoring sensors during tailored neurocognitive tasks to
measure cortical activity in different brain regions corresponding
to targeted cognitive domains [1]. Neuroimaging research offers
views into the brain and is critical to the understanding of brain
development, injury, and disease or impairment. High-precision
techniques such as functional magnetic resonance imaging have
limitations that include participant refusal, high cost, and
requirements on staying still in the supine position [2]. This
presents an interesting challenge that cognitive neuroscientists
have grappled with since the early days of cognitive studies on
“ecological validity” [3], wherein experimental conditions,
particularly those imposed by the nature of laboratory settings
and high-precision imaging modalities such as functional
magnetic resonance imaging, impact the observed phenomena
[4]. A complementary solution to the challenge of ecological
validity is to use wearable, low-power, wireless technologies
to combat such challenges facing traditional approaches [5].
Noninvasive wearable neuroimaging modalities include
functional near-infrared spectroscopy (fNIRS) to monitor
changes in cerebral hemodynamics related to cognitive activity
and electroencephalography [EEG] to monitor neural activations
via changes in electrophysiology. Both methods enable
observations of human participants in more “natural”
environments, and their complementary nature allows
overcoming of their individual limitations on temporal and
spatial resolution when used together [6].

Development and advances in commercially available mobile
devices, such as tablets and smartphones, enable portable
platforms for conducting human experiments that can further
mobilize wearable sensing modalities. The resulting concept
“pocket laboratories” describes this paradigm well and poses a
unique solution to ecological validity by enabling human
participant research in nonstatic environments that could
potentially travel with a participant. Researchers in human
behavior and medicine have leveraged the widespread adoption
of mobile devices as pocket laboratories for more “natural”
environments, which are classified under mobile health apps.
For example, smartphones and tablets were used in conjunction
with neuroimaging devices to measure interactions with
websites, apps, and each other, to glean insight into health
behaviors such as alcohol consumption [7] and Alzheimer
disease detection [8,9]. In addition to the conveniences and
benefits that mobile devices offer, they also provide useful
hardware for human participant research such as internet
connectivity and integrated sensors (ie, gyroscopes,
accelerometers, and GPS) [10,11] and are extensible through
Bluetooth connections with external wearable health sensors
such as the ones embedded in smartwatches. With an estimated
4.7 billion smartphone users by 2024 [12], the potential for
participant recruitment is vast, which can further improve not
only our understanding of cognition but also allow for the early
detection of different conditions, that is, cognitive impairment
and monitoring of treatment outcomes through larger studies
and populations otherwise unattainable.

Despite the practical uses of mobile devices in clinical research,
there’s a notable gap: a platform for conducting general
functional neuroimaging research using mobile devices. While
accepted tools such as the NIH Toolbox [13] developed by the
National Institutes of Health provide a platform for gathering
psychometrics on human participants and are widely used in
clinical settings (225 journals and conferences as of 2022 [14]),
they lack compatibility with functional neuroimaging sensing
modalities. Other apps are too limited in scope and lack
integration beyond basic proof of concepts and require
significant effort to extend to new scenarios. We believe this is
because app development is difficult and requires deep technical
knowledge and funding that is outside the scope of normal
external funding vehicles [15]. In response to this, we developed
a framework for a functional neuroimaging pocket laboratory
and provided implementation in the Wearable Cognitive
Assessment and Augmentation Toolkit (WearCAAT).

WearCAAT is a cross-platform mobile app, used on both iOS
and Android, in conjunction with external single or multimodal
sensors, integrated via the lab streaming layer (LSL) [16]. LSL
adds signal synchronization capabilities, equivalent on mobile
devices to desktop systems [17]. However, validation of our
framework and implementation is still outstanding. There are
numerous challenges in translating a desktop software capability
to mobile devices, especially in the domain of functional
neuroimaging. Touchscreens are dual-purpose tools that share
the responsibility of presenting stimuli and capturing responses
via “soft” buttons. Mobile operating systems are sandboxed in
nature and typically prevent access to high-precision time-aware
clocks, as well as limit multithreading capabilities. A full
end-to-end test for our paradigm is necessary to understand the
limits and abilities of pocket laboratories in functional
neuroimaging.

Methods

Ethical Considerations
Participants signed informed consent before completing
cognitive tasks using WearCAAT on an iPad. The consent and
collection protocol were reviewed and approved by the
Biomedical Research Alliance of New York, LLC (BRANY)
[18], external institutional review board (1R01AG077018-01),
on March 24, 20. Participant privacy was covered under the
certificate of confidentiality by the National Institutes of Health
that states that researchers will not disclose or use information
that may identify participants in any federal, state, or local civil,
criminal, administrative, legislative, or other action, suit, or
proceeding, even if there is a court subpoena (with exceptions
being federal, state, or local law that requires disclosure, or the
explicit approval of individual participants to release their name
and/or personally identifiable information). Participants were
compensated US $20.

Procedure
We examined whether neurocognitive tasks provided by
WearCAAT, on commercial mobile devices, reliably elicited
cognitive engagement and whether the corresponding biological
markers were detectable and identifiable in neuroimaging data.
This required that (1) behavioral responses aligned with
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established task-specific patterns in the literature, and (2) these
responses enabled the extraction of physiologically meaningful
signals from neuroimaging modalities. Failure to meet both
criteria across tasks constituted a negative inconclusive finding,
whereas partial success supported the technical validity of our
implementation and integration. Consequently, we scoped our
analysis on the visual oddball paradigm [19], also built in
WearCAAT, which is well studied in both EEG and fNIRS
modalities for attention monitoring with established expected
behavioral, neural, and hemodynamic outcomes [20-23].

First, we hypothesized that participants’ behavioral data during
the visual oddball task, as built in WearCAAT, would exhibit
a longer response time (RT) to infrequent (target) stimuli than
to frequent (standard) stimuli. Second, we hypothesized that
neural correlates for cognition, as measured by EEG and fNIRS
during the performance of the visual oddball task, would be
detectable in their respective sensing modality when examined
using time stamps obtained from the behavioral data. For EEG,
the WearCAAT-implemented visual oddball task would evoke
a higher P300 subcomponent (positive deflection in amplitude
around 300 ms after stimulus) in event-related potentials (ERPs;
stimulus-locked activations in EEG) to the infrequent (target)
stimuli as compared to the frequent (standard) ones in the
midline region. For fNIRS, the average oxygenated hemoglobin
(HbO) would positively increase in response to infrequent

(target) stimuli as opposed to the frequent (standard) stimuli,
in the right prefrontal cortex (PFC).

The remainder of this section describes WearCAAT and the
relevant features of this study, followed by the participant
information, data collection protocol, the visual oddball task as
presented in WearCAAT, and the signal processing pipeline to
extract the EEG- and fNIRS-specific components that support
or reject our hypotheses.

WearCAAT: An Overview
WearCAAT implements task-based neurocognitive monitoring,
wherein participants perform 1 of 11 built-in tasks to elicit
known cognitive effects in different domains, including
attention, vigilance, working and episodic memory, response
inhibition, set shifting, and conflict resolution. Currently
implemented tasks in WearCAAT and their cognitive effects
are presented in Table 1. We built WearCAAT using C# and
Extensible Application Markup Language (XAML) from the
Multi-App User-Interface (MAUI) framework [24] with .NET
8. MAUI provides cross-platform (supporting Android and iOS
phones and tablets) app design in a unified project. LSL is
integrated using the “slim bindings” approach for
high-performance C and C++ libraries to be leveraged through
different programming languages, giving direct access to the
necessary libraries.

Table . Currently existing cognitive task battery implemented in the Wearable Cognitive Assessment and Augmentation Toolkit. Cognitive battery has
a total runtime of approximately 1.5 hours, and each task had a runtime of 4 minutes with a 30-second rest period in between, which can be implemented
in a randomized order.

Cognitive effectTask name

Attention or vigilancePsychomotor vigilance task [25,26]

Attention or working memoryVisual oddball paradigm [19]

Response inhibitionGo/no-go [27]

Working memoryN-back (n = [0, 1, 2]) [28,29]

Selective attentionStroop [30]

Conflict resolutionFlanker [31,32]

Set shiftingWisconsin card sorting [33]

Episodic memoryVerbal memory recognition [34]

Episodic memoryBluegrass [35]

Default mode netResting (eyes = [open, closed]) [36]

Neurocognitive tasks followed the sequence described in Figure
1. The participant first read the instructions, then started the
assessment via tapping the “begin” button, upon which the
screen was blank for a configurable resting baseline time
window before the task’s logic loop began. The task expired
after the set amount of time and was followed by a second
baseline period. Timing information was determined using a

stopwatch object, which counted monotonically from the start,
as is common in psychometrics platforms [16]. Tasks were
configurable in the app to allow further flexibility and
experimentation, specifically regarding stimulus type, timing,
interstimulus interval information, stimulus presentation ratios,
and more, depending on the task.
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Figure 1. Task sequence diagram. Baseline periods begin immediately, with all events related to the task going through to LSL streams. “Task page”
represents the logic controller behind the task in WearCAAT (created in BioRender [37]). LSL: lab streaming layer; WearCAAT: Wearable Cognitive
Assessment and Augmentation Toolkit.

Task events were broken down into three categories as follows:
(1) metadata pertaining to task information and configuration
for auditing purposes; (2) stimulus event appearances, types,
etc; and (3) user markers, button presses, or other responses.
Each category streamed data to a corresponding LSL stream
outlet, which sent the data wirelessly to the recording platform.
Figure 1 depicts the sequence of events and the respective
streams for each task.

Participants
We recruited 57 (male individuals: n=27, 47%; female
individuals: n=30, 53%) participants, aged 18 to 30 (mean age
22, SD 3.4 y) years, from the undergraduate and graduate student

bodies at Villanova University via flyers posted in common
university spaces. We detail participant demographic data in
Table 2. Exclusion criteria included current or past severe
neurological or psychiatric disorders and significant vision or
hearing impairments. Participants first attended an initial
screening, where we collected demographic data and relevant
medical histories via a written survey, measured the participant’s
head circumference to determine neuroimaging device cap size,
and scheduled a follow-up data collection session. After
participants signed the informed consent form, we collected
behavioral and neuroimaging data from them while they used
WearCAAT in a session that took approximately 1.5 hours.

Table . Demographic data of recruited college-aged participants.

Total (N=57), n (%)Female (n=30), n (%)Male (n=27), n (%)Demographics

15 (26)7 (23)8 (30)Asian

1 (2)0 (0)1 (4)Black or African American

7 (12)5 (17)2 (7)Hispanic

26 (46)13 (43)13 (48)White

2 (4)0 (0)2 (7)White and Black or African Ameri-
can

6 (11)5 (17)1 (4)White and Hispanic
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Data Collection
We administered all 11 abbreviated tasks to participants via
WearCAAT in sequence, where the first 2 were the resting tasks
(eyes opened and eyes closed) and the remaining 9 tasks were
presented in randomized order (Table 3). All participants
completed the entire task battery built in WearCAAT in 1 sitting
while wearing a full head cap housing the multiple optodes.
The electrodes formed a combined wireless fNIRS-EEG system
(NIRSport2, NIRx Medizintechnik GmbH and Smarting-mbt
wireless EEG, mBrainTrain, respectively) [38,39]. Using our
hybrid neuroimaging system, we collected 51-channel fNIRS
(43 long and 8 short distances) and 32-channel EEG data from

the frontal, temporal, and parietal regions of the brain
simultaneously. We used 3 distinct flexible cap sizes as provided
by NIRx company [40]—small (56 cm), medium (58 cm), and
large (60 cm)—all with 128 slits for probe locations identified
according to the 10-20 international system to accommodate
for different head sizes, improve comfort, and ensure fNIRS
and EEG measurements with good coupling from similar head
locations. The complete layout of our protocol is detailed in
Figure 2; the LSL data streams and their respective interfaces
are all coordinated through a Wireless Area Network (WAN)
hosted on a private router with no external internet connection
nor devices.

Table . The full mapping of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) sensor locations to functional regions
of interest (ROI). For our analysis, we considered regions over the prefrontal cortex, specifically the “frontal right” ROI for fNIRS. The “frontal” (Fz),
“parietal” (Pz), and “temporal” (Cz) midlines are areas we focus on to observe the P300 for EEG.

fNIRS channelsEEG channelsROI

Frontal left •• FPZ-FP1, FPZ-AF3AFP1
• •AFF5 FF7-AF3

•• F5-AF3, F5-F7F3
• •F1 AF3-AFz

Frontal right •• FPZ-FP2, FPZ-AF4AFP2
• •AFF6h AF8-FP2, AF8-AF4

•• F6-AF4, F6-F8F4
• •F2 AF4-AFz

Temporal left •• FT8-T8FTT7h
• •TTP7h TP8-T8

• C6-T8

Temporal right •• FT7-T7FTT8h
• •TTP8h TP7-T7

• C5-T7

Parietal left •• P5-P3, P5-C5P1, P7
• •CPP5h P3

•• CP3TPP8h

Parietal right •• P6-P4, P6-CP6P2, P8
• •CPP6h P4

•• CP4TPP8h

—aFrontal midline • Fz

—Parietal midline • Pz

—Temporal midline • Cz

aNot available.
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Figure 2. Lab streaming layer event pipelines in the Wearable Cognitive Assessment and Augmentation Toolkit; buttons, stimuli, and metadata streamed
wirelessly using the embedded liblsl library to the laptop via an onboard wireless interface; fNIRS connected via wired USB-cable collected using
AuroraNIRS; EEG streamed via dedicated wireless dongle; data are saved to XDF files. DLL: Dynamic-Link Library; EEG: electroencephalogram;
fNIRS: functional near-infrared spectroscopy; WLAN: wireless-local area network; XDF: extensible data format.

Behavioral responses were recorded in WearCAAT where task
events (eg, stimulus presentation times, user responses via button
presses, etc) were time stamped in WearCAAT and wirelessly
streamed through LSL to a laptop (Windows 10) running
App-LabRecorder [41]. Concurrent EEG and fNIRS data were
also streamed wirelessly to the same laptop, which synchronized
all clock times and removed jitter automatically. While
WearCAAT supports Android, we only used an Apple iPad Pro
(sixth generation) as our mobile platform due to the consistency
of iOS devices. Using different operating systems and devices
from different manufacturers might introduce errors that are
harder to quantify [42], and that is out of scope for this body of
work.

Evaluation Protocol: Visual Oddball Paradigm
To provide empirical support and initial validation, we reported
our neuroimaging and behavioral outcomes obtained from the
abbreviated visual oddball task implemented via WearCAAT.
In this task, participants were presented with either 1 of 2 types

of visual stimuli where each consisted of 5 repeated letters and
asked to respond by tapping 1 of the 2, parallel and equally
sized, buttons at the bottom of the screen with the index finger
on their dominant hand. The target stimulus (“XXXXX”)
matched with the left-most button labeled “TARGET,” and the
standard stimulus (“OOOOO”) matched to the right-most button.
The interstimulus interval was 2 seconds, with stimuli
presentations lasting 0.5 seconds and the screen remaining blank
for 1.5 seconds. Target stimuli appeared infrequently relative
to the standard, with at least 7 to 21 standard stimuli appearing
between each target presentation to reduce participant
expectation. On average, each participant witnessed 11.87 (SD
1.15) standard stimuli between each successive target stimulus.
The total duration of the task was 4 minutes and occurred
between two 10-second baseline periods. Participants received
instructions verbally from the experimenters and in the app
before beginning each task, as depicted in Figure 3. Participants
began the task by tapping the “begin” button, which started the
baseline period followed by the oddball sequence.
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Figure 3. In-app instructions for the visual oddball task and examples of stimuli. (A) STANDARD stimulus on the left (OOOOO) and (B)TARGET
stimulus on the right (XXXXX). Stimuli are presented as rectangles with black font on a white background.

Signal Processing

Overview
The simultaneous 51-channel fNIRS and 32-channel EEG data
were collected from the full head in frontal, temporal, and
parietal locations as shown in Figure 4, with regions of interest
(ROI) detailed in Table 3. Our fNIRS and EEG data processing
pipeline for artifact removal (motion, physiological,

environmental, or equipment noise) and data conversion
(hemodynamic response extraction) was performed offline using
custom-built MATLAB (version R2024; MathWorks, Inc) codes
[43] and in accordance with published best practices [44-46].
We used the 8 fNIRS short channels to remove skin artifacts.
EEG data were additionally processed for the removal of eye
blinks, eye movement, muscle artifacts, power line noise, and
limiting the data within the range of 0 Hz to 45 Hz.
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Figure 4. Our hybrid cap design based on the modified 10-20 layout provided by NIRx. Electroencephalogram sensors are depicted in green, functional
near-infrared spectroscopy (fNIRS) source in blue, and fNIRS detectors in red. fNIRS short channel locations are shown with blue circles around the
red sources.

Given the large number of channels (32 for EEG and 43 long
separations for fNIRS), we organized the data into ROIs based
on both anatomical and functional considerations (detailed in
Table 3). To manage the data efficiently, we averaged the
responses for each stimulus (target and standard) separately
across all 57 participants, focusing on “valid” data from each
participant, channel, and stimulus. We determined a channel to
be invalid based on impedance for EEG (>30 kΩ) [47], and
Scalp Coupling Index (<0.4) for fNIRS [48]. Finally, we
averaged the score per channel across all participants and
grouped the channels based on their respective ROIs, reducing
the dimensionality of the dataset.

WearCAAT Markers: User Behavioral Responses
We gathered the response accuracy by evaluating the correct
and incorrect user responses and extracting the reaction times

to target and standard stimuli. We determined significance
between target and standard responses using the Wilcoxon test,
a nonparametric alternative to the paired 2-tailed t test when
the data do not follow a normal distribution.

EEG: Event-Related Potential
We extracted stimulus-locked data epochs (ERPs) from EEG
recordings using 0.2-second prestimulus and 1-second
poststimulus interval and performed a baseline correction by
subtracting the mean of the prestimulus data from the whole
data epoch. We then removed intrinsic response variability by
averaging multiple trials of epochs within the task to obtain an
averaged ERP for each stimulus (target and standard),
separately. Finally, we gathered the ERP features by extracting
the positive and negative peak amplitudes with their respective
timings, specifically focusing on the P300 component (positive
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deflection around 300 ms after the stimulus), which was shown
to be higher in target response as compared to the standard one
in the visual oddball task in healthy young adults [49,50].

fNIRS: Oxygenated Hemoglobin
We processed our fNIRS data by removing motion artifacts and
baseline shifts through wavelet and spline filters [44]. We further
removed physiological signals, cardiac, respiratory, and Mayer
waves, with a finite impulse response low-pass filter using the
cutoff frequency 0.08 Hz [51]. Finally, we converted the light
intensity measurements into changes in HbO and deoxygenated
hemoglobin using the modified Beer-Lambert Law with
published coefficients from the literature [52]. After using short
channel recordings to remove potential skin blood flow artifacts
from long channel recordings using a general linear model [53],
we extracted 20-second poststimulus data epochs and applied
baseline correction using the 1-second prestimuli onset. Notably,
since HbO was the most used fNIRS measure in studies
implementing the visual oddball task that was indicative of
cognitive activity–related changes in attention domain–specific
apps [23], we focused our results and comparisons to only HbO
outcomes in this study.

Results

Overview
We enrolled 57 participants in data collection, and all of them
performed all 11 tasks in 1 sitting. We observed zero participant
dropout with no app crashes or corrupted data. We excluded
data from our first 4 (7%) participants; 2 due to poor impedance
from improper cap setup, and 2 after a patch to WearCAAT that
altered the timing logic to improve the responsiveness of the
touch screen during timed loops. WearCAAT collected and
synchronized multiple concurrent streams of task-related data
(1 stream for stimulus; 1 for each button press; and 1 for
metadata and task events, such as task start and stop and baseline
start and stop) with no data loss in participant responses or
disconnects from the recording server. We also observed no
additional loss of information or signal content from the
combined fNIRS-EEG sensors as well. Participants reported no
complaints or concerns with the WearCAAT app, the
instructions provided either in app or verbally, or the overall
data collection procedure, indicating a low participant burden.
An example participant can be seen sitting comfortably during
collection in Figure 5.
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Figure 5. Participant during data collection, responding to a standard (infrequent) stimulus presented via the Wearable Cognitive Assessment and
Augmentation Toolkit.

User Response Times
We found that the mean RT for target stimuli was 718 (SD 148)
milliseconds and, for standard stimuli, it was 542 (SD 122)
milliseconds. The Wilcoxon test revealed significant differences
in RT to target (infrequent) stimuli as compared to the standard
(frequent) ones (Z=6.33; P<.001; r=0.87). These outcomes
indicated that the participants took longer to identify the target

stimulus than the standard stimulus. Participants’ mean percent
accuracy for identifying stimuli was 94.58 (SD 7.412) for the
target stimulus and 99.12 (SD 1.447) for the standard stimulus,
suggesting that participants identified and responded to the
frequent stimulus more correctly as compared to the infrequent
ones overall.
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EEG: Extracted P300
All participant-averaged (SEM) ERP waveforms obtained using
WearCAAT in an iPad for the abbreviated visual oddball task
for target (red) and standard (blue) stimulus in the parietal
midline (Pz) and central midline (Cz) regions are presented in
Figure 6, separately. Our results showed higher P300 amplitude
in response to target stimuli as compared to the standard one,

especially in the midline regions on the Cz and Pz locations, in
line with the published literature on computerized presentation
of a regular length (approximately 20 min) visual oddball task.
The Cz, presented in Figure 6, recorded a positive peak within
the 250-millisecond to 400-millisecond intervals at 356
milliseconds, having an amplitude of 3.5397 (SD 0.6258) μV
for the target stimulus and at 372 milliseconds with an amplitude
of 0.74667 (SD 0.4929) μV for the standard stimulus.

Figure 6. Mean amplitudes across participants in the central midline (Cz). Clouded regions represent the standard error of the mean. Red represents
target (infrequent) stimulus and blue represents (frequent) stimulus responses.

Similarly, the Pz, presented in Figure 7, recorded a peak at 296
ms with an amplitude of 2.7219 (SD 0.4756) μV in the target

stimulus and a peak at 268 ms with an amplitude of 0.949 (SD
0.3637) μV in the standard stimulus.
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Figure 7. Mean amplitudes across participants in the parietal midline (Pz). Clouded regions represent the standard error of the mean. Red represents
target (infrequent) stimulus and blue represents (frequent) stimulus responses.

fNIRS: Trends in Oxygenated Hemoglobin
As presented in Figure 8, the overall participant-averaged (SEM)
HbO activations in the right PFC demonstrated a clear, positive
increase in response to the target (red) stimulus peaking at

approximately 9 seconds and then returning to lower values
following the shape of a typical hemodynamic response function.
The standard stimulus (blue) did not generate an increased HbO
pattern.

Figure 8. Mean oxygenated hemoglobin activations in the frontal right region of interest across all participants. Clouded regions represent the standard
error of the mean. Red represents the target (infrequent) stimulus and blue represents the (frequent) stimulus responses. The aggregate frontal right
forehead region is displayed on the left, and the individual sensors of interest are displayed in the quadrant on the right.
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Same trends on HbO in response to target and standard stimuli
were observed in all right frontal fNIRS channels constituting
the right frontal ROI, as also presented separately in Figure 8.

Discussion

Principal Findings
We presented our analysis for the abbreviated visual oddball
task as presented and collected using WearCAAT and our
procedures. We found indications that electrophysiological and
hemodynamic activation patterns for the brain observed with
simultaneously collected fNIRS and EEG data follow expected
trends, despite the shorter runtime (4 min as opposed to 20 min
in commonly implemented versions of the task) and the mobile
app platform (as opposed to a computer screen).

Our initial hypothesis for the behavioral responses was
supported. We observed greater RTs to target (infrequent) versus
standard (frequent) stimuli. The Wilcoxon signed-rank test
demonstrated the significance for RT between infrequent and
frequent stimuli. These findings are consistent with previously
reported values in the literature for the visual oddball task
[54,55].

Interestingly, we also observed that periods of responses for
target stimuli were greater than some reported values, whereas
the standard stimuli RTs were much closer. This may be
attributed, in part, to the physical differences in iPad “soft”
buttons and the typical hardware switches commonly used with
the visual oddball task [20]. Traditional desktop setups report
participants using 2 distinct controllers (1 per hand), which
dedicate a controller response per stimulus type. In contrast
with our study, participants used a singular index finger to
switch between button presses. The typical delay reported
between stimulus types could be exacerbated by physical delays
introduced by a participant needing to move his finger from
hovering over 1 button to another one on the opposite side of
the iPad screen. As future work, we will ensure that participants
are instructed on how to hold the iPad, with relevant findings
from the literature.

Our second hypothesis regarding EEG was supported by the
successful extraction of P300 subcomponents from the ERP
waveform, described as a positive deflection in amplitude in
response to the target stimulus, appearing around 300
milliseconds after the stimulus from our collected data. We
obtained higher P300 amplitude in the midline ROIs (Pz and
Cz) for the infrequent (target) stimuli as compared to the
frequent (standard) stimuli, following the expected outcome as
reported in the literature [20,21,54,56]. Our average latencies
for P300 peaks in Pz and Cz were also within previously
reported bounds [57].

We noted the visual jaggedness of the P300 signals, seen in
Figures 6 and 7, which we expected to be smoother, as reported
in the literature. This could be caused by a combination of the
shortened task times and the grand averaging technique used
for analysis. Typical studies report task lengths of 20 minutes
or greater for the visual oddball task, whereas this study’s task
length was 4 minutes. Longer task times would produce 5 times
more trials for both target and standard stimuli per participant,

the averages of which would smooth out irregularities and
potential physiological artifacts in the time series. Further study
using WearCAAT, EEG, and the visual oddball task with longer
task times would provide more clarity on the matter.

Our second hypothesis regarding fNIRS was also supported by
the positive average HbO increases measured in the right PFC
in response to infrequent (target) stimuli as compared to the
frequent (standard) stimuli. Specifically, we observed the
increases in HbO in the frontal right ROI, which was widely
reported in the fNIRS literature where computerized and
traditional length visual oddball task was used [20,23]. In fact,
such findings were prominent in all right frontal channels when
considered separately as well as demonstrating an attention
domain–specific global activation in right PFC as measured by
fNIRS.

On usability, we point to the smoothness of data collection.
Specifically, the lack of complaints from the participants and
experimenters, combined with the zero-dropout rate and app
crashes, is to be noted. Given that users’ major concern with
mobile health apps is the perceived bugginess and clunkiness
of apps [15], we incorporated haptics and button color changes
as feedback to users’ actions. We assume the responsiveness
and perceived functionality of our WearCAAT implementation
is tolerable to young adults who are most fluent and comfortable
in app use. However, because we did not perform a formal
qualitative post–data collection survey, our interpretation is
limited to “no complaints were reported.” This limitation ought
to be accounted for in future studies with formal participant
surveys after participation to add qualitative metrics for
perceived clunkiness and usability.

Conclusions
In this study, we provided evidence for the technical validation
of mobile devices in task-based functional neuroimaging
research via the analysis of multimodal EEG-fNIRS and
behavioral data collected during an abbreviated mobile visual
oddball task from 57 healthy young adults. Specifically, our
goal was to evaluate whether behavioral effects, higher mean
responses to infrequent (target) versus frequent (standard)
stimuli, were present across participants. We also determined
if the P300 component obtained from the ERP waveform on
the midline and increases in measured HbO over the right PFC,
as measured by fNIRS for target stimuli as compared to the
standard ones, can be simultaneously captured using the visual
oddball task as implemented in our mobile app WearCAAT.
All desired features were elicited using an abbreviated visual
oddball task on a mobile platform, which demonstrated the
validity of WearCAAT functionality and synchrony for
functional neuroimaging studies.

While future work entails the validation of more tasks
implemented in the current iteration of WearCAAT, and
comparisons of fNIRS and EEG features for young versus older
adults, this work supports the use of mobile platforms for
cognitive neuroimaging.

WearCAAT will soon be easily accessible through both Google
Play and Apple App Stores. It is our hope that the wide range
of reconfigurable neurocognitive tasks, usability, and ease of
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use with extant neuroimaging setups will enable nontechnical
users to leverage mobile pocket laboratories in future studies
and begin to answer outstanding questions in ecological validity.
We believe the validation of technical ability as reported in this

experiment lends confidence to the pocket lab paradigm and
informs future studies into human behavior, in and out in the
wild.
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