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Abstract
Background:
The need to observe brain activity in more natural environments, that is, outside of laboratory settings, is critical for under-
standing cognition. Wearable low-cost neuroimaging modalities (electroencephalography [EEG] and functional near-infrared
spectroscopy [fNIRS]) are portable, noninvasive, and robust to motion artifacts but lack similarly portable tools for use
in ecologically valid studies. Smartphones are ubiquitous, programmable, wireless, and thus strong candidates for “pocket
laboratories” companion platforms that travel with study subjects. Therefore, we developed the Wearable Cognitive Assess-
ment and Augmentation Toolkit (WearCAAT), a cross-platform neuroimaging task platform that integrates external sensors
via the lab streaming layer (LSL) and supports over 100 sensor types. We validated our implementation with healthy human
participants under multimodal neuroimaging conditions prior to analysis of data collection in ongoing clinical settings.
Objective: This study aimed to validate WearCAAT, as a platform for functional neuroimaging research, via analysis of
human participant data collected during our ongoing National Institutes of Health–funded study.
Methods:
We analyzed data from healthy college-aged (ages 18‐30 y) adult participants, who completed a battery of shortened neurocog-
nitive tasks (each lasting 4 min) in WearCAAT, while outfitted with research-grade multimodal EEG and fNIRS sensors. We
indicated validity via the presence of task-related behavioral responses and their neuroimaging correlates. As a representative
example, we analyzed the visual oddball task due to its well-documented poststimulus features for EEG and fNIRS. We
extracted behavioral responses, mean response accuracies, and response times for infrequent (target) and frequent (standard)
stimuli classes. We examined, poststimulus, P300, positive amplitude deflection around 300 (ms) in EEG and increased
average oxygenated hemoglobin (HbO) levels in fNIRS.
Results:
We enrolled a total of 57 (male individuals: n=27, 47%; female individuals: n=30, 53%; mean age 22, SD 3.4 y) participants
for data collection. We excluded the first 4 (7%) participants from our analysis due to technical errors. Our analysis revealed
increased mean response times for infrequent (target) stimuli (mean 718, SD 148 ms) compared to frequent (standard) stimuli
(mean 542, SD 122 ms) with the Wilcoxon test (Z=6.33; P<.001; r=0.87); higher P300 amplitudes over midline regions
(parietal and temporal) for EEG; and increased oxygenated hemoglobin over the prefrontal cortex for fNIRS. All participants
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completed the full battery and reported no usability concerns or app crashes. Similarly, we observed no data loss or corruption
that would negatively impact analyses.
Conclusions: WearCAAT-provided outcomes from our study, which analyzed multimodal neuroimaging data collected
during a mobile app–based visual oddball task, matched expectations from the literature. While full validation is ongoing
for other tasks, we demonstrated initial validity of our app for neurocognitive imaging use. Our app and approach represent the
first attempt at dedicated neuroimaging mobile-pocket laboratory and contribute to greater studies in ecological validity.

JMIR Neurotech 2026;5:e78217; doi: 10.2196/78217
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Introduction
Functional neuroimaging entails the use of noninvasive brain
monitoring sensors during tailored neurocognitive tasks to
measure cortical activity in different brain regions corre-
sponding to targeted cognitive domains [1]. Neuroimaging
research offers views into the brain and is critical to the
understanding of brain development, injury, and disease or
impairment. High-precision techniques such as functional
magnetic resonance imaging have limitations that include
participant refusal, high cost, and requirements on staying
still in the supine position [2]. This presents an interest-
ing challenge that cognitive neuroscientists have grappled
with since the early days of cognitive studies on “ecolog-
ical validity” [3], wherein experimental conditions, particu-
larly those imposed by the nature of laboratory settings
and high-precision imaging modalities such as functional
magnetic resonance imaging, impact the observed phenomena
[4]. A complementary solution to the challenge of ecologi-
cal validity is to use wearable, low-power, wireless technolo-
gies to combat such challenges facing traditional approaches
[5]. Noninvasive wearable neuroimaging modalities include
functional near-infrared spectroscopy (fNIRS) to monitor
changes in cerebral hemodynamics related to cognitive
activity and electroencephalography [EEG] to monitor neural
activations via changes in electrophysiology. Both methods
enable observations of human participants in more “natu-
ral” environments, and their complementary nature allows
overcoming of their individual limitations on temporal and
spatial resolution when used together [6].

Development and advances in commercially available
mobile devices, such as tablets and smartphones, ena-
ble portable platforms for conducting human experiments
that can further mobilize wearable sensing modalities.
The resulting concept “pocket laboratories” describes this
paradigm well and poses a unique solution to ecological
validity by enabling human participant research in nonstatic
environments that could potentially travel with a participant.
Researchers in human behavior and medicine have lever-
aged the widespread adoption of mobile devices as pocket
laboratories for more “natural” environments, which are
classified under mobile health apps. For example, smart-
phones and tablets were used in conjunction with neuroimag-
ing devices to measure interactions with websites, apps, and
each other, to glean insight into health behaviors such as
alcohol consumption [7] and Alzheimer disease detection

[8,9]. In addition to the conveniences and benefits that
mobile devices offer, they also provide useful hardware
for human participant research such as internet connectivity
and integrated sensors (ie, gyroscopes, accelerometers, and
GPS) [10,11] and are extensible through Bluetooth connec-
tions with external wearable health sensors such as the ones
embedded in smartwatches. With an estimated 4.7 billion
smartphone users by 2024 [12], the potential for participant
recruitment is vast, which can further improve not only
our understanding of cognition but also allow for the early
detection of different conditions, that is, cognitive impairment
and monitoring of treatment outcomes through larger studies
and populations otherwise unattainable.

Despite the practical uses of mobile devices in clini-
cal research, there’s a notable gap: a platform for conduct-
ing general functional neuroimaging research using mobile
devices. While accepted tools such as the NIH Toolbox [13]
developed by the National Institutes of Health provide a
platform for gathering psychometrics on human participants
and are widely used in clinical settings (225 journals and
conferences as of 2022 [14]), they lack compatibility with
functional neuroimaging sensing modalities. Other apps are
too limited in scope and lack integration beyond basic proof
of concepts and require significant effort to extend to new
scenarios. We believe this is because app development is
difficult and requires deep technical knowledge and funding
that is outside the scope of normal external funding vehicles
[15]. In response to this, we developed a framework for
a functional neuroimaging pocket laboratory and provided
implementation in the Wearable Cognitive Assessment and
Augmentation Toolkit (WearCAAT).

WearCAAT is a cross-platform mobile app, used on
both iOS and Android, in conjunction with external sin-
gle or multimodal sensors, integrated via the lab streaming
layer (LSL) [16]. LSL adds signal synchronization capabili-
ties, equivalent on mobile devices to desktop systems [17].
However, validation of our framework and implementation is
still outstanding. There are numerous challenges in translating
a desktop software capability to mobile devices, especially
in the domain of functional neuroimaging. Touchscreens are
dual-purpose tools that share the responsibility of presenting
stimuli and capturing responses via “soft” buttons. Mobile
operating systems are sandboxed in nature and typically
prevent access to high-precision time-aware clocks, as well as
limit multithreading capabilities. A full end-to-end test for our
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paradigm is necessary to understand the limits and abilities of
pocket laboratories in functional neuroimaging.

Methods
Ethical Considerations
Participants signed informed consent before completing
cognitive tasks using WearCAAT on an iPad. The con-
sent and collection protocol were reviewed and approved
by the Biomedical Research Alliance of New York,
LLC (BRANY) [18], external institutional review board
(1R01AG077018-01), on March 24, 20. Participant privacy
was covered under the certificate of confidentiality by the
National Institutes of Health that states that researchers will
not disclose or use information that may identify participants
in any federal, state, or local civil, criminal, administrative,
legislative, or other action, suit, or proceeding, even if there
is a court subpoena (with exceptions being federal, state, or
local law that requires disclosure, or the explicit approval of
individual participants to release their name and/or personally
identifiable information). Participants were compensated US
$20.
Procedure
We examined whether neurocognitive tasks provided
by WearCAAT, on commercial mobile devices, reliably
elicited cognitive engagement and whether the correspond-
ing biological markers were detectable and identifiable
in neuroimaging data. This required that (1) behavioral
responses aligned with established task-specific patterns in
the literature, and (2) these responses enabled the extrac-
tion of physiologically meaningful signals from neuroimag-
ing modalities. Failure to meet both criteria across tasks
constituted a negative inconclusive finding, whereas partial
success supported the technical validity of our implementa-
tion and integration. Consequently, we scoped our analysis on
the visual oddball paradigm [19], also built in WearCAAT,
which is well studied in both EEG and fNIRS modalities
for attention monitoring with established expected behavioral,
neural, and hemodynamic outcomes [20-23].

First, we hypothesized that participants’ behavioral data
during the visual oddball task, as built in WearCAAT,
would exhibit a longer response time (RT) to infrequent
(target) stimuli than to frequent (standard) stimuli. Second,
we hypothesized that neural correlates for cognition, as
measured by EEG and fNIRS during the performance of
the visual oddball task, would be detectable in their respec-
tive sensing modality when examined using time stamps
obtained from the behavioral data. For EEG, the WearCAAT-
implemented visual oddball task would evoke a higher P300
subcomponent (positive deflection in amplitude around 300
ms after stimulus) in event-related potentials (ERPs; stimulus-
locked activations in EEG) to the infrequent (target) stimuli
as compared to the frequent (standard) ones in the mid-
line region. For fNIRS, the average oxygenated hemoglobin
(HbO) would positively increase in response to infrequent
(target) stimuli as opposed to the frequent (standard) stimuli,
in the right prefrontal cortex (PFC).

The remainder of this section describes WearCAAT and
the relevant features of this study, followed by the partici-
pant information, data collection protocol, the visual oddball
task as presented in WearCAAT, and the signal processing
pipeline to extract the EEG- and fNIRS-specific components
that support or reject our hypotheses.
WearCAAT: An Overview
WearCAAT implements task-based neurocognitive monitor-
ing, wherein participants perform 1 of 11 built-in tasks to
elicit known cognitive effects in different domains, including
attention, vigilance, working and episodic memory, response
inhibition, set shifting, and conflict resolution. Currently
implemented tasks in WearCAAT and their cognitive effects
are presented in Table 1. We built WearCAAT using C# and
Extensible Application Markup Language (XAML) from the
Multi-App User-Interface (MAUI) framework [24] with .NET
8. MAUI provides cross-platform (supporting Android and
iOS phones and tablets) app design in a unified project. LSL
is integrated using the “slim bindings” approach for high-
performance C and C++ libraries to be leveraged through
different programming languages, giving direct access to the
necessary libraries.

Table 1. Currently existing cognitive task battery implemented in the Wearable Cognitive Assessment and Augmentation Toolkit. Cognitive battery
has a total runtime of approximately 1.5 hours, and each task had a runtime of 4 minutes with a 30-second rest period in between, which can be
implemented in a randomized order.
Task name Cognitive effect
Psychomotor vigilance task [25,26] Attention or vigilance
Visual oddball paradigm [19] Attention or working memory
Go/no-go [27] Response inhibition
N-back (n = [0, 1, 2]) [28,29] Working memory
Stroop [30] Selective attention
Flanker [31,32] Conflict resolution
Wisconsin card sorting [33] Set shifting
Verbal memory recognition [34] Episodic memory
Bluegrass [35] Episodic memory
Resting (eyes = [open, closed]) [36] Default mode net
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Neurocognitive tasks followed the sequence described in
Figure 1. The participant first read the instructions, then
started the assessment via tapping the “begin” button, upon
which the screen was blank for a configurable resting baseline
time window before the task’s logic loop began. The task
expired after the set amount of time and was followed by a
second baseline period. Timing information was determined

using a stopwatch object, which counted monotonically from
the start, as is common in psychometrics platforms [16].
Tasks were configurable in the app to allow further flexibil-
ity and experimentation, specifically regarding stimulus type,
timing, interstimulus interval information, stimulus presenta-
tion ratios, and more, depending on the task.

Figure 1. Task sequence diagram. Baseline periods begin immediately, with all events related to the task going through to LSL streams. “Task page”
represents the logic controller behind the task in WearCAAT (created in BioRender [37]). LSL: lab streaming layer; WearCAAT: Wearable Cognitive
Assessment and Augmentation Toolkit.

Task events were broken down into three categories as
follows: (1) metadata pertaining to task information and
configuration for auditing purposes; (2) stimulus event
appearances, types, etc; and (3) user markers, button
presses, or other responses. Each category streamed data
to a corresponding LSL stream outlet, which sent the data
wirelessly to the recording platform. Figure 1 depicts the
sequence of events and the respective streams for each task.
Participants
We recruited 57 (male individuals: n=27, 47%; female
individuals: n=30, 53%) participants, aged 18 to 30 (mean
age 22, SD 3.4 y) years, from the undergraduate and graduate

student bodies at Villanova University via flyers posted
in common university spaces. We detail participant demo-
graphic data in Table 2. Exclusion criteria included current
or past severe neurological or psychiatric disorders and
significant vision or hearing impairments. Participants first
attended an initial screening, where we collected demographic
data and relevant medical histories via a written survey,
measured the participant’s head circumference to determine
neuroimaging device cap size, and scheduled a follow-up
data collection session. After participants signed the informed
consent form, we collected behavioral and neuroimaging data
from them while they used WearCAAT in a session that took
approximately 1.5 hours.

Table 2. Demographic data of recruited college-aged participants.
Demographics Male (n=27), n (%) Female (n=30), n (%) Total (N=57), n (%)
Asian 8 (30) 7 (23) 15 (26)
Black or African American 1 (4) 0 (0) 1 (2)
Hispanic 2 (7) 5 (17) 7 (12)
White 13 (48) 13 (43) 26 (46)
White and Black or African American 2 (7) 0 (0) 2 (4)
White and Hispanic 1 (4) 5 (17) 6 (11)

Data Collection
We administered all 11 abbreviated tasks to participants
via WearCAAT in sequence, where the first 2 were the
resting tasks (eyes opened and eyes closed) and the remain-
ing 9 tasks were presented in randomized order (Table 3).

All participants completed the entire task battery built in
WearCAAT in 1 sitting while wearing a full head cap housing
the multiple optodes. The electrodes formed a combined
wireless fNIRS-EEG system (NIRSport2, NIRx Medizin-
technik GmbH and Smarting-mbt wireless EEG, mBrain-
Train, respectively) [38,39]. Using our hybrid neuroimaging
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system, we collected 51-channel fNIRS (43 long and 8
short distances) and 32-channel EEG data from the frontal,
temporal, and parietal regions of the brain simultaneously.
We used 3 distinct flexible cap sizes as provided by NIRx
company [40]—small (56 cm), medium (58 cm), and large
(60 cm)—all with 128 slits for probe locations identified
according to the 10-20 international system to accommodate

for different head sizes, improve comfort, and ensure fNIRS
and EEG measurements with good coupling from similar
head locations. The complete layout of our protocol is
detailed in Figure 2; the LSL data streams and their respec-
tive interfaces are all coordinated through a Wireless Area
Network (WAN) hosted on a private router with no external
internet connection nor devices.

Table 3. The full mapping of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) sensor locations to functional regions
of interest (ROI). For our analysis, we considered regions over the prefrontal cortex, specifically the “frontal right” ROI for fNIRS. The “frontal”
(Fz), “parietal” (Pz), and “temporal” (Cz) midlines are areas we focus on to observe the P300 for EEG.
ROI EEG channels fNIRS channels
Frontal left • AFP1

• AFF5
• F3
• F1

• FPZ-FP1, FPZ-AF3
• FF7-AF3
• F5-AF3, F5-F7
• AF3-AFz

Frontal right • AFP2
• AFF6h
• F4
• F2

• FPZ-FP2, FPZ-AF4
• AF8-FP2, AF8-AF4
• F6-AF4, F6-F8
• AF4-AFz

Temporal left • FTT7h
• TTP7h

• FT8-T8
• TP8-T8
• C6-T8

Temporal right • FTT8h
• TTP8h

• FT7-T7
• TP7-T7
• C5-T7

Parietal left • P1, P7
• CPP5h
• TPP8h

• P5-P3, P5-C5
• P3
• CP3

Parietal right • P2, P8
• CPP6h
• TPP8h

• P6-P4, P6-CP6
• P4
• CP4

Frontal midline • Fz —a

Parietal midline • Pz —
Temporal midline • Cz —

aNot available.

Figure 2. Lab streaming layer event pipelines in the Wearable Cognitive Assessment and Augmentation Toolkit; buttons, stimuli, and metadata
streamed wirelessly using the embedded liblsl library to the laptop via an onboard wireless interface; fNIRS connected via wired USB-cable
collected using AuroraNIRS; EEG streamed via dedicated wireless dongle; data are saved to XDF files. DLL: Dynamic-Link Library; EEG:
electroencephalogram; fNIRS: functional near-infrared spectroscopy; WLAN: wireless-local area network; XDF: extensible data format.
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Behavioral responses were recorded in WearCAAT where
task events (eg, stimulus presentation times, user responses
via button presses, etc) were time stamped in WearCAAT and
wirelessly streamed through LSL to a laptop (Windows 10)
running App-LabRecorder [41]. Concurrent EEG and fNIRS
data were also streamed wirelessly to the same laptop, which
synchronized all clock times and removed jitter automatically.
While WearCAAT supports Android, we only used an Apple
iPad Pro (sixth generation) as our mobile platform due to the
consistency of iOS devices. Using different operating systems
and devices from different manufacturers might introduce
errors that are harder to quantify [42], and that is out of scope
for this body of work.
Evaluation Protocol: Visual Oddball
Paradigm
To provide empirical support and initial validation, we
reported our neuroimaging and behavioral outcomes obtained
from the abbreviated visual oddball task implemented via
WearCAAT. In this task, participants were presented with

either 1 of 2 types of visual stimuli where each consisted of
5 repeated letters and asked to respond by tapping 1 of the 2,
parallel and equally sized, buttons at the bottom of the screen
with the index finger on their dominant hand. The target
stimulus (“XXXXX”) matched with the left-most button
labeled “TARGET,” and the standard stimulus (“OOOOO”)
matched to the right-most button. The interstimulus interval
was 2 seconds, with stimuli presentations lasting 0.5 seconds
and the screen remaining blank for 1.5 seconds. Target
stimuli appeared infrequently relative to the standard, with
at least 7 to 21 standard stimuli appearing between each target
presentation to reduce participant expectation. On average,
each participant witnessed 11.87 (SD 1.15) standard stimuli
between each successive target stimulus. The total duration of
the task was 4 minutes and occurred between two 10-second
baseline periods. Participants received instructions verbally
from the experimenters and in the app before beginning each
task, as depicted in Figure 3. Participants began the task by
tapping the “begin” button, which started the baseline period
followed by the oddball sequence.

Figure 3. In-app instructions for the visual oddball task and examples of stimuli. (A) STANDARD stimulus on the left (OOOOO) and (B) TARGET
stimulus on the right (XXXXX). Stimuli are presented as rectangles with black font on a white background.

Signal Processing

Overview
The simultaneous 51-channel fNIRS and 32-channel EEG
data were collected from the full head in frontal, tempo-
ral, and parietal locations as shown in Figure 4, with
regions of interest (ROI) detailed in Table 3. Our fNIRS
and EEG data processing pipeline for artifact removal
(motion, physiological, environmental, or equipment noise)

and data conversion (hemodynamic response extraction) was
performed offline using custom-built MATLAB (version
R2024; MathWorks, Inc) codes [43] and in accordance with
published best practices [44-46]. We used the 8 fNIRS short
channels to remove skin artifacts. EEG data were addition-
ally processed for the removal of eye blinks, eye movement,
muscle artifacts, power line noise, and limiting the data
within the range of 0 Hz to 45 Hz.
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Figure 4. Our hybrid cap design based on the modified 10-20 layout provided by NIRx. Electroencephalogram sensors are depicted in green,
functional near-infrared spectroscopy (fNIRS) source in blue, and fNIRS detectors in red. fNIRS short channel locations are shown with blue circles
around the red sources.

Given the large number of channels (32 for EEG and 43
long separations for fNIRS), we organized the data into
ROIs based on both anatomical and functional considera-
tions (detailed in Table 3). To manage the data efficiently,
we averaged the responses for each stimulus (target and
standard) separately across all 57 participants, focusing on
“valid” data from each participant, channel, and stimulus.
We determined a channel to be invalid based on impedance
for EEG (>30 kΩ) [47], and Scalp Coupling Index (<0.4)
for fNIRS [48]. Finally, we averaged the score per channel
across all participants and grouped the channels based on
their respective ROIs, reducing the dimensionality of the
dataset.

WearCAAT Markers: User Behavioral
Responses
We gathered the response accuracy by evaluating the correct
and incorrect user responses and extracting the reaction times
to target and standard stimuli. We determined significance
between target and standard responses using the Wilcoxon
test, a nonparametric alternative to the paired 2-tailed t test
when the data do not follow a normal distribution.

EEG: Event-Related Potential
We extracted stimulus-locked data epochs (ERPs) from
EEG recordings using 0.2-second prestimulus and 1-second
poststimulus interval and performed a baseline correction by
subtracting the mean of the prestimulus data from the whole
data epoch. We then removed intrinsic response variabil-
ity by averaging multiple trials of epochs within the task
to obtain an averaged ERP for each stimulus (target and
standard), separately. Finally, we gathered the ERP features
by extracting the positive and negative peak amplitudes with
their respective timings, specifically focusing on the P300
component (positive deflection around 300 ms after the
stimulus), which was shown to be higher in target response
as compared to the standard one in the visual oddball task in
healthy young adults [49,50].
fNIRS: Oxygenated Hemoglobin
We processed our fNIRS data by removing motion artifacts
and baseline shifts through wavelet and spline filters [44].
We further removed physiological signals, cardiac, respira-
tory, and Mayer waves, with a finite impulse response
low-pass filter using the cutoff frequency 0.08 Hz [51].
Finally, we converted the light intensity measurements into
changes in HbO and deoxygenated hemoglobin using the
modified Beer-Lambert Law with published coefficients from
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the literature [52]. After using short channel recordings to
remove potential skin blood flow artifacts from long channel
recordings using a general linear model [53], we extracted
20-second poststimulus data epochs and applied baseline
correction using the 1-second prestimuli onset. Notably, since
HbO was the most used fNIRS measure in studies implement-
ing the visual oddball task that was indicative of cognitive
activity–related changes in attention domain–specific apps
[23], we focused our results and comparisons to only HbO
outcomes in this study.

Results
Overview
We enrolled 57 participants in data collection, and all of
them performed all 11 tasks in 1 sitting. We observed zero

participant dropout with no app crashes or corrupted data.
We excluded data from our first 4 (7%) participants; 2 due
to poor impedance from improper cap setup, and 2 after a
patch to WearCAAT that altered the timing logic to improve
the responsiveness of the touch screen during timed loops.
WearCAAT collected and synchronized multiple concurrent
streams of task-related data (1 stream for stimulus; 1 for each
button press; and 1 for metadata and task events, such as task
start and stop and baseline start and stop) with no data loss
in participant responses or disconnects from the recording
server. We also observed no additional loss of information
or signal content from the combined fNIRS-EEG sensors as
well. Participants reported no complaints or concerns with the
WearCAAT app, the instructions provided either in app or
verbally, or the overall data collection procedure, indicating
a low participant burden. An example participant can be seen
sitting comfortably during collection in Figure 5.

Figure 5. Participant during data collection, responding to a standard (infrequent) stimulus presented via the Wearable Cognitive Assessment and
Augmentation Toolkit.

User Response Times
We found that the mean RT for target stimuli was 718 (SD
148) milliseconds and, for standard stimuli, it was 542 (SD
122) milliseconds. The Wilcoxon test revealed significant
differences in RT to target (infrequent) stimuli as compared
to the standard (frequent) ones (Z=6.33; P<.001; r=0.87).
These outcomes indicated that the participants took longer

to identify the target stimulus than the standard stimulus.
Participants’ mean percent accuracy for identifying stimuli
was 94.58 (SD 7.412) for the target stimulus and 99.12 (SD
1.447) for the standard stimulus, suggesting that participants
identified and responded to the frequent stimulus more
correctly as compared to the infrequent ones overall.
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EEG: Extracted P300
All participant-averaged (SEM) ERP waveforms obtained
using WearCAAT in an iPad for the abbreviated visual
oddball task for target (red) and standard (blue) stimulus in
the parietal midline (Pz) and central midline (Cz) regions are
presented in Figure 6, separately. Our results showed higher
P300 amplitude in response to target stimuli as compared to
the standard one, especially in the midline regions on the

Cz and Pz locations, in line with the published literature
on computerized presentation of a regular length (approxi-
mately 20 min) visual oddball task. The Cz, presented in
Figure 6, recorded a positive peak within the 250-millisecond
to 400-millisecond intervals at 356 milliseconds, having an
amplitude of 3.5397 (SD 0.6258) μV for the target stimulus
and at 372 milliseconds with an amplitude of 0.74667 (SD
0.4929) μV for the standard stimulus.

Figure 6. Mean amplitudes across participants in the central midline (Cz). Clouded regions represent the standard error of the mean. Red represents
target (infrequent) stimulus and blue represents (frequent) stimulus responses.

Similarly, the Pz, presented in Figure 7, recorded a peak at
296 ms with an amplitude of 2.7219 (SD 0.4756) μV in the

target stimulus and a peak at 268 ms with an amplitude of
0.949 (SD 0.3637) μV in the standard stimulus.

Figure 7. Mean amplitudes across participants in the parietal midline (Pz). Clouded regions represent the standard error of the mean. Red represents
target (infrequent) stimulus and blue represents (frequent) stimulus responses.

fNIRS: Trends in Oxygenated Hemoglobin
As presented in Figure 8, the overall participant-averaged
(SEM) HbO activations in the right PFC demonstrated a
clear, positive increase in response to the target (red) stimulus

peaking at approximately 9 seconds and then returning to
lower values following the shape of a typical hemodynamic
response function. The standard stimulus (blue) did not
generate an increased HbO pattern.
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Figure 8. Mean oxygenated hemoglobin activations in the frontal right region of interest across all participants. Clouded regions represent the
standard error of the mean. Red represents the target (infrequent) stimulus and blue represents the (frequent) stimulus responses. The aggregate
frontal right forehead region is displayed on the left, and the individual sensors of interest are displayed in the quadrant on the right.

Same trends on HbO in response to target and standard
stimuli were observed in all right frontal fNIRS channels
constituting the right frontal ROI, as also presented separately
in Figure 8.

Discussion
Principal Findings
We presented our analysis for the abbreviated visual oddball
task as presented and collected using WearCAAT and our
procedures. We found indications that electrophysiological
and hemodynamic activation patterns for the brain observed
with simultaneously collected fNIRS and EEG data follow
expected trends, despite the shorter runtime (4 min as
opposed to 20 min in commonly implemented versions of the
task) and the mobile app platform (as opposed to a computer
screen).

Our initial hypothesis for the behavioral responses was
supported. We observed greater RTs to target (infrequent)
versus standard (frequent) stimuli. The Wilcoxon signed-rank
test demonstrated the significance for RT between infrequent
and frequent stimuli. These findings are consistent with
previously reported values in the literature for the visual
oddball task [54,55].

Interestingly, we also observed that periods of responses
for target stimuli were greater than some reported values,
whereas the standard stimuli RTs were much closer. This
may be attributed, in part, to the physical differences in iPad
“soft” buttons and the typical hardware switches commonly
used with the visual oddball task [20]. Traditional desktop
setups report participants using 2 distinct controllers (1 per
hand), which dedicate a controller response per stimulus type.
In contrast with our study, participants used a singular index
finger to switch between button presses. The typical delay
reported between stimulus types could be exacerbated by
physical delays introduced by a participant needing to move

his finger from hovering over 1 button to another one on the
opposite side of the iPad screen. As future work, we will
ensure that participants are instructed on how to hold the
iPad, with relevant findings from the literature.

Our second hypothesis regarding EEG was supported
by the successful extraction of P300 subcomponents from
the ERP waveform, described as a positive deflection in
amplitude in response to the target stimulus, appearing around
300 milliseconds after the stimulus from our collected data.
We obtained higher P300 amplitude in the midline ROIs
(Pz and Cz) for the infrequent (target) stimuli as compared
to the frequent (standard) stimuli, following the expected
outcome as reported in the literature [20,21,54,56]. Our
average latencies for P300 peaks in Pz and Cz were also
within previously reported bounds [57].

We noted the visual jaggedness of the P300 signals, seen
in Figures 6 and 7, which we expected to be smoother, as
reported in the literature. This could be caused by a com-
bination of the shortened task times and the grand averag-
ing technique used for analysis. Typical studies report task
lengths of 20 minutes or greater for the visual oddball task,
whereas this study’s task length was 4 minutes. Longer task
times would produce 5 times more trials for both target and
standard stimuli per participant, the averages of which would
smooth out irregularities and potential physiological artifacts
in the time series. Further study using WearCAAT, EEG, and
the visual oddball task with longer task times would provide
more clarity on the matter.

Our second hypothesis regarding fNIRS was also
supported by the positive average HbO increases measured
in the right PFC in response to infrequent (target) stimuli as
compared to the frequent (standard) stimuli. Specifically, we
observed the increases in HbO in the frontal right ROI, which
was widely reported in the fNIRS literature where computer-
ized and traditional length visual oddball task was used [20,
23]. In fact, such findings were prominent in all right frontal

JMIR NEUROTECHNOLOGY Rokowski et al

https://neuro.jmir.org/2026/1/e78217 JMIR Neurotech 2026 | vol. 5 | e78217 | p. 10
(page number not for citation purposes)

https://neuro.jmir.org/2026/1/e78217


channels when considered separately as well as demonstrating
an attention domain–specific global activation in right PFC as
measured by fNIRS.

On usability, we point to the smoothness of data collec-
tion. Specifically, the lack of complaints from the partici-
pants and experimenters, combined with the zero-dropout rate
and app crashes, is to be noted. Given that users’ major
concern with mobile health apps is the perceived bugginess
and clunkiness of apps [15], we incorporated haptics and
button color changes as feedback to users’ actions. We
assume the responsiveness and perceived functionality of our
WearCAAT implementation is tolerable to young adults who
are most fluent and comfortable in app use. However, because
we did not perform a formal qualitative post–data collection
survey, our interpretation is limited to “no complaints were
reported.” This limitation ought to be accounted for in future
studies with formal participant surveys after participation to
add qualitative metrics for perceived clunkiness and usability.
Conclusions
In this study, we provided evidence for the technical
validation of mobile devices in task-based functional
neuroimaging research via the analysis of multimodal
EEG-fNIRS and behavioral data collected during an
abbreviated mobile visual oddball task from 57 healthy
young adults. Specifically, our goal was to evaluate whether
behavioral effects, higher mean responses to infrequent

(target) versus frequent (standard) stimuli, were present
across participants. We also determined if the P300 compo-
nent obtained from the ERP waveform on the midline and
increases in measured HbO over the right PFC, as measured
by fNIRS for target stimuli as compared to the standard ones,
can be simultaneously captured using the visual oddball task
as implemented in our mobile app WearCAAT. All desired
features were elicited using an abbreviated visual oddball
task on a mobile platform, which demonstrated the validity
of WearCAAT functionality and synchrony for functional
neuroimaging studies.

While future work entails the validation of more tasks
implemented in the current iteration of WearCAAT, and
comparisons of fNIRS and EEG features for young versus
older adults, this work supports the use of mobile platforms
for cognitive neuroimaging.

WearCAAT will soon be easily accessible through both
Google Play and Apple App Stores. It is our hope that the
wide range of reconfigurable neurocognitive tasks, usability,
and ease of use with extant neuroimaging setups will enable
nontechnical users to leverage mobile pocket laboratories in
future studies and begin to answer outstanding questions in
ecological validity. We believe the validation of technical
ability as reported in this experiment lends confidence to the
pocket lab paradigm and informs future studies into human
behavior, in and out in the wild.
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