JMIR Neurotechnology

The intersection between clinical neuroscience and technology to prevent, diagnose, and treat neurological disorders

Editor-in-Chief:

Pieter Kubben, MD, PhD, Neurosurgeon, Maastricht University Medical Center, The Netherlands


JMIR Neurotechnology is a new, cross-disciplinary, gold open access journal created to connect the broad domains of clinical neuroscience and all related technologies. The journal opens a space for the publication of research exploring how technologies (e.g. information technology, neural engineering, neural interfacing, clinical data science, robotics, eHealth/mHealth) can be applied in clinical neuroscience (e.g., neurology, neurosurgery, neuroradiology) to prevent, diagnose, and treat neurological disorders.

"Neurotechnology can ameliorate or even eliminate some of the impairments that come with neurological disorders, by helping the patients to regain lost functions and participate in society, while reducing the cost of healthcare." - Prof. Dr. Pieter Roelfsema, Director of the Netherlands Institute for Neuroscience

Recent Articles

Article Thumbnail
JNT - General

The COVID-19 pandemic led to many consultations being conducted remotely. Cognitive impairment is recognized as a potential barrier to remote health care interactions and is common and heterogeneous in Parkinson disease. Studies have shown remote consultations in Parkinson disease to be feasible, but little is known about real-life experience, especially for those with cognitive impairment. We explored the experiences and perceptions of remote consultations for people with Parkinson disease and cognitive impairment.

|
Article Thumbnail
JNT - General

iReadMore is a digital therapy for people with acquired reading impairments (known as alexia) caused by brain injury or neurodegeneration. A phase II clinical trial demonstrated the efficacy of the digital therapy research prototype for improving reading speed and accuracy in people with poststroke aphasia (acquired language impairment) and alexia. However, it also highlighted the complexities and barriers to delivering self-managed therapies at home. Therefore, in order to translate the positive study results into real-world benefits, iReadMore required subsequent design innovation. Here, we present qualitative findings from the co-design process as well as the methodology.

|
Article Thumbnail
Original Papers

Time spent in the prehospital phase of acute stroke care is multifactorial and has an effect on the possibilities for acute treatment. Communication between paramedics and the in-hospital stroke team directly affects time to treatment. A mutual stroke scale such as the National Institutes of Health Stroke Scale (NIHSS) may improve communication quality. The Paramedic Norwegian Acute Stroke Prehospital Project (ParaNASPP) was a stepped-wedge, randomized trial of stroke screening using NIHSS in the ambulance where the intervention was training paramedics in stroke and the NIHSS, with the use of NIHSS made into a mobile app to guide the examination and facilitate communication with the in-hospital stroke team.

|
Article Thumbnail
Original Papers

Extended reality (XR) is a term that captures a variety of techniques, such as augmented reality (AR) and mixed reality (MR), which allow users to interact with virtual models in real time. This technology has an emerging role in several applications within neurosurgery. XR can be useful in enhancing how radiosurgical cases are planned. Multidisciplinary team (MDT) review is an essential part of the radiosurgery case planning process; during case discussions, patient images are reviewed, usually in 2D or 3D modifications. The current commercially available platforms for this review need improvement.

|

Preprints Open for Peer-Review

There are no preprints available for open peer-review at this time. Please check back later.

We are working in partnership with